1
|
Yang L, Shen A, Wang R, Zheng Z. S100A16 stabilizes the ITGA3‑mediated ECM‑receptor interaction pathway to drive the malignant properties of lung adenocarcinoma cells via binding MOV10. Mol Med Rep 2025; 31:11. [PMID: 39450567 PMCID: PMC11541165 DOI: 10.3892/mmr.2024.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is highly associated with lung cancer‑associated mortality. Notably, S100 calcium‑binding protein A16 (S100A16) has been increasingly considered to have prognostic value in LUAD; however, the underlying mechanism remains unknown. In the present study, S100A16 expression levels in LUAD tissues and cells were respectively analyzed by the UALCAN database and western blotting. Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine assays were used to examine cell proliferation, whereas wound healing, Transwell and tube formation assays were used to assess cell migration, invasion and angiogenesis, respectively. Western blotting was also used to examine the expression levels of proteins associated with metastasis, angiogenesis, focal adhesion and the extracellular matrix (ECM)‑receptor interaction pathways. The relationship between S100A16 and Mov10 RNA helicase (MOV10) was predicted by bioinformatics tools, and was verified using a co‑immunoprecipitation assay. Furthermore, the interaction between MOV10 and integrin α3 (ITGA3) was verified by RNA immunoprecipitation assay, and the actinomycin D assay was used to detect ITGA3 mRNA stability. The results demonstrated that S100A16 expression was increased in LUAD tissues and cell lines, and was associated with unfavorable outcomes. Knocking down S100A16 expression hindered the proliferation, migration, invasion and angiogenesis of LUAD cells. Furthermore, S100A16 was shown to bind to MOV10 and positively modulate MOV10 expression in LUAD cells, while MOV10 overexpression partially reversed the suppressive role of S100A16 knockdown on the aggressive phenotypes of LUAD cells. Furthermore, it was demonstrated that S100A16 regulated the stability of ITGA3 mRNA via MOV10 to mediate ECM‑receptor interactions. In conclusion, S100A16 may bind to MOV10 to stabilize ITGA3 mRNA and regulate ECM‑receptor interactions, hence contributing to the malignant progression of LUAD.
Collapse
Affiliation(s)
- Lianren Yang
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Ajuan Shen
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Rujun Wang
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Zhihui Zheng
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| |
Collapse
|
2
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
3
|
Zhou H, Astore C, Skolnick J. PHEVIR: an artificial intelligence algorithm that predicts the molecular role of pathogens in complex human diseases. Sci Rep 2022; 12:20889. [PMID: 36463386 PMCID: PMC9719543 DOI: 10.1038/s41598-022-25412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Infectious diseases are known to cause a wide variety of post-infection complications. However, it's been challenging to identify which diseases are most associated with a given pathogen infection. Using the recently developed LeMeDISCO approach that predicts comorbid diseases associated with a given set of putative mode of action (MOA) proteins and pathogen-human protein interactomes, we developed PHEVIR, an algorithm which predicts the corresponding human disease comorbidities of 312 viruses and 57 bacteria. These predictions provide an understanding of the molecular bases of complications and means of identifying appropriate drug targets to treat them. As an illustration of its power, PHEVIR is applied to identify putative driver pathogens and corresponding human MOA proteins for Type 2 diabetes, atherosclerosis, Alzheimer's disease, and inflammatory bowel disease. Additionally, we explore the origins of the oncogenicity/oncolyticity of certain pathogens and the relationship between heart disease and influenza. The full PHEVIR database is available at https://sites.gatech.edu/cssb/phevir/ .
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Courtney Astore
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Prasad K, Gour P, Raghuvanshi S, Kumar V. The SARS-CoV-2 targeted human RNA binding proteins network biology to investigate COVID-19 associated manifestations. Int J Biol Macromol 2022; 217:853-863. [PMID: 35907451 PMCID: PMC9328843 DOI: 10.1016/j.ijbiomac.2022.07.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has had unprecedented social and economic ramifications. Identifying targets for drug repurposing could be an effective means to present new and fast treatments. Furthermore, the risk of morbidity and mortality from COVID-19 goes up when there are coexisting medical conditions, however, the underlying mechanisms remain unclear. In the current study, we have adopted a network-based systems biology approach to investigate the RNA binding proteins (RBPs)-based molecular interplay between COVID-19, various human cancers, and neurological disorders. The network based on RBPs commonly involved in the three disease conditions consisted of nine RBPs connecting 10 different cancer types, 22 brain disorders, and COVID-19 infection, ultimately hinting at the comorbidities and complexity of COVID-19. Further, we underscored five miRNAs with reported antiviral properties that target all of the nine shared RBPs and are thus therapeutically valuable. As a strategy to improve the clinical conditions in comorbidities associated with COVID-19, we propose perturbing the shared RBPs by drug repurposing. The network-based analysis presented hereby contributes to a better knowledge of the molecular underpinnings of the comorbidities associated with COVID-19.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Pratibha Gour
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
5
|
Yang S, Zhang X, Li X, Yin X, Teng L, Ji G, Li H. Evolutionary and Expression Analysis of MOV10 and MOV10L1 Reveals Their Origin, Duplication and Divergence. Int J Mol Sci 2022; 23:ijms23147523. [PMID: 35886872 PMCID: PMC9319325 DOI: 10.3390/ijms23147523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
MOV10 and MOV10L1 both encode ATP-dependent RNA helicases. In mammals, MOV10 and MOV10L1 participate in various kinds of biological contexts, such as defense of RNA virus invasion, neuron system, germ cell and early development. However, mov10 and mov10l1 in zebrafish are obscure and the evolutionary relationships of mov10 among different species remain unclear. In this study, we found MOV10 and MOV10L1 had some variations despite they possessed the conserved feature of RNA helicase, however, they may originate from a single ancestor although they shared limited homology. A single MOV10L1 gene existed among all species, while MOV10 gene experienced lineage-specific intra-chromosomal gene duplication in several species. Interestingly, the mov10 gene expanded to three in zebrafish, which originating from a duplication by whole genome specific duplication of teleost lineage followed by a specific intra-chromosome tandem duplication. The mov10 and mov10l1 showed distinct expression profiles in early stages, however, in adult zebrafish, three mov10 genes exhibited similar diverse expression patterns in almost all tissues. We also demonstrated mov10 genes were upregulated upon virus challenge, highlighting they had redundant conserved roles in virus infection. These results provide valuable data for the evolution of MOV10 and MOV10L1 and they are important to the further functional exploration.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xiangmin Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xianpeng Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xiu Yin
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Lei Teng
- School of Basic Medicine, Qingdao University, Qingdao 266071, China;
| | - Guangdong Ji
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
- Correspondence: (G.J.); (H.L.); Tel.: +86-0532-82032092 (H.L.)
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Correspondence: (G.J.); (H.L.); Tel.: +86-0532-82032092 (H.L.)
| |
Collapse
|
6
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
7
|
Rosenberg M, Levy V, Maier VK, Kesner B, Blum R, Lee JT. Denaturing cross-linking immunoprecipitation to identify footprints for RNA-binding proteins. STAR Protoc 2021; 2:100819. [PMID: 34585157 PMCID: PMC8452891 DOI: 10.1016/j.xpro.2021.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The isolation of protein-RNA complexes in the “denaturing cross-linked RNA immunoprecipitation” (dCLIP) protocol is based on biotin-tagging proteins of interest, UV cross-linking RNA to protein in vivo, RNase protection assay, and isolating RNA-protein complexes under denaturing conditions over a streptavidin column. Insofar as conventional antibody-based CLIP assays have been challenging to apply to Polycomb complexes, dCLIP has been applied successfully and yields small RNA footprints from which de novo motif analysis can be performed to identify RNA binding motifs. For complete details on the use and execution of this protocol, please refer to Rosenberg et al. (2017). dCLIP biotags a protein of interest to identify cross-linked RNA interactors in vivo Biotin-streptavidin purification system enables denaturing washing conditions dCLIP is successfully applied to chromatin-modifying protein complexes dCLIP allows high-resolution mapping of RNA binding sites and de novo motif analysis
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Vered Levy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Verena K Maier
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Abstract
Coronaviruses (CoVs) are emergent pathogens that may cause life-threatening respiratory diseases in humans. Understanding of CoV-host interactions may help to identify novel therapeutic targets. MOV10 is an RNA helicase involved in different steps of cellular RNA metabolism. Both MOV10 antiviral and proviral activities have been described in a limited number of viruses, but this protein has not been previously associated with CoVs. We found that during Middle East respiratory syndrome coronavirus (MERS-CoV) infection, MOV10 aggregated in cytoplasmic structures colocalizing with viral nucleocapsid (N) protein. MOV10-N interaction was confirmed by endogenous MOV10 coimmunoprecipitation, and the presence of other cellular proteins was also detected in MOV10 complexes. MOV10 silencing significantly increased both N protein accumulation and virus titer, with no changes in the accumulation of viral RNAs. Moreover, MOV10 overexpression caused a 10-fold decrease in viral titers. These data indicated that MOV10 has antiviral activity during MERS-CoV infection. We postulated that this activity could be mediated by viral RNA sequestration, and in fact, RNA immunoprecipitation data showed the presence of viral RNAs in the MOV10 cytoplasmic complexes. Expression of wild-type MOV10 or of a MOV10 mutant without helicase activity in MOV10 knockout cell lines, developed by CRISPR-Cas technology, indicated that the helicase activity of MOV10 was required for its antiviral effect. Interestingly MOV10-N interaction was conserved in other mildly or highly pathogenic human CoVs, including the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although MOV10 antiviral activity was found only in highly pathogenic CoVs, suggesting a potential role of MOV10 in the modulation of human CoVs pathogenesis.
Collapse
|
9
|
Nawaz A, Shilikbay T, Skariah G, Ceman S. Unwinding the roles of RNA helicase MOV10. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1682. [PMID: 34327836 PMCID: PMC8799784 DOI: 10.1002/wrna.1682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
MOV10 is an RNA helicase that associates with the RNA‐induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense‐mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition. Posttranslational modifications of MOV10 include ubiquitination, which leads to stimulation‐dependent degradation, and phosphorylation, which has an unknown function. MOV10 localizes to the nucleus and/or cytoplasm in a cell type‐specific and developmental stage‐specific manner. Knockout of Mov10 leads to embryonic lethality, underscoring an important role in development where it is required for the completion of gastrulation. MOV10 is expressed throughout the organism; however, most studies have focused on germline cells and neurons. In the testes, the knockdown of Mov10 disrupts proliferation of spermatogonial progenitor cells. In brain, MOV10 is significantly elevated postnatally and binds mRNAs encoding cytoskeleton and neuron projection proteins, suggesting an important role in neuronal architecture. Heterozygous Mov10 mutant mice are hyperactive and anxious and their cultured hippocampal neurons have reduced dendritic arborization. Zygotic knockdown of Mov10 in Xenopus laevis causes abnormal head and eye development and mislocalization of neuronal precursors in the brain. Thus, MOV10 plays a vital role during development, defense against viral infection and in neuronal development and function: its many roles and regulation are only beginning to be unraveled. This article is categorized under:RNA Interactions with Proteins and Other Molecules > RNA‐Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications
Collapse
Affiliation(s)
- Aatiqa Nawaz
- Department of Cell and Developmental Biology, University of Illinois-Urbana Champaign, Champaign, Illinois, USA
| | - Temirlan Shilikbay
- Department of Cell and Developmental Biology, University of Illinois-Urbana Champaign, Champaign, Illinois, USA
| | - Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Champaign, Illinois, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie Ceman
- Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois-Urbana Champaign, Champaign, Illinois, USA
| |
Collapse
|
10
|
Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, Cermak L. CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Int J Mol Sci 2021; 22:5394. [PMID: 34065512 PMCID: PMC8161014 DOI: 10.3390/ijms22105394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.
Collapse
Affiliation(s)
- Tomas Lidak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Nikol Baloghova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| | - Vladimir Korinek
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| |
Collapse
|
11
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
12
|
Zhang H, Wu Z, Lu JY, Huang B, Zhou H, Xie W, Wang J, Shen X. DEAD-Box Helicase 18 Counteracts PRC2 to Safeguard Ribosomal DNA in Pluripotency Regulation. Cell Rep 2021; 30:81-97.e7. [PMID: 31914400 DOI: 10.1016/j.celrep.2019.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/24/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) exhibit high levels of ribosomal RNA (rRNA) transcription and ribosome biogenesis. Here, we reveal an unexpected role for an essential DEAD-box helicase, DDX18, in antagonizing the polycomb repressive complex 2 (PRC2) to prevent deposition of the repressive H3K27me3 mark onto rDNA in pluripotent cells. DDX18 binds and sequesters PRC2 in the outer layer of the nucleolus and counteracts PRC2 complex formation in vivo and in vitro. DDX18 knockdown leads to increased occupancy of PRC2 and H3K27me3 at rDNA loci, accompanied by drastically decreased rRNA transcription and reduced ribosomal protein expression and translation. Auxin-induced rapid degradation of DDX18 enhances PRC2 binding at rDNA. The inhibition of PRC2 partially rescues the effects of DDX18 depletion on rRNA transcription and ESC self-renewal. These results demonstrate a critical role for DDX18 in safeguarding the chromatin and transcriptional integrity of rDNA by counteracting the epigenetic silencing machinery to promote pluripotency.
Collapse
Affiliation(s)
- Hui Zhang
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zhongyang Wu
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Huang
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- The Black Family Stem Cell Institute and Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Xie
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute and Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, Department of Basic Medical Sciences in School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Tang Q, Wang L, Cai R, Zhang L, Zhang X, Liu X, Liu S. The association of MOV10 polymorphism and expression levels with preeclampsia in the Chinese Han population. Mol Genet Genomic Med 2021; 9:e1564. [PMID: 33269545 PMCID: PMC7963431 DOI: 10.1002/mgg3.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To assess the relationship between MOV10 rs2932538 polymorphism and susceptibility to preeclampsia (PE) in the Chinese Han population and to investigate whether the placental expression of MOV10 have association with PE. METHODS We enrolled 1021 pregnant women with PE and 1594 normotensive pregnant women to analyze genotyping of MOV10 rs2932538. Clinical data and related test results of all subjects were collected and analyzed. For volunteers providing placentas, real-time PCR, Western blot, and immunohistochemistry were applied to assess the expression level of MOV10. RESULTS There was significant statistical difference between preeclamptic patients and healthy subjects in genotype distributions and alleles. The frequencies of genotypes TT+CT were significantly associated with the increased risk of preeclampsia. Besides, T alleles were found to be related to a higher risk of PE. Significant statistical difference was also observed on distributions of genotype in PE without/with severe features group compared or early onset/late onset versus controls. The placental expression of MOV10 was lower in preeclamptic women, however, no relationship was found between MOV10 expression level and MOV10 rs2932538 genotypes. CONCLUSION This study suggests that MOV10 rs2932538 polymorphism may be associated with PE susceptibility in the Chinese Han population. The placental expression of MOV10 decrease in PE but have no relationship with rs2932538 polymorphism.
Collapse
Affiliation(s)
- Qian Tang
- Medical Genetic Departmentthe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Prenatal Diagnosis Centerthe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ling Wang
- Department of Nephrologythe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Renmei Cai
- Prenatal Diagnosis CenterQingdao Municipal HospitalQingdaoChina
| | - Lu Zhang
- Medical Genetic Departmentthe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Prenatal Diagnosis Centerthe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoxiao Zhang
- Department of Nephrologythe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xuemei Liu
- Department of Nephrologythe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shiguo Liu
- Medical Genetic Departmentthe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Prenatal Diagnosis Centerthe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
14
|
Su F, Liu X, Jiang Y. Roles of MOV10 in Animal RNA Virus Infection. Front Vet Sci 2020; 7:569737. [PMID: 33195554 PMCID: PMC7524886 DOI: 10.3389/fvets.2020.569737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal epidemic diseases caused by RNA viruses are the primary threat to the livestock industry, and understanding the mechanisms of RNA virus clearance from target cells is critical to establish an effective method to reduce economic losses. As an SF-1, ATP-dependent RNA helicase in the UPF1p family, MOV10 participates in the RNA degradation of multiple viruses mediated via miRNA pathways and therefore contributes to a decrease in the replication of RNA viruses. This review primarily focuses on the bioactivity of MOV10, the mechanism of RNA virus removal, and the potential roles of MOV10 in RNA virus clearance. In addition, clues are provided to reduce animal diseases caused by RNA viruses.
Collapse
Affiliation(s)
- Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xueming Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
15
|
Yang D, Hu Z, Xu J, Tang Y, Wang Y, Cai Q, Zhu Z. MiR-760 enhances sensitivity of pancreatic cancer cells to gemcitabine through modulating Integrin β1. Biosci Rep 2019; 39:BSR20192358. [PMID: 31693728 PMCID: PMC6863763 DOI: 10.1042/bsr20192358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the most lethal tumor type among human diseases, with low survival rate. The investigation of potent molecular mechanisms involved in PC is still obscure owing to its drug resistance. The purpose of the present study is to disclose the underlying mechanism participating in PC progression and drug therapy, reversing the unpromising treatment outcome. In our research, microRNA-760 (miR-760) was first revealed to be lowly expressed in PC cells. And up-regulation of miR-760 could further suppress PC cell proliferation and boost cell apoptosis, as well as improve gemcitabine sensitivity of PC cells through gain-of-function assays. Besides, RNA-binding protein (RBP) MOV10 interacted with and stabilized Integrin β1 (ITGB1). Furtherly, miR-760 was proved to target Moloney leukemia virus 10 (MOV10) mRNA to decrease MOV10 protein expression, thus promoting the destabilization of ITGB1. At last, rescue experiments validated that up-regulation of ITGB1 remedied the miR-760 overexpression-caused inhibition on biological activities and gemcitabine resistance of PC cells. To summarize, the current inspection demonstrated that miR-760 enhances sensitivity of PC cells to gemcitabine through modulating MOV10-stablized ITGB1, highlighting the role of miR-760/MOV10/ITGB1 pathway in the drug therapy for PC patients.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yuan Tang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
16
|
Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res 2019; 46:1912-1926. [PMID: 29315404 PMCID: PMC5829647 DOI: 10.1093/nar/gkx1312] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/23/2017] [Indexed: 01/22/2023] Open
Abstract
Long interspersed nuclear element 1 is an autonomous non-long terminal repeat retrotransposon that comprises ∼17% of the human genome. Its spontaneous retrotransposition and the accumulation of heritable L1 insertions can potentially result in genome instability and sporadic disorders. Moloney leukemia virus 10 homolog (MOV10), a putative RNA helicase, has been implicated in inhibiting L1 replication, although its underlying mechanism of action remains obscure. Moreover, the physiological relevance of MOV10-mediated L1 regulation in human disease has not yet been examined. Using a proteomic approach, we identified RNASEH2 as a binding partner of MOV10. We show that MOV10 interacts with RNASEH2, and their interplay is crucial for restricting L1 retrotransposition. RNASEH2 and MOV10 co-localize in the nucleus, and RNASEH2 binds to L1 RNAs in a MOV10-dependent manner. Small hairpin RNA-mediated depletion of either RNASEH2A or MOV10 results in an accumulation of L1-specific RNA-DNA hybrids, suggesting they contribute to prevent formation of vital L1 heteroduplexes during retrotransposition. Furthermore, we show that RNASEH2-MOV10-mediated L1 restriction downregulates expression of the rheumatoid arthritis-associated inflammatory cytokines and matrix-degrading proteinases in synovial cells, implicating a potential causal relationship between them and disease development in terms of disease predisposition.
Collapse
Affiliation(s)
- Jongsu Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Perez‐Añorve IX, Gonzalez‐De la Rosa CH, Soto‐Reyes E, Beltran‐Anaya FO, Del Moral‐Hernandez O, Salgado‐Albarran M, Angeles‐Zaragoza O, Gonzalez‐Barrios JA, Landero‐Huerta DA, Chavez‐Saldaña M, Garcia‐Carranca A, Villegas‐Sepulveda N, Arechaga‐Ocampo E. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol 2019; 13:1249-1267. [PMID: 30938061 PMCID: PMC6487688 DOI: 10.1002/1878-0261.12483] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
Radioresistance of tumor cells gives rise to local recurrence and disease progression in many patients. MicroRNAs (miRNAs) are master regulators of gene expression that control oncogenic pathways to modulate the radiotherapy response of cells. In the present study, differential expression profiling assays identified 16 deregulated miRNAs in acquired radioresistant breast cancer cells, of which miR-122 was observed to be up-regulated. Functional analysis revealed that miR-122 has a role as a tumor suppressor in parental cells by decreasing survival and promoting radiosensitivity. However, in radioresistant cells, miR-122 functions as an oncomiR by promoting survival. The transcriptomic landscape resulting from knockdown of miR-122 in radioresistant cells showed modulation of the ZNF611, ZNF304, RIPK1, HRAS, DUSP8 and TNFRSF21 genes. Moreover, miR-122 and the set of affected genes were prognostic factors in breast cancer patients treated with radiotherapy. Our data indicate that up-regulation of miR-122 promotes cell survival in acquired radioresistant breast cancer and also suggest that miR-122 differentially controls the response to radiotherapy by a dual function as a tumor suppressor an and oncomiR dependent on cell phenotype.
Collapse
Affiliation(s)
- Isidro X. Perez‐Añorve
- Posgrado en Ciencias Naturales e IngenieriaDivision de Ciencias Naturales e IngenieriaUniversidad Autonoma MetropolitanaMexico CityMexico
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | | | - Ernesto Soto‐Reyes
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | - Fredy O. Beltran‐Anaya
- Laboratorio de Genomica del CancerInstituto Nacional de Medicina GenomicaMexico CityMexico
| | - Oscar Del Moral‐Hernandez
- Laboratorio de Virologia y Epigenetica del CancerFacultad de Ciencias Quimico BiologicasUniversidad Autonoma de GuerreroChilpancingoMexico
| | - Marisol Salgado‐Albarran
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | | | | | - Daniel A. Landero‐Huerta
- Posgrado en Ciencias Naturales e IngenieriaDivision de Ciencias Naturales e IngenieriaUniversidad Autonoma MetropolitanaMexico CityMexico
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
- Laboratorio de Biologia de la ReproduccionInstituto Nacional de PediatríaMexico CityMexico
| | | | - Alejandro Garcia‐Carranca
- Unidad de Investigacion Biomedica en Cancer‐Laboratorio de Virus y CancerInstituto Nacional de CancerologiaMexico CityMexico
| | - Nicolas Villegas‐Sepulveda
- Departamento de Biomedicina MolecularCentro de Investigacion y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Elena Arechaga‐Ocampo
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| |
Collapse
|
19
|
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z, Xue Y. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:9. [PMID: 30621721 PMCID: PMC6323715 DOI: 10.1186/s13046-018-0990-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Abstract
Background RNA binding proteins (RBPs) have been reported to interact with RNAs to regulate gene expression. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which involved in the angiogenesis of tumor. The purpose of this study is to elucidate the potential roles and molecular mechanisms of MOV10 and circ-DICER1 in regulating the angiogenesis of glioma-exposed endothelial cells (GECs). Methods The expressions of circ-DICER1, miR-103a-3p and miR-382-5p were detected by real-time PCR. The expressions of MOV10, ZIC4, Hsp90 and PI3K/Akt were detected by real-time PCR or western blot. The binding ability of circ-SHKBP1 and miR-544a / miR-379, ZIC4 and miR-544a / miR-379 were analyzed with Dual-Luciferase Reporter System or RIP experiment. The direct effects of ZIC4 on the Hsp90β promoter were analyzed by the ChIP experiment. The cell viability, migration and tube formation in vitro were detected by CCK-8, Transwell assay and Matrigel tube formation assay. The angiogenesis in vivo was evaluated by Matrigel plug assay. Student’s t-test (two tailed) was used for comparisons between two groups. One-way analysis of variance (ANOVA) was used for multi-group comparisons followed by Bonferroni post-hoc analysis. Results The expressions of RNA binding proteins MOV10, circ-DICER1, ZIC4, and Hsp90β were up-regulated in GECs, while miR103a-3p/miR-382-5p were down-regulated. MOV10 binding circ-DICER1 regulated the cell viability, migration, and tube formation of GECs. And the effects of both MOV10 and circ-DICER1 silencing were better than the effects of MOV10 or circ-DICER1 alone silencing. In addition, circ-DICER1 acts as a molecular sponge to adsorb miR-103a-3p / miR-382-5p and impair the negative regulation of miR-103a-3p / miR-382-5p on ZIC4 in GECs. Furthermore, ZIC4 up-regulates the expression of its downstream target Hsp90β, and Hsp90 promotes the cell viability, migration, and tube formation of GECs by activating PI3K/Akt signaling pathway. Conclusions MOV10 / circ-DICER1 / miR-103a-3p (miR-382-5p) / ZIC4 pathway plays a vital role in regulating the angiogenesis of glioma. Our findings not only provides novel mechanisms for the angiogenesis of glioma, but also provide potential targets for anti-angiogenesis therapies of glioma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0990-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lini Zhao
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
20
|
Abstract
Long non-coding RNAs (lncRNAs) refer to functional cellular RNAs molecules longer than 200 nucleotides in length. Unlike microRNAs, which have been widely studied, little is known about the enigmatic role of lncRNAs. However, lncRNAs have motivated extensively attention in the past few years and are emerging as potentially important regulators in pathological processes, including in cancer. We now understand that lncRNAs play role in cancer through their interactions with DNA, protein, and RNA in many instances. Moreover, accumulating evidence has recognized that large classes of lncRNAs are functional for ovarian cancer. Nevertheless, the biological phenomena and molecular mechanisms of lncRNAs in ovarian cancer remain to be better identified. In this review, we outline the dysregulated expression of lncRNAs and their potential clinical implications in ovarian cancer, with a particular emphasis on discussing the well characterized mechanisms underlying lncRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032 China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
21
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
22
|
Chen C, Ma X, Hu Q, Li X, Huang F, Zhang J, Pan T, Xia J, Liu C, Zhang H. Moloney leukemia virus 10 (MOV10) inhibits the degradation of APOBEC3G through interference with the Vif-mediated ubiquitin-proteasome pathway. Retrovirology 2017; 14:56. [PMID: 29258557 PMCID: PMC5735797 DOI: 10.1186/s12977-017-0382-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background MOV10 protein has ATP-dependent 5′–3′ RNA helicase activity and belongs to the UPF1p superfamily. It can inhibit human immunodeficiency virus type 1 (HIV-1) replication at multiple stages and interact with apolipoprotein-B-mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G), a member of the cytidine deaminase family that exerts potent inhibitory effects against HIV-1 infection. However, HIV-1-encoded virion infectivity factor (Vif) protein specifically mediates the degradation of A3G via the ubiquitin–proteasome system (UPS). Results We demonstrate that MOV10 counteracts Vif-mediated degradation of A3G by inhibiting the assembly of the Vif-CBF-β-Cullin 5-ElonginB-ElonginC complex. Through interference with UPS, MOV10 enhances the level of A3G in HIV-1-infected cells and virions, and synergistically inhibits the replication and infectivity of HIV-1. In addition, the DEAG-box of MOV10 is required for inhibition of Vif-mediated A3G degradation as the DEAG-box mutant significantly loses this ability. Conclusions Our results demonstrate a novel mechanism involved in the anti-HIV-1 function of MOV10. Given that both MOV10 and A3G belong to the interferon antiviral system, their synergistic inhibition of HIV-1 suggests that these proteins may play complicated roles in antiviral functions.
Collapse
Affiliation(s)
- Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaocao Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
23
|
Skariah G, Seimetz J, Norsworthy M, Lannom MC, Kenny PJ, Elrakhawy M, Forsthoefel C, Drnevich J, Kalsotra A, Ceman S. Mov10 suppresses retroelements and regulates neuronal development and function in the developing brain. BMC Biol 2017; 15:54. [PMID: 28662698 PMCID: PMC5492891 DOI: 10.1186/s12915-017-0387-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. Results Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. Conclusions Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Joseph Seimetz
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Miles Norsworthy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohamed Elrakhawy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Craig Forsthoefel
- College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Auinash Kalsotra
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Stephanie Ceman
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Abstract
Prostate cancer is the second most common cause of cancer mortality among men in the United States. While many prostate cancers are indolent, an important subset of patients experiences disease recurrence after conventional therapy and progresses to castration-resistant prostate cancer (CRPC), which is currently incurable. Thus, there is a critical need to identify biomarkers that will distinguish indolent from aggressive disease, as well as novel therapeutic targets for the prevention or treatment of CRPC. In recent years, long noncoding RNAs (lncRNAs) have emerged as an important class of biological molecules. LncRNAs are polyadenylated RNA species that share many similarities with protein-coding genes despite the fact that they are noncoding (not translated into proteins). They are usually transcribed by RNA polymerase II and exhibit the same epigenetic signatures as protein-coding genes. LncRNAs have also been implicated in the development and progression of variety of cancers, including prostate cancer. While a large number of lncRNAs exhibit tissue- and cancer-specific expression, their utility as diagnostic and prognostic biomarkers is just starting to be explored. In this review, we highlight recent findings on the functional role and molecular mechanisms of lncRNAs in the progression of prostate cancer and evaluate their use as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bhavna Malik
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Urology, and Medicine, University of California at San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, USA
| |
Collapse
|
25
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
26
|
Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M, Beisel C. A High-Density Map for Navigating the Human Polycomb Complexome. Cell Rep 2016; 17:583-595. [PMID: 27705803 DOI: 10.1016/j.celrep.2016.08.096] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Polycomb group (PcG) proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered a diverse range of PcG complexes. Moreover, our analysis identified PcG interactors linking them to the PcG system, thus providing insight into the molecular function of PcG complexes and mechanisms of recruitment to target genes. We identified two human PRC2 complexes and two PR-DUB deubiquitination complexes, which contain the O-linked N-acetylglucosamine transferase OGT1 and several transcription factors. Finally, genome-wide profiling of PR-DUB components indicated that the human PR-DUB and PRC1 complexes bind distinct sets of target genes, suggesting differential impact on cellular processes in mammals.
Collapse
Affiliation(s)
- Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland
| | - Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Moritz Gerstung
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Timo Glatter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Hansen
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland.
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
27
|
Eid A, Torres-Padilla ME. Characterization of non-canonical Polycomb Repressive Complex 1 subunits during early mouse embryogenesis. Epigenetics 2016; 11:389-97. [PMID: 27081692 DOI: 10.1080/15592294.2016.1172160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
An intense period of chromatin remodeling takes place after fertilization in mammals, which is thought necessary for epigenetic reprogramming to start a new developmental program. While much attention has been given to the role of Polycomb Repressive Complex 2 (PRC2) and to canonical PRC1 complexes during this process, little is known as to whether there is any contribution of non-canonical PRC1 in shaping the chromatin landscape after fertilization. Here, we first describe in detail the temporal dynamics and abundance of H2A ubiquitylation (H2AK119ub), a histone modification catalyzed by PRC1, during pre-implantation mouse development. In addition, we have analyzed the presence of the 2 characteristic subunits of non-canonical PRC1 complexes, RYBP and its homolog YAF-2. Our results indicate that H2AK119ub is inherited from the sperm, rapidly removed from the paternal chromatin after fertilization, but detected again prior to the first mitosis, suggesting that PRC1 activity occurs as early as the zygotic stage. RYBP and YAF-2, together with the non-canonical subunit L3MBTL2, are all present during pre-implantation development but show different temporal dynamics. While RYBP is absent in the zygote, it is strongly induced from the 4-cell stage onwards. YAF-2 is inherited maternally and localizes to the pericentromeric regions in the zygote, is strongly induced between the 2- and 4-cell stages but then remains weak to undetectable subsequently. All together, our data suggest that non-canonical PRC1 is active during pre-implantation development and should be regarded as an additional component during epigenetic reprogramming and in the establishment of cellular plasticity of the early embryo.
Collapse
Affiliation(s)
- André Eid
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , U de S, F-67404 Illkirch , CU de Strasbourg , France
| | - Maria-Elena Torres-Padilla
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , U de S, F-67404 Illkirch , CU de Strasbourg , France.,b Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 , München , Germany
| |
Collapse
|
28
|
Han Li C, Chen Y. Small and Long Non-Coding RNAs: Novel Targets in Perspective Cancer Therapy. Curr Genomics 2016; 16:319-26. [PMID: 27047252 PMCID: PMC4763970 DOI: 10.2174/1389202916666150707155851] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNA refers to a large group of endogenous RNA molecules that have no protein coding capacity, while having specialized cellular and molecular functions. They possess wide range of functions such as the regulation of gene transcription and translation, post-transcriptional modification, epigenetic landscape establishment, protein scaffolding and cofactors recruitments. They are further divided into small non-coding RNAs with size < 200nt (e.g. miRNA, piRNA) and long non-coding RNAs with size >= 200nt (e.g. lincRNA, NAT). Increasing evidences suggest that both non-coding RNAs groups play important roles in cancer development, progression and pathology. Clinically, non-coding RNAs aberrations show high diagnostic and prognostic values. With improved understanding of the nature and roles of non-coding RNAs, it is believed that we can develop therapeutic treatment against cancer via the modulation of these RNA molecules. Advances in nucleic acid drug technology and computational simulation prompt the development of agents to intervene the malignant effects of non-coding RNAs. In this review, we will discuss the role of non-coding RNAs in cancer, and evaluate the potential of non-coding RNA-based cancer therapies.
Collapse
Affiliation(s)
- Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong;; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China;; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
29
|
Cuevas RA, Ghosh A, Wallerath C, Hornung V, Coyne CB, Sarkar SN. MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-I-MAVS-Independent IFN Induction. THE JOURNAL OF IMMUNOLOGY 2016; 196:3877-86. [PMID: 27016603 DOI: 10.4049/jimmunol.1501359] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Moloney leukemia virus 10, homolog (MOV10) is an IFN-inducible RNA helicase, associated with small RNA-induced silencing. In this article, we report that MOV10 exhibits antiviral activity, independent of its helicase function, against a number of positive- and negative-strand RNA viruses by enhancing type I IFN induction. Using a number of genome-edited knockout human cells, we show that IFN regulatory factor 3-mediated IFN induction and downstream IFN signaling through IFN receptor was necessary to inhibit virus replication by MOV10. MOV10 enhanced IFN regulatory factor 3-mediated transcription of IFN. However, this IFN induction by MOV10 was unique and independent of the known retinoic acid-inducible gene I/mitochondrial antiviral-signaling protein-mediated RNA-sensing pathway. Upon virus infection, MOV10 specifically required inhibitor of κB kinase ε, not TANK-binding kinase 1, for its antiviral activity. The important role of MOV10 in mediating antiviral signaling was further supported by the finding that viral proteases from picornavirus family specifically targeted MOV10 as a possible innate immune evasion mechanism. These results establish MOV10, an evolutionary conserved protein involved in RNA silencing, as an antiviral gene against RNA viruses that uses an retinoic acid-inducible gene I-like receptor-independent pathway to enhance IFN response.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Christina Wallerath
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | - Carolyn B Coyne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| |
Collapse
|
30
|
Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y, Chen J, Liu C, Zhang H. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. Virology 2015; 486:15-26. [PMID: 26379090 DOI: 10.1016/j.virol.2015.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Juanran Liang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingniang Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
32
|
QIU JUNJUN, LIN YINGYING, DING JINGXIN, FENG WEIWEI, JIN HONGYAN, HUA KEQIN. Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol 2015; 46:2497-505. [DOI: 10.3892/ijo.2015.2943] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/30/2015] [Indexed: 11/05/2022] Open
|
33
|
Kenny PJ, Zhou H, Kim M, Skariah G, Khetani RS, Drnevich J, Arcila ML, Kosik KS, Ceman S. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. Cell Rep 2014; 9:1729-1741. [PMID: 25464849 DOI: 10.1016/j.celrep.2014.10.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/09/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022] Open
Abstract
The fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway, and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10's association with RNAs in brain and cells, suggesting a cooperative interaction. We identified the RNAs recognized by MOV10 using RNA immunoprecipitation and iCLIP. Examination of the fate of MOV10 on RNAs revealed a dual function for MOV10 in regulating translation: it facilitates microRNA-mediated translation of some RNAs, but it also increases expression of other RNAs by preventing AGO2 function. The latter subset was also bound by FMRP in close proximity to the MOV10 binding site, suggesting that FMRP prevents MOV10-mediated microRNA suppression. We have identified a mechanism for FMRP-mediated translational regulation through its association with MOV10.
Collapse
Affiliation(s)
- Phillip J Kenny
- Cell and Developmental Biology, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Miri Kim
- College of Medicine, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Geena Skariah
- Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Radhika S Khetani
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Mary Luz Arcila
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; College of Medicine, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Gil J, O'Loghlen A. PRC1 complex diversity: where is it taking us? Trends Cell Biol 2014; 24:632-41. [PMID: 25065329 DOI: 10.1016/j.tcb.2014.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022]
Abstract
Polycomb group proteins (PcGs) are essential epigenetic regulators that play key roles in development, pluripotency, senescence, and cancer. Recent reports have found that the composition of mammalian Polycomb repressive complex 1 (PRC1) is far more varied than previously thought. PRC1 diversity largely depends on the presence of CBX proteins, dividing them into canonical and non-canonical, the existence of redundant subunits, and different binding affinities and/or regulation. However, there is no clear insight into how many functional PRC1 complexes exist and what the biological relevance is for such diversification. In this review we focus on mammalian PRC1 and discuss the mechanisms by which canonical and non-canonical PRC1 are recruited to chromatin, their role in normal development and disease, and emerging evidence for PRC1 as a transcriptional activator.
Collapse
Affiliation(s)
- Jesús Gil
- Cell Proliferation Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Ana O'Loghlen
- Epigenetics and Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
35
|
Bonasio R, Lecona E, Narendra V, Voigt P, Parisi F, Kluger Y, Reinberg D. Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes. eLife 2014; 3:e02637. [PMID: 24986859 PMCID: PMC4074974 DOI: 10.7554/elife.02637] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.
Collapse
Affiliation(s)
- Roberto Bonasio
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Emilio Lecona
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Varun Narendra
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Philipp Voigt
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, United States Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, United States Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| |
Collapse
|
36
|
Wu HA, Balsbaugh JL, Chandler H, Georgilis A, Zullow H, Shabanowitz J, Hunt DF, Gil J, Peters G, Bernstein E. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem 2013; 288:36398-408. [PMID: 24194518 DOI: 10.1074/jbc.m113.486266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function.
Collapse
Affiliation(s)
- Hsan-au Wu
- From the Department of Oncological Sciences and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
p16(INK4a), located on chromosome 9p21.3, is lost among a cluster of neighboring tumor suppressor genes. Although it is classically known for its capacity to inhibit cyclin-dependent kinase (CDK) activity, p16(INK4a) is not just a one-trick pony. Long-term p16(INK4a) expression pushes cells to enter senescence, an irreversible cell-cycle arrest that precludes the growth of would-be cancer cells but also contributes to cellular aging. Importantly, loss of p16(INK4a) is one of the most frequent events in human tumors and allows precancerous lesions to bypass senescence. Therefore, precise regulation of p16(INK4a) is essential to tissue homeostasis, maintaining a coordinated balance between tumor suppression and aging. This review outlines the molecular pathways critical for proper p16(INK4a) regulation and emphasizes the indispensable functions of p16(INK4a) in cancer, aging, and human physiology that make this gene special.
Collapse
Affiliation(s)
- Kyle M LaPak
- Biomedical Research Tower, Rm 586, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210.
| | | |
Collapse
|
38
|
Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci 2013; 14:18790-808. [PMID: 24036441 PMCID: PMC3794807 DOI: 10.3390/ijms140918790] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of RNAs that are generally defined as non-protein-coding transcripts longer than 200 nucleotides. Recently, an increasing number of studies have shown that lncRNAs can be involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Moreover, lncRNAs are dysregulated in a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders, and various cancers, which indicates their important roles in these diseases. Here, we reviewed the current understanding of lncRNAs, including their definition and subclassification, regulatory functions, and potential roles in different types of complex human diseases.
Collapse
Affiliation(s)
- Jing Li
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; E-Mail:
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Changning Liu
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; E-Mail:
| |
Collapse
|
39
|
Li CH, Chen Y. Targeting long non-coding RNAs in cancers: Progress and prospects. Int J Biochem Cell Biol 2013; 45:1895-910. [DOI: 10.1016/j.biocel.2013.05.030] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
|
40
|
Goodier JL, Cheung LE, Kazazian HH. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 2012; 8:e1002941. [PMID: 23093941 PMCID: PMC3475670 DOI: 10.1371/journal.pgen.1002941] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/23/2012] [Indexed: 01/31/2023] Open
Abstract
MOV10 protein, a putative RNA helicase and component of the RNA–induced silencing complex (RISC), inhibits retrovirus replication. We show that MOV10 also severely restricts human LINE1 (L1), Alu, and SVA retrotransposons. MOV10 associates with the L1 ribonucleoprotein particle, along with other RNA helicases including DDX5, DHX9, DDX17, DDX21, and DDX39A. However, unlike MOV10, these other helicases do not strongly inhibit retrotransposition, an activity dependent upon intact helicase domains. MOV10 association with retrotransposons is further supported by its colocalization with L1 ORF1 protein in stress granules, by cytoplasmic structures associated with RNA silencing, and by the ability of MOV10 to reduce endogenous and ectopic L1 expression. The majority of the human genome is repetitive DNA, most of which is the detritus of millions of years of accumulated retrotransposition. Retrotransposons remain active mutagens, and their insertion can disrupt gene function. Therefore, the host has evolved defense mechanisms to protect against retrotransposition, an arsenal we are only beginning to understand. With homologs in other vertebrates, insects, and plants, MOV10 may represent an ancient and innate form of immunity against both infective viruses and endogenous retroelements. LINE1s, the only active autonomous mobile DNA in humans, occupy at least 17% of our genome. It is believed that about 100 L1s are potentially active in any individual diploid genome. The L1 has also been responsible for genomic insertion of processed pseudogenes and more than a million non-autonomous retrotransposons, mainly Alus and SVAs. Together, this mass of genomic baggage has had, and continues to have, profound effects on gene organization and expression. Consequently a number of molecular mechanisms have evolved to prevent the unchecked expansion of endogenous retroelements. We demonstrate that the putative RNA helicase MOV10, recently discovered to limit production and infectivity of retroviruses, also profoundly inhibits retrotransposition of L1s, Alus, and SVAs in cell culture. Microscopy and immunoprecipitation show a close association of MOV10 protein with the L1 ribonucleoprotein particle. This study reveals a novel factor that interacts with the L1 retrotransposon to modulate its activity, and it increases our understanding of the means by which the cell coexists with these genomic “parasites.”
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
41
|
Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 2012; 19:664-70. [PMID: 22659877 DOI: 10.1038/nsmb.2315] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation at a number of genomic loci is one of the hallmarks of cancer. A role for some RNA molecules in guiding repressive polycomb complex PRC2 to specific chromatin regions has been proposed. Here we use an in vivo cross-linking method to detect and identify direct PRC2-RNA interactions in human cancer cells, revealing a number of intronic RNA sequences capable of binding to the core component EZH2 and regulating the transcriptional output of its genomic counterpart. Overexpression of EZH2-bound intronic RNA for the H3K4 methyltransferase gene SMYD3 is concomitant with an increase in EZH2 occupancy throughout the corresponding genomic fragment and is sufficient to reduce levels of the endogenous transcript and protein, resulting in reduced growth capability in cell culture and animal models. These findings reveal the role of intronic RNAs in fine-tuning gene expression regulation at the level of transcriptional control.
Collapse
|
42
|
Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn HP, Chen W, Kempa S, Ziebold U, Rajewsky N. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 2012; 31:2755-69. [PMID: 22543868 DOI: 10.1038/emboj.2012.110] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/02/2012] [Indexed: 12/13/2022] Open
Abstract
Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology.
Collapse
Affiliation(s)
- Pinar Onal
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nahkuri S, Paro R. The role of noncoding RNAs in chromatin regulation during differentiation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:743-52. [PMID: 23799570 DOI: 10.1002/wdev.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A myriad of nuclear noncoding RNAs (ncRNAs) have been discovered since the paradigm of RNAs as plain conveyors of protein translation was discarded. There is increasing evidence that at vital intersections of developmental pathways, ncRNAs target the chromatin modulating machinery to its site of action. However, the mechanistic details of processes involved are still largely unclear, and well-characterized metazoan ncRNA species implicated in chromatin regulation during differentiation remain few. Nevertheless, four major categories are slowly emerging: cis-acting antisense ncRNAs that flag the neighboring genes for the propagation of chromatin marks; allele-specific ncRNAs that perform similar tasks, but target larger loci that typically vary in size from hundreds of thousands of base pairs to a whole chromosome; structural ncRNAs proposed to act as scaffolds that couple chromatin shaping complexes of distinct functionalities; and cofactor ncRNAs with a capacity to inhibit or activate essential components of the intertwined chromatin and transcription apparatuses.
Collapse
Affiliation(s)
- Satu Nahkuri
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
44
|
Sim S, Yao J, Weinberg DE, Niessen S, Yates JR, Wolin SL. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA (NEW YORK, N.Y.) 2012; 18:100-10. [PMID: 22114317 PMCID: PMC3261732 DOI: 10.1261/rna.029207.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
The Ro 60-kDa autoantigen, a ring-shaped RNA-binding protein, traffics between the nucleus and cytoplasm in vertebrate cells. In some vertebrate nuclei, Ro binds misfolded noncoding RNAs and may function in quality control. In the cytoplasm, Ro binds noncoding RNAs called Y RNAs. Y RNA binding blocks a nuclear accumulation signal, retaining Ro in the cytoplasm. Following UV irradiation, this signal becomes accessible, allowing Ro to accumulate in nuclei. To investigate how other cellular components influence the function and subcellular location of Ro, we identified several proteins that copurify with the mouse Ro protein. Here, we report that the zipcode-binding protein ZBP1 influences the subcellular localization of both Ro and the Y3 RNA. Binding of ZBP1 to the Ro/Y3 complex increases after UV irradiation and requires the Y3 RNA. Despite the lack of an identifiable CRM1-dependent export signal, nuclear export of Ro is sensitive to the CRM1 inhibitor leptomycin B. In agreement with a previous report, we find that ZBP1 export is partly dependent on CRM1. Both Ro and Y3 RNA accumulate in nuclei when ZBP1 is depleted. Our data indicate that ZBP1 may function as an adapter to export the Ro/Y3 RNA complex from nuclei.
Collapse
Affiliation(s)
- Soyeong Sim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - David E. Weinberg
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Sherry Niessen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
45
|
Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 2011; 71:5365-9. [PMID: 21828241 DOI: 10.1158/0008-5472.can-10-4379] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15(INK4b), p14(ARF), and p16(INK4a), and its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth. ANRIL gene is transcribed in the antisense orientation of the INK4b-ARF-INK4a gene cluster, and different single-nucleotide polymorphisms are associated with increased susceptibility to several diseases. Although lncRNA-mediated regulation of INK4b-ARF-INK4a gene is not restricted to ANRIL, both polycomb repressive complex-1 (PRC1) and -2 (PRC2) interact with ANRIL to form heterochromatin surrounding the INK4b-ARF-INK4a locus, leading to its repression. This mechanism would provide an increased advantage for bypassing senescence, sustaining the requirements for the proliferation of stem and/or progenitor cell populations or inappropriately leading to oncogenesis through the aberrant saturation of the INK4b-ARF-INK4a locus by PcG complexes. In this review, we summarize recent findings on the underlying epigenetic mechanisms that link PcG function with ANRIL, which impose gene silencing to control cellular homeostasis as well as cancer development.
Collapse
Affiliation(s)
- Francesca Aguilo
- Departments of Structural and Chemical Biology, Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
46
|
Lanigan F, Geraghty JG, Bracken AP. Transcriptional regulation of cellular senescence. Oncogene 2011; 30:2901-11. [PMID: 21383691 DOI: 10.1038/onc.2011.34] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular senescence is an irreversible arrest of proliferation. It is activated when a cell encounters stress such as DNA damage, telomere shortening or oncogene activation. Like apoptosis, it impedes tumour progression and acts as a barrier that pre-neoplastic cells must overcome during their evolution toward the full tumourigenic state. This review focuses on the role of transcriptional regulators in the control of cellular senescence, explores how their function is perturbed in cancer and discusses the potential to harness this knowledge for future cancer therapies.
Collapse
Affiliation(s)
- F Lanigan
- Smurfit Genetics Department, The Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
47
|
Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 2011; 12:123-35. [PMID: 21221116 DOI: 10.1038/nrg2932] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent transcriptome analyses show that substantial proportions of eukaryotic genomes can be copied into RNAs, many of which do not encode protein sequences. However, cells have developed mechanisms to control and counteract the high transcriptional activity of RNA polymerases in order to achieve cell-specific gene activity or to prevent the expression of deleterious sequences. Here we compare how two silencing modes - the Polycomb system and heterochromatin - are targeted, established and maintained at different chromosomal locations and how DNA-binding proteins and non-coding RNAs connect these epigenetically stable and heritable structures to the sequence information of the DNA.
Collapse
Affiliation(s)
- Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | | |
Collapse
|
48
|
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6:e1001233. [PMID: 21151960 PMCID: PMC2996334 DOI: 10.1371/journal.pgen.1001233] [Citation(s) in RCA: 720] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/02/2010] [Indexed: 12/02/2022] Open
Abstract
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Unbiased studies of the human genome have identified strong genetic determinants of atherosclerotic vascular disease (ASVD) on chromosome 9p21.3. This region of the genome does not encode genes previously linked to ASVD, but does contain the INK4/ARF tumor suppressor locus. Products of the INK4/ARF locus regulate cell division, a process thought to be important in ASVD pathology. We and others have suggested that genetic variants in 9p21.3 influence INK4/ARF gene expression; however, the mechanisms by which these distant polymorphisms (>100,000 bp away) influence transcription of the locus is unknown. The ASVD–associated genetic variants lie within the predicted structure of a non-coding RNA (ncRNA) called ANRIL. Based upon recent work suggesting that other ncRNAs can repress nearby coding genes, we considered the possibility that ANRIL structure may regulate INK4/ARF gene expression. Coupling molecular analysis with state-of-the-art sequencing technologies in a wide variety of cell types from normal human donors and cancer cells, we found that ANRIL encodes a heterogeneous species of rare RNA transcripts. Moreover, we identified novel, circular ANRIL isoforms (cANRIL) whose expression correlated with INK4/ARF transcription and ASVD risk. These studies suggest a new model wherein ANRIL structure influences INK4/ARF expression and susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- Christin E. Burd
- The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - William R. Jeck
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yan Liu
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Hanna K. Sanoff
- The Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Zefeng Wang
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Norman E. Sharpless
- The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 2010; 25:444-8. [PMID: 20956613 DOI: 10.1096/fj.10-172452] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large noncoding RNA called ANRIL (for antisense noncoding RNA in the INK4 locus) has been identified within the p15/CDKN2B-p16/CDKN2A-p14/ARF gene cluster. While the exact role of ANRIL awaited further elucidation, common disease genomewide association studies (GWAS) have surprisingly identified the ANRIL gene as a genetic susceptibility locus shared associated by coronary disease, intracranial aneurysm and also type 2 diabetes. Expression studies have confirmed the coregulation of p15/CDKN2B, p16/CDKN2A, p14/ARF, and ANRIL. Among the cluster, ANRIL expression showed the strongest association with the multiple phenotypes linked to the 9p21.3 region. More recent GWAS also identified ANRIL as a risk locus for gliomas and basal cell carcinomas in accordance with the princeps observation. Moreover, a mouse model has confirmed the pivotal role of ANRIL in regulation of CDKN2A/B expression through a cis-acting mechanism and its implication in proliferation and senescence. The implication of ANRIL in cellular aging has provided an attractive unifying hypothesis to explain its association with various susceptibility risk factors. ANRIL identification emphasizes the underestimated role of long noncoding RNAs. Many GWAS have identified trait-associated SNPs that felt in noncoding genomic regions. It is conceivable to anticipate that long, noncoding RNAs will map to many of these "gene deserts."
Collapse
Affiliation(s)
- Eric Pasmant
- UMR745 INSERM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006, Paris, France.
| | | | | | | |
Collapse
|
50
|
Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G. Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 2010; 29:2553-65. [PMID: 20601937 PMCID: PMC2928679 DOI: 10.1038/emboj.2010.129] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono-ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin-specific proteases, USP7 and USP11, co-purify with human PRC1-type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de-repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence-like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.
Collapse
Affiliation(s)
| | | | | | - Kevin Hiom
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Gordon Peters
- Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|