1
|
Cummer R, Grosjean F, Bolteau R, Vasegh SE, Veyron S, Keogh L, Trempe JF, Castagner B. Structure-Activity Relationship of Inositol Thiophosphate Analogs as Allosteric Activators of Clostridioides difficile Toxin B. J Med Chem 2024; 67:16576-16597. [PMID: 39254660 DOI: 10.1021/acs.jmedchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Clostridioides difficile is a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6). IP6 binds to a cysteine protease domain (CPD) on the toxin, inducing autoproteolysis, which liberates a virulence factor in the cell cytosol. We developed second-generation IP6 analogs designed to induce autoproteolysis in the gut lumen, prior to toxin uptake, circumventing pathogenesis. We synthesized a panel of thiophosphate-/sulfate-containing IP6 analogs and characterized their toxin binding affinity, autoproteolysis induction, and cation interactions. Our top candidate was soluble in extracellular cation concentrations, unlike IP6. The IP6 analogs were more negatively charged than IP6, which improved affinity and stabilization of the CPD, enhancing toxin autoproteolysis. Our data illustrate the optimization of IP6 with thiophosphate biomimetic which are more capable of inducing toxin autoproteolysis than the native ligand, warranting further studies in vivo.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Félix Grosjean
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Raphaël Bolteau
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Seyed Ehsan Vasegh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Liam Keogh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| |
Collapse
|
2
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
3
|
Kretsch AM, Gadgil MG, DiCaprio AJ, Barrett SE, Kille BL, Si Y, Zhu L, Mitchell DA. Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element. Biochemistry 2023; 62:956-967. [PMID: 36734655 PMCID: PMC10126823 DOI: 10.1021/acs.biochem.2c00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RiPP precursor recognition element (RRE) is a conserved domain found in many prokaryotic ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic gene clusters (BGCs). RREs bind with high specificity and affinity to a recognition sequence within the N-terminal leader region of RiPP precursor peptides. Lasso peptide biosynthesis involves an RRE-dependent leader peptidase, which is discretely encoded or fused to the RRE as a di-domain protein. Here we leveraged thousands of predicted BGCs to define the RRE:leader peptidase interaction through evolutionary covariance analysis. Each interacting domain contributes a three-stranded β-sheet to form a hydrophobic β-sandwich-like interface. The bioinformatics-guided predictions were experimentally confirmed using proteins from discrete and fused lasso peptide BGC architectures. Support for the domain-domain interface derived from chemical shift perturbation, paramagnetic relaxation enhancement experiments, and rapid variant activity screening using cell-free biosynthesis. Further validation of selected variants was performed with purified proteins. We developed a p-nitroanilide-based leader peptidase assay to illuminate the role of RRE domains. Our data show that RRE domains play a dual function. RRE domains deliver the precursor peptide to the leader peptidase, and the rate is saturable as expected for a substrate. RRE domains also partially compose the elusive S2 proteolytic pocket that binds the penultimate threonine of lasso leader peptides. Because the RRE domain is required to form the active site, leader peptidase activity is greatly diminished when the RRE domain is supplied at substoichiometric levels. Full proteolytic activation requires RRE engagement with the recognition sequence-containing portion of the leader peptide. Together, our observations define a new mechanism for protease activity regulation.
Collapse
Affiliation(s)
- Ashley M. Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Mayuresh G. Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Susanna E. Barrett
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Bryce L. Kille
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Lingyang Zhu
- School of Chemical Sciences, NMR Laboratory, University of Illinois, Urbana, Illinois, United States of America
| | - Douglas A. Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
4
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
5
|
Liu J, Kothe M, Zhang J, Oloo E, Stegalkina S, Mundle ST, Li L, Zhang J, Cole LE, Barone L, Biemann HP, Kleanthous H, Anosova NG, Anderson SF. Novel structural insights for a pair of monoclonal antibodies recognizing non-overlapping epitopes of the glucosyltransferase domain of Clostridium difficile toxin B. Curr Res Struct Biol 2022; 4:96-105. [PMID: 35469152 PMCID: PMC9034018 DOI: 10.1016/j.crstbi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium difficile toxins are the primary causative agents for hospital-acquired diarrhea and pseudomembranous colitis. Numerous monoclonal antibodies (mAbs) targeting different domains of Clostridium difficile toxin have been reported. Here we report the crystal structures of two mAbs, B1 and B2, in complex with the glycosyltransferase domain (GTD) of the Clostridium difficile toxin B (TcdB). B2 bound to the N-terminal 4 helix bundle of the GTD, a conserved membrane localization domain (MLD) found in the large clostridial glycosylating toxin family implicated in targeting plasma membrane. B1 bound to a distinct epitope at the hinge region between the MLD and the catalytic subdomain of the GTD. Functional studies revealed the potency of these mAbs in vitro and in vivo to be synergistic when given in combination. Identified 2 novel potent mAbs B1 and B2 targeting the TcdB GTD domain and synergistic effects were observed when combined. Novel non-overlapped epitopes were identified for B1 and B2 through X-ray crystallography. B2 epitope belongs to a conserved MLD (membrane localization domain) in the large clostridial glycosylating toxin family. B2 was shown to target the key regions (Loop 1 and Loop 3) of MLD proposed to be essential for membrane localization. B1 epitope was found to be at the hinge region between the GTD catalytic domain and the MLD of GTD.
Collapse
|
6
|
Quiñone D, Veiga N, Savastano M, Torres J, Bianchi A, Kremer C, Bazzicalupi C. Supramolecular interaction of inositol phosphates with Cu(II): comparative study InsP6-InsP3. CrystEngComm 2022. [DOI: 10.1039/d1ce01733k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
myo-inositol phosphates are an important group of biomolecules that are present in all eukaryotic cells. The most abundant member of this family in nature is InsP6 (H12L1), which interacts strongly...
Collapse
|
7
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
8
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Kumar A, Ellermann M, Sperandio V. Taming the Beast: Interplay between Gut Small Molecules and Enteric Pathogens. Infect Immun 2019; 87:e00131-19. [PMID: 31262983 PMCID: PMC6704596 DOI: 10.1128/iai.00131-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The overuse of antibiotics has led to the evolution of drug-resistant bacteria that are becoming increasingly dangerous to human health. According to the Centers for Disease Control and Prevention, antibiotic-resistant bacteria cause at least 2 million illnesses and 23,000 deaths in the United States annually. Traditionally, antibiotics are bactericidal or bacteriostatic agents that place selective pressure on bacteria, leading to the expansion of antibiotic-resistant strains. In addition, antibiotics that are effective against some pathogens can also exacerbate their pathogenesis and may lead to severe progression of the disease. Therefore, alternative strategies are needed to treat antibiotic-resistant bacterial infections. One novel approach is to target bacterial virulence to prevent or limit pathogen colonization, while also minimizing tissue damage and disease comorbidities in the host. This review focuses on the interactions between enteric pathogens and naturally occurring small molecules in the human gut as potential therapeutic targets for antivirulence strategies. Individual small molecules in the intestines modulate enteric pathogen virulence and subsequent intestinal fitness and colonization. Targeted interruption of pathogen sensing of these small molecules could therefore attenuate their virulence. This review highlights the paths of discovery for new classes of antimicrobials that could potentially mitigate the urgent problem of antibiotic resistance.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Deletion of a 19-Amino-Acid Region in Clostridioides difficile TcdB2 Results in Spontaneous Autoprocessing and Reduced Cell Binding and Provides a Nontoxic Immunogen for Vaccination. Infect Immun 2019; 87:IAI.00210-19. [PMID: 31138612 DOI: 10.1128/iai.00210-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile toxin B (TcdB) is an intracellular toxin responsible for many of the pathologies of C. difficile infection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2Δ1769-1787, exhibited no detectable cytotoxicity. TcdB2Δ1769-1787 underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2Δ1769-1787 induced a TcdB2-neutralizing antibody response and protected against C. difficile disease in a mouse model. These findings indicate that the 19-amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2Δ1769-1787 is a promising candidate for vaccination.
Collapse
|
12
|
Ivarsson ME, Durantie E, Huberli C, Huwiler S, Hegde C, Friedman J, Altamura F, Lu J, Verdu EF, Bercik P, Logan SM, Chen W, Leroux JC, Castagner B. Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chem Biol 2019; 26:17-26.e13. [DOI: 10.1016/j.chembiol.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 01/19/2023]
|
13
|
Fühner V, Heine PA, Helmsing S, Goy S, Heidepriem J, Loeffler FF, Dübel S, Gerhard R, Hust M. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Front Microbiol 2018; 9:2908. [PMID: 30574127 PMCID: PMC6291526 DOI: 10.3389/fmicb.2018.02908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the causative bacterium in 15-20% of all antibiotic associated diarrheas. The symptoms associated with C. difficile infection (CDI) are primarily induced by the two large exotoxins TcdA and TcdB. Both toxins enter target cells by receptor-mediated endocytosis. Although different toxin receptors have been identified, it is no valid therapeutic option to prevent receptor endocytosis. Therapeutics, such as neutralizing antibodies, directly targeting both toxins are in development. Interestingly, only the anti-TcdB antibody bezlotoxumab but not the anti-TcdA antibody actoxumab prevented recurrence of CDI in clinical trials. In this work, 31 human antibody fragments against TcdB were selected by antibody phage display from the human naive antibody gene libraries HAL9/10. These antibody fragments were further characterized by in vitro neutralization assays. The epitopes of the neutralizing and non-neutralizing antibody fragments were analyzed by domain mapping, TcdB fragment phage display, and peptide arrays, to identify neutralizing and non-neutralizing epitopes. A new neutralizing epitope within the glucosyltransferase domain of TcdB was identified, providing new insights into the relevance of different toxin regions in respect of neutralization and toxicity.
Collapse
Affiliation(s)
- Viola Fühner
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Helmsing
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Goy
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Jasmin Heidepriem
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Felix F. Loeffler
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Dübel
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Michael Hust
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
14
|
Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat Commun 2018; 9:4549. [PMID: 30382091 PMCID: PMC6208348 DOI: 10.1038/s41467-018-06943-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/02/2018] [Indexed: 11/27/2022] Open
Abstract
Src homology 2 (SH2) domains play a critical role in signal transduction in mammalian cells by binding to phosphorylated Tyr (pTyr). Apart from a few isolated cases in viruses, no functional SH2 domain has been identified to date in prokaryotes. Here we identify 93 SH2 domains from Legionella that are distinct in sequence and specificity from mammalian SH2 domains. The bacterial SH2 domains are not only capable of binding proteins or peptides in a Tyr phosphorylation-dependent manner, some bind pTyr itself with micromolar affinities, a property not observed for mammalian SH2 domains. The Legionella SH2 domains feature the SH2 fold and a pTyr-binding pocket, but lack a specificity pocket found in a typical mammalian SH2 domain for recognition of sequences flanking the pTyr residue. Our work expands the boundary of phosphotyrosine signalling to prokaryotes, suggesting that some bacterial effector proteins have acquired pTyr-superbinding characteristics to facilitate bacterium-host interactions. SH2 domains bind to tyrosine-phosphorylated proteins and play crucial roles in signal transduction in mammalian cells. Here, Kaneko et al. identify a large family of SH2 domains in the bacterial pathogen Legionella that bind to mammalian phosphorylated proteins, in some cases with very high affinity.
Collapse
|
15
|
Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018; 9:2440. [PMID: 30405630 PMCID: PMC6204379 DOI: 10.3389/fimmu.2018.02440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of world-wide nosocomial acquired diarrhea in adults. Active vaccination is generally accepted as a logical and cost-effective approach to prevent CDI. In this paper, we have generated two novel chimeric proteins; one designated Tcd169, comprised of the glucosyltransferase domain (GT), the cysteine proteinase domain (CPD), and receptor binding domain (RBD) of TcdB, and the RBD of TcdA; the other designated Tcd169FI, which contains Salmonella typhimurium flagellin (sFliC) and Tcd169. Both proteins were expressed in and purified from Bacillus megaterium. Point mutations were made in the GT (W102A, D288N) and CPD (C698) of TcdB to ensure that Tcd169 and Tcd169FI were atoxic. Immunization with Tcd169 or Tcd169Fl induced protective immunity against TcdA/TcdB challenge through intraperitoneal injection, also provided mice full protection against infection with a hyper-virulent C. difficile strain (BI/NAP1/027). In addition, inclusion of sFlic in the fusion protein (Tcd169Fl) enhanced its protective immunity against toxin challenge, reduced C. difficile numbers in feces from Tcd169Fl-immunized mice infected C. difficile. Our data show that Tcd169 and Tcd169FI fusion proteins may represent alternative vaccine candidates against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ying Cai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
16
|
Treatment of Clostridium difficile Infection with a Small-Molecule Inhibitor of Toxin UDP-Glucose Hydrolysis Activity. Antimicrob Agents Chemother 2018; 62:AAC.00107-18. [PMID: 29483125 DOI: 10.1128/aac.00107-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of hospital-acquired infectious diarrhea, with significant morbidity, mortality, and associated health care costs. The major risk factor for CDI is antimicrobial therapy, which disrupts the normal gut microbiota and allows C. difficile to flourish. Treatment of CDI with antimicrobials is generally effective in the short term, but recurrent infections are frequent and problematic, indicating that improved treatment options are necessary. Symptoms of disease are largely due to two homologous toxins, TcdA and TcdB, which are glucosyltransferases that inhibit host Rho GTPases. As the normal gut microbiota is an important component of resistance to CDI, our goal was to develop an effective nonantimicrobial therapy. Here, we report a highly potent small-molecule inhibitor (VB-82252) of TcdA and TcdB. This compound inhibits the UDP-glucose hydrolysis activity of TcdB and protects cells from intoxication after challenge with either toxin. Oral dosing of the inhibitor prevented inflammation in a murine intrarectal toxin challenge model. In a murine model of recurrent CDI, the inhibitor reduced weight loss and gut inflammation during acute disease and did not cause the recurrent disease that was observed with vancomycin treatment. Lastly, the inhibitor demonstrated efficacy similar to that of vancomycin in a hamster disease model. Overall, these results demonstrate that small-molecule inhibition of C. difficile toxin UDP-glucose hydrolysis activity is a promising nonantimicrobial approach to the treatment of CDI.
Collapse
|
17
|
Chen X, Kelly CP. On and Off: A Dual Role for Cysteine Protease Autoprocessing of C difficile Toxin B on Cytotoxicity vs Proinflammatory Toxin Actions? Cell Mol Gastroenterol Hepatol 2018; 5:654-655. [PMID: 29713672 PMCID: PMC5924747 DOI: 10.1016/j.jcmgh.2018.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
| | - Ciaran P. Kelly
- Correspondence Address correspondence to: Ciaran P. Kelly, MD, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Dana 601, Boston, Massachusetts 02215.
| |
Collapse
|
18
|
Zhang Y, Li S, Yang Z, Shi L, Yu H, Salerno-Goncalves R, Saint Fleur A, Feng H. Cysteine Protease-Mediated Autocleavage of Clostridium difficile Toxins Regulates Their Proinflammatory Activity. Cell Mol Gastroenterol Hepatol 2018; 5:611-625. [PMID: 29930981 PMCID: PMC6009800 DOI: 10.1016/j.jcmgh.2018.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.
Collapse
Key Words
- 3D, 3-dimensional
- ACPD, CPD domain of TcdA
- Autoprocessing
- Bgt, GTD of TcdB
- Br, RBD of TcdB
- C difficile
- CDI, Clostridium difficile infection
- CPD, cysteine protease domain
- Cysteine Protease
- GT, glucosyltransferase
- GTD, glucosyltransferase domain
- IL, interleukin
- Inflammation
- InsP6, inositol hexakisphosphate
- MPO, myeloperoxidase
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RBD, receptor binding domain
- TER, transepithelial electrical resistance
- TcdA, Clostridium difficile toxin A
- TcdB, Clostridium difficile toxin B
- Toxins
- aTcdA, GTD deficient TcdA
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Shan Li
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Zhiyong Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Lianfa Shi
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hua Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Rosangela Salerno-Goncalves
- Department of Pediatrics and Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland,Correspondence Address correspondence to: Hanping Feng, PhD, 650 W Baltimore Street, Room 7211, Baltimore, Maryland 21201. fax: (410) 706-6511.
| |
Collapse
|
19
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
21
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
22
|
Larabee JL, Bland SJ, Hunt JJ, Ballard JD. Intrinsic Toxin-Derived Peptides Destabilize and Inactivate Clostridium difficile TcdB. mBio 2017; 8:e00503-17. [PMID: 28512094 PMCID: PMC5433098 DOI: 10.1128/mbio.00503-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of hospital-associated, antibiotic-induced diarrhea, which is largely mediated by the production of two large multidomain clostridial toxins, TcdA and TcdB. Both toxins coordinate the action of specific domains to bind receptors, enter cells, and deliver a catalytic fragment into the cytosol. This results in GTPase inactivation, actin disassembly, and cytotoxicity. TcdB in particular has been shown to encode a region covering amino acids 1753 to 1851 that affects epitope exposure and cytotoxicity. Surprisingly, studies here show that several peptides derived from this region, which share the consensus sequence 1769NVFKGNTISDK1779, protect cells from the action of TcdB. One peptide, PepB2, forms multiple interactions with the carboxy-terminal region of TcdB, destabilizes TcdB structure, and disrupts cell binding. We further show that these effects require PepB2 to form a higher-order polymeric complex, a process that requires the central GN amino acid pair. These data suggest that TcdB1769-1779 interacts with repeat sequences in the proximal carboxy-terminal domain of TcdB (i.e., the CROP domain) to alter the conformation of TcdB. Furthermore, these studies provide insights into TcdB structure and functions that can be exploited to inactivate this critical virulence factor and ameliorate the course of CDI.IMPORTANCEClostridium difficile is a leading cause of hospital-associated illness that is often associated with antibiotic treatment. To cause disease, C. difficile secretes toxins, including TcdB, which is a multidomain intracellular bacterial toxin that undergoes conformational changes during cellular intoxication. This study describes the development of peptide-based inhibitors that target a region of TcdB thought to be critical for structural integrity of the toxin. The results show that peptides derived from a structurally important region of TcdB can be used to destabilize the toxin and prevent cellular intoxication. Importantly, this work provides a novel means of toxin inhibition that could in the future develop into a C. difficile treatment.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sarah J Bland
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan J Hunt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
23
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
24
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
25
|
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016; 8:E134. [PMID: 27153087 PMCID: PMC4885049 DOI: 10.3390/toxins8050134] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.
Collapse
Affiliation(s)
- Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome 00154, Italy.
| | - Steven Siarakas
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Sydney 2139, Australia.
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | | |
Collapse
|
26
|
Abstract
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Victoria, Australia
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and The Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Mark H. Wilcox
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ed J. Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
27
|
McLuskey K, Grewal JS, Das D, Godzik A, Lesley SA, Deacon AM, Coombs GH, Elsliger MA, Wilson IA, Mottram JC. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome. J Biol Chem 2016; 291:9482-91. [PMID: 26940874 PMCID: PMC4850288 DOI: 10.1074/jbc.m115.706143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/21/2022] Open
Abstract
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.
Collapse
Affiliation(s)
- Karen McLuskey
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jaspreet S Grewal
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Debanu Das
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Adam Godzik
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, the Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Scott A Lesley
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, the Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, and
| | - Ashley M Deacon
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Graham H Coombs
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Marc-André Elsliger
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ian A Wilson
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037,
| | - Jeremy C Mottram
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom,
| |
Collapse
|
28
|
Chumbler NM, Rutherford SA, Zhang Z, Farrow MA, Lisher JP, Farquhar E, Giedroc DP, Spiller BW, Melnyk RA, Lacy DB. Crystal structure of Clostridium difficile toxin A. Nat Microbiol 2016; 1:15002. [PMID: 27571750 PMCID: PMC4976693 DOI: 10.1038/nmicrobiol.2015.2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Stacey A. Rutherford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Zhifen Zhang
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - John P. Lisher
- Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Erik Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Building 725, Brookhaven National Laboratory, New York 11973, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Benjamin W. Spiller
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Roman A. Melnyk
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - D. Borden Lacy
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| |
Collapse
|
29
|
Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N, Shen A, Sonnenburg JL, Bogyo M. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015; 7:306ra148. [PMID: 26400909 DOI: 10.1126/scitranslmed.aac9103] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.
Collapse
Affiliation(s)
- Kristina Oresic Bender
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew A Child
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Aaron W Puri
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - David E Solow-Cordero
- Stanford University High-Throughput Bioscience Center, 1291 Welch Road, Stanford, CA 94305-5174, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Ehud Segal
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
30
|
Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J. The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Structure 2015; 23:1725-1734. [PMID: 26256536 PMCID: PMC7734571 DOI: 10.1016/j.str.2015.06.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022]
Abstract
Kinases use ATP to phosphorylate substrates; recent findings underscore the additional regulatory roles of ATP. Here, we propose a mechanism for allosteric regulation of Akt1 kinase phosphorylation by ATP. Our 4.7-μs molecular dynamics simulations of Akt1 and its mutants in the ATP/ADP bound/unbound states revealed that ATP occupancy of the ATP-binding site stabilizes the closed conformation, allosterically protecting pT308 by restraining phosphatase access and key interconnected residues on the ATP→pT308 allosteric pathway. Following ATP→ADP hydrolysis, pT308 is exposed and readily dephosphorylated. Site-directed mutagenesis validated these predictions and indicated that the mutations do not impair PDK1 and PP2A phosphatase recruitment. We further probed the function of residues around pT308 at the atomic level, and predicted and experimentally confirmed that Akt1(H194R/R273H) double mutant rescues pathology-related Akt1(R273H). Analysis of classical Akt homologs suggests that this mechanism can provide a general model of allosteric kinase regulation by ATP; as such, it offers a potential avenue for allosteric drug discovery.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Haiming Jiang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Huili Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shuai Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Wenkang Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, NCI, Frederick, MD 21702, USA; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China.
| |
Collapse
|
31
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
32
|
Zhang Y, Hamza T, Gao S, Feng H. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides. Biochem Biophys Res Commun 2015; 459:259-263. [PMID: 25725153 DOI: 10.1016/j.bbrc.2015.02.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Clostridium difficile toxin A and B (TcdA and TcdB) are the major virulence factors of the bacterium, both of which consist of two enzymatic domains: an effector glucosyltransferase domain (GTD) and a cysteine protease domain (CPD) responsible for autocleavage and release of GTD. Although the CPDs from both toxins share a similar structure and mechanism of hexakisphosphate (InsP6)-induced activation, TcdA is substantially less sensitive to the autocleavage as compared with TcdB. In this study, we provided evidence of inter-domain regulation of CPD activity of TcdA and its autoprocessing. The C-terminus combined repetitive oligo peptides (CROPs) of TcdA reduced the accessibility of TcdB CPD to its substrate in a chimeric toxin TxB-Ar, consequently blocking autoprocessing. Moreover, interference of antibodies with the CROPs of full-length TcdA efficiently enhanced its GTD release. In conclusion, by utilizing chimeric toxins and specific antibodies, we identified that the CROPs of TcdA plays a crucial role in controlling the InsP6-mediated activation of CPD and autocleavage of GTD. Our data provides insights on the molecular mode of action of the C. difficile toxins.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Si Gao
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA.
| |
Collapse
|
33
|
Abstract
Clostridium difficile is associated with a spectrum of clinical manifestations ranging from asymptomatic carriage to severe life-threatening pseudomembranous colitis. Current perspectives indicate that C difficile pathogenesis is a multifactorial disease process dictated by pathogenic toxin production, gut microbial dysbiosis, and altered host inflammatory responses. This article summarizes recent findings underpinning the cellular and molecular mechanisms regulating bacterial virulence and sheds new light on the critical roles of the host immune response, intestinal microbiota, and metabolome in mediating disease pathogenesis.
Collapse
Affiliation(s)
- Tanya M Monaghan
- Biomedical Research Unit, NIHR Nottingham Digestive Diseases Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK.
| |
Collapse
|
34
|
Critical roles of Clostridium difficile toxin B enzymatic activities in pathogenesis. Infect Immun 2014; 83:502-13. [PMID: 25404023 DOI: 10.1128/iai.02316-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (V(H)H) library raised against TcdB, we identified two V(H)H antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.
Collapse
|
35
|
Screening of potent antibacterial agents targeting Clostridium difficile virulence factor toxin B: an in silico approach. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Bradshaw WJ, Kirby JM, Thiyagarajan N, Chambers CJ, Davies AH, Roberts AK, Shone CC, Acharya KR. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1983-93. [PMID: 25004975 PMCID: PMC4089489 DOI: 10.1107/s1399004714009997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/03/2014] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33-497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.
Collapse
Affiliation(s)
- William J. Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
- Public Health England, Porton Down, Salisbury SP4 0JG, England
| | | | - Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Christopher J. Chambers
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
- Public Health England, Porton Down, Salisbury SP4 0JG, England
| | - Abigail H. Davies
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
- Public Health England, Porton Down, Salisbury SP4 0JG, England
| | | | | | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| |
Collapse
|
37
|
Affiliation(s)
| | - Matthew Bogyo
- Departments of 1Chemical and Systems Biology,
- Microbiology and Immunology, and
- Pathology, Stanford University School of Medicine, Stanford, California 94305-5324;
| |
Collapse
|
38
|
Puri AW, Bogyo M. Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 2013; 52:5985-96. [PMID: 23937332 DOI: 10.1021/bi400854d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Elucidating the molecular and biochemical details of bacterial infections can be challenging because of the many complex interactions that exist between a pathogen and its host. Consequently, many tools have been developed to aid the study of bacterial pathogenesis. Small molecules are a valuable complement to traditional genetic techniques because they can be used to rapidly perturb genetically intractable systems and to monitor post-translationally regulated processes. Activity-based probes are a subset of small molecules that covalently label an enzyme of interest based on its catalytic mechanism. These tools allow monitoring of enzyme activation within the context of a native biological system and can be used to dissect the biochemical details of enzyme function. This review describes the development and application of activity-based probes for examining aspects of bacterial infection on both sides of the host-pathogen interface.
Collapse
Affiliation(s)
- Aaron W Puri
- Department of Chemical and Systems Biology, ‡Department of Microbiology and Immunology, and §Department of Pathology, Stanford University School of Medicine , 300 Pasteur Drive, Stanford, California 94305, United States
| | | |
Collapse
|
39
|
Campanello GC, Ma Z, Grossoehme NE, Guerra AJ, Ward BP, Dimarchi RD, Ye Y, Dann CE, Giedroc DP. Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family. J Mol Biol 2013; 425:1143-57. [PMID: 23353829 DOI: 10.1016/j.jmb.2013.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 11/18/2022]
Abstract
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
Collapse
|
40
|
Merdanovic M, Mönig T, Ehrmann M, Kaiser M. Diversity of allosteric regulation in proteases. ACS Chem Biol 2013. [PMID: 23181429 DOI: 10.1021/cb3005935] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery is a fundamental regulatory mechanism that is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms, and their practical implications.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Timon Mönig
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Michael Ehrmann
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| |
Collapse
|
41
|
Li S, Shi L, Yang Z, Feng H. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Pathog Dis 2013; 67:11-8. [PMID: 23620115 DOI: 10.1111/2049-632x.12016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile virulence requires secretion of two exotoxins: TcdA and TcdB. The precise mechanism of toxin uptake and delivery is undefined, but current models predict that the cysteine protease domain (CPD)-mediated autocleavage and release of glucosyltransferase domain (GTD) are crucial for intoxication. To determine the importance of CPD-mediated cleavage to TcdB cytotoxicity, we generated two mutant toxins--TcdB-C698S and TcdB-H653A--and assayed their abilities to intoxicate cells. The CPD mutants include an intact GTD but lack the cysteine protease activity. The mutants had reduced potency in that their effect on cells was delayed and required higher concentrations than wild-type TcdB. They did eventually cause cell rounding, glucosylation of Rho GTPases, and apoptosis that was indistinguishable from that caused by TcdB. Although the mutant toxins caused a complete cell rounding, they failed to release their GTD into cytosol, whereas wild-type TcdB displayed significant autocleavage and release of GTD. We conclude that the cysteine protease-mediated autocleavage and release of GTD is not a prerequisite for the cytotoxic activity of TcdB, but rather limits the potency and speed of Rho GTPase glucosylation. Our findings revise and refine the current model for the mode of the action and cellular trafficking of TcdB.
Collapse
Affiliation(s)
- Shan Li
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
42
|
Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam D, Goldenring JR, Lacy DB. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog 2012; 8:e1003072. [PMID: 23236283 PMCID: PMC3516567 DOI: 10.1371/journal.ppat.1003072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/22/2012] [Indexed: 01/21/2023] Open
Abstract
Clostridium difficile is the most common cause of antibiotic-associated nosocomial infection in the United States. C. difficile secretes two homologous toxins, TcdA and TcdB, which are responsible for the symptoms of C. difficile associated disease. The mechanism of toxin action includes an autoprocessing event where a cysteine protease domain (CPD) releases a glucosyltransferase domain (GTD) into the cytosol. The GTD acts to modify and inactivate Rho-family GTPases. The presumed importance of autoprocessing in toxicity, and the apparent specificity of the CPD active site make it, potentially, an attractive target for small molecule drug discovery. In the course of exploring this potential, we have discovered that both wild-type TcdB and TcdB mutants with impaired autoprocessing or glucosyltransferase activities are able to induce rapid, necrotic cell death in HeLa and Caco-2 epithelial cell lines. The concentrations required to induce this phenotype correlate with pathology in a porcine colonic explant model of epithelial damage. We conclude that autoprocessing and GTD release is not required for epithelial cell necrosis and that targeting the autoprocessing activity of TcdB for the development of novel therapeutics will not prevent the colonic tissue damage that occurs in C. difficile – associated disease. Clostridium difficile is an anaerobic spore-forming bacterium that infects the human colon and causes diarrhea, pseudomembranous colitis, and toxic megacolon. Most people that develop disease symptoms have undergone antibiotic treatment, which alters the normal gut flora and allows C. difficile to flourish. C. difficile secretes two toxins, TcdA and TcdB, that are responsible for the fluid secretion, inflammation, and colonic tissue damage associated with disease. The emergence of hypervirulent strains of C. difficile that are linked to increased morbidity and mortality highlights the need for new therapeutic strategies. One strategy is to inhibit the function of the toxins, thereby decreasing damage to the colon while the patient clears the infection with antibiotics. Toxin function is thought to depend on an autoprocessing event that releases a catalytic ‘effector’ portion of the toxin into the host cell. In the course of trying to identify small molecules that would inhibit such a function, we found that TcdB induces a rapid necrosis in epithelial cells that is not dependent on autoprocessing. The physiological relevance of this observation is confirmed in colonic explants and suggests that inhibiting TcdB autoprocessing will not prevent the colonic tissue damage observed in C. difficile associated diseases.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Haslam
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
43
|
Rebeaud F, Bachmann MF. Immunization strategies for Clostridium difficile infections. Expert Rev Vaccines 2012; 11:469-79. [PMID: 22551032 DOI: 10.1586/erv.12.18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infection is a major cause of nosocomial disease in Western countries. The recent emergence of hypervirulent strains resistant to most antibiotics correlates with increasing disease incidence, severity and lethal outcomes. Current treatments rely on metronidazol and vancomycin, but the limited ability of these antibiotics to cure infection and prevent relapse highlights the need for new strategies. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of Clostridium difficile now permits the development of new products specifically targeting the pathogen. Immune-based strategies relying on active vaccination or passive administration of antibody products are the focus of intense research and, today, the efficacy of monoclonal antibodies and of two vaccines are evaluated clinically. This review presents recent data, discusses the different strategies and highlights the challenges linked to the development of immunization strategies against this emerging threat.
Collapse
Affiliation(s)
- Fabien Rebeaud
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | | |
Collapse
|
44
|
Swett R, Cisneros GA, Feig AL. Conformational analysis of Clostridium difficile toxin B and its implications for substrate recognition. PLoS One 2012; 7:e41518. [PMID: 22844485 PMCID: PMC3402401 DOI: 10.1371/journal.pone.0041518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/21/2012] [Indexed: 01/02/2023] Open
Abstract
Clostridium difficile (C. difficile) is an opportunistic pathogen that can cause potentially lethal hospital-acquired infections. The cellular damage that it causes is the result of two large clostridial cytotoxins: TcdA and TcdB which act by glucosylating cytosolic G-proteins, mis-regulation of which induces apoptosis. TcdB is a large flexible protein that appears to undergo significant structural rearrangement upon accommodation of its substrates: UDP-glucose and a Rho-family GTPase. To characterize the conformational space of TcdB, we applied normal mode and hinge-region analysis, followed by long-timescale unbiased molecular dynamics. In order to examine the TcdB and RhoA interaction, macromolecular docking and simulation of the TcdB/RhoA complex was performed. Generalized Masked Delaunay analysis of the simulations determined the extent of significant motions. This combination of methods elucidated a wide range of motions within TcdB that are reiterated in both the low-cost normal mode analysis and the extensive MD simulation. Of particular interest are the coupled motions between a peripheral 4-helix bundle and a small loop in the active site that must rearrange to allow RhoA entry to the catalytic site. These extensive coupled motions are indicative of TcdB using a conformational capture mechanism for substrate accommodation.
Collapse
Affiliation(s)
- Rebecca Swett
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Andrew L. Feig
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
45
|
Pruitt RN, Lacy DB. Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2012; 2:28. [PMID: 22919620 PMCID: PMC3417631 DOI: 10.3389/fcimb.2012.00028] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/27/2012] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a toxin-producing bacterium that is a frequent cause of hospital-acquired and antibiotic-associated diarrhea. The incidence, severity, and costs associated with C. difficile associated disease are substantial and increasing, making C. difficile a significant public health concern. The two primary toxins, TcdA and TcdB, disrupt host cell function by inactivating small GTPases that regulate the actin cytoskeleton. This review will discuss the role of these two toxins in pathogenesis and the structural and molecular mechanisms by which they intoxicate cells. A focus will be placed on recent publications highlighting mechanistic similarities and differences between TcdA, TcdB, and different TcdB variants.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville TN, USA
| | | |
Collapse
|
46
|
Costa TF, Reis FCD, Lima APC. Substrate inhibition and allosteric regulation by heparan sulfate of Trypanosoma brucei cathepsin L. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:493-501. [DOI: 10.1016/j.bbapap.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
|
47
|
Lanis JM, Hightower LD, Shen A, Ballard JD. TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing. Mol Microbiol 2012; 84:66-76. [PMID: 22372854 DOI: 10.1111/j.1365-2958.2012.08009.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TcdB, an intracellular bacterial toxin that inactivates small GTPases, is a major Clostridium difficile virulence factor. Recent studies have found that TcdB produced by emerging/hypervirulent strains of C. difficile is more potent than TcdB from historical strains, and in the current work, studies were performed to investigate the underlying mechanisms for this change in TcdB toxicity. Using a series of biochemical analyses we found that TcdB from a hypervirulent strain (TcdB(HV) ) was more efficient at autoprocessing than TcdB from a historical strain (TcdB(HIST) ). TcdB(HV) and TcdB(HIST) were activated by similar concentrations of IP6; however, the overall efficiency of processing was 20% higher for TcdB(HV) . Using an activity-based fluorescent probe (AWP19) an intermediate, activated but uncleaved, form of TcdB(HIST) was identified, while only a processed form of TcdB(HV) could be detected under the same conditions. Using a much higher concentration (200 µM) of the probe revealed an activated uncleaved form of TcdB(HV) , indicating a preferential and more efficient engagement of intramolecular substrate than TcdB(HIST) . Furthermore, a peptide-based inhibitor (Ac-GSL-AOMK) was found to block the cytotoxicity of TcdB(HIST) at a lower concentration than required to inhibit TcdB(HV) . These findings suggest that TcdB(HV) may cause increased cytotoxicity due to more efficient autoprocessing.
Collapse
Affiliation(s)
- Jordi M Lanis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
48
|
Shen A. Clostridium difficile toxins: mediators of inflammation. J Innate Immun 2012; 4:149-58. [PMID: 22237401 DOI: 10.1159/000332946] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a significant problem in hospital settings as the most common cause of nosocomial diarrhea worldwide. C. difficile infections (CDIs) are characterized by an acute intestinal inflammatory response with neutrophil infiltration. These symptoms are primarily caused by the glucosylating toxins, TcdA and TcdB. In the past decade, the frequency and severity of CDIs have increased markedly due to the emergence of so-called hypervirulent strains that overproduce cytotoxic glucosylating toxins relative to historical strains. In addition, these strains produce a third toxin, binary toxin or C. difficile transferase (CDT), that may contribute to hypervirulence. Both the glucosylating toxins and CDT covalently modify target cell proteins to cause disassembly of the actin cytoskeleton and induce severe inflammation. This review summarizes our current knowledge of the mechanisms by which glucosylating toxins and CDT disrupt target cell function, alter host physiology and stimulate immune responses.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vt. 05401, USA.
| |
Collapse
|
49
|
Oezguen N, Power TD, Urvil P, Feng H, Pothoulakis C, Stamler JS, Braun W, Savidge TC. Clostridial toxins: sensing a target in a hostile gut environment. Gut Microbes 2012; 3:35-41. [PMID: 22356854 PMCID: PMC3337123 DOI: 10.4161/gmic.19250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The current global outbreak of Clostridium difficile infection exemplifies the major public health threat posed by clostridial glucosylating toxins. In the western world, C. difficile infection is one of the most prolific causes of bacterial-induced diarrhea and potentially fatal colitis. Two pathogenic enterotoxins, TcdA and TcdB, cause the disease. Vancomycin and metronidazole remain readily available treatment options for C. difficile infection, but neither is fully effective as is evident by high clinical relapse and fatality rates. Thus, there is an urgent need to find an alternative therapy that preferentially targets the toxins and not the drug-resistant pathogen. Recently, we addressed these critical issues in a Nature Medicine letter, describing a novel host defense mechanism for subverting toxin virulence that we translated into prototypic allosteric therapy for C. difficile infection. In this addendum article, we provide a continued perspective of this antitoxin mechanism and consider the broader implications of therapeutic allostery in combating gut microbial pathogenesis.
Collapse
Affiliation(s)
- Numan Oezguen
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA
| | - Trevor D. Power
- Department of Biochemistry & Molecular Biology; University of Texas Medical Branch; Galveston, TX USA
| | - Petri Urvil
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA
| | - Hanping Feng
- Department of Microbial Pathogenesis; University of Maryland Dental School; Baltimore, MD USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease; Division of Digestive Diseases; University of California at Los Angeles; Los Angeles, CA USA
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine; Department of Medicine; University Hospitals; Case Western Reserve University; Cleveland, OH USA
| | - Werner Braun
- Department of Biochemistry & Molecular Biology; University of Texas Medical Branch; Galveston, TX USA
| | - Tor C. Savidge
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA,Correspondence to: Tor C. Savidge;
| |
Collapse
|
50
|
Tam Dang TH, Fagan RP, Fairweather NF, Tate EW. Novel inhibitors of surface layer processing in Clostridium difficile. Bioorg Med Chem 2011; 20:614-21. [PMID: 21752656 DOI: 10.1016/j.bmc.2011.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/20/2011] [Accepted: 06/14/2011] [Indexed: 01/05/2023]
Abstract
Clostridium difficile, a leading cause of hospital-acquired bacterial infection, is coated in a dense surface layer (S-layer) that is thought to provide both physicochemical protection and a scaffold for host-pathogen interactions. The key structural components of the S-layer are two proteins derived from a polypeptide precursor, SlpA, via proteolytic cleavage by the protease Cwp84. Here, we report the design, synthesis and in vivo characterization of a panel of protease inhibitors and activity-based probes (ABPs) designed to target S-layer processing in live C. difficile cells. Inhibitors based on substrate-mimetic peptides bearing a C-terminal Michael acceptor warhead were found to be promising candidates for further development.
Collapse
Affiliation(s)
- T H Tam Dang
- Department of Chemistry, Imperial College London, London SW72AZ, United Kingdom
| | | | | | | |
Collapse
|