1
|
Tilden JAR, Doud EA, Montgomery HR, Maynard HD, Spokoyny AM. Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems. J Am Chem Soc 2024; 146:29989-30003. [PMID: 39468851 DOI: 10.1021/jacs.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The recent emergence of organometallic chemistry for modification of biomolecular nanostructures has begun to rewrite the long-standing assumption among practitioners that small-molecule organometallics are fundamentally incompatible with biological systems. This Perspective sets out to clarify some of the existing misconceptions by focusing on the growing organometallic toolbox for biomolecular modification. Specifically, we highlight key organometallic transformations in constructing complex biologically relevant systems on the nanomolecular scale, and the organometallic synthesis of hybrid nanomaterials composed of classical nanomaterial components combined with biologically relevant species. As research progresses, many of the challenges associated with applying organometallic chemistry in this context are rapidly being reassessed. Looking to the future, the growing utility of organometallic transformations will likely make them more ubiquitous in the construction and modification of biomolecular nanostructures.
Collapse
Affiliation(s)
- James A R Tilden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Vogel GF, Podpeskar A, Rieder D, Salzer H, Garczarczyk-Asim D, Wang L, Abuduxikuer K, Wang JS, Scharrer A, Faqeih EA, Aseeri AT, Vodopiutz J, Heilos A, Pichler J, Huber WD, Müller T, Knisely AS, Janecke AR. Kinesin family member 12-related hepatopathy: A generally indolent disorder with elevated gamma-glutamyl-transferase activity. Clin Genet 2024; 106:224-233. [PMID: 38553872 DOI: 10.1111/cge.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 08/13/2024]
Abstract
Exome sequencing (ES) has identified biallelic kinesin family member 12 (KIF12) mutations as underlying neonatal cholestatic liver disease. We collected information on onset and progression of this entity. Among consecutively referred pediatric patients at our centers, diagnostic ES identified 4 patients with novel, biallelic KIF12 variants using the human GRCh38 reference sequence, as KIF12 remains incompletely annotated in the older reference sequence GRCh37. A review of these and of 21 reported patients with KIF12 variants found that presentation with elevated serum transaminase activity in the context of trivial respiratory infection, without clinical features of liver disease, was more common (n = 18) than manifest cholestatic disease progressing rapidly to liver transplantation (LT; n = 7). Onset of liver disease was at age <1 year in 15 patients; LT was more common in this group. Serum gamma-glutamyl transpeptidase activity (GGT) was elevated in all patients, and total bilirubin was elevated in 15 patients. Liver fibrosis or cirrhosis was present in 14 of 18 patients who were biopsied. The 16 different pathogenic variants and 11 different KIF12 genotypes found were not correlated with age of onset or progression to LT. Identification of biallelic pathogenic KIF12 variants distinguishes KIF12-related disease from other entities with elevated GGT.
Collapse
Affiliation(s)
- Georg-Friedrich Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Podpeskar
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Helin Salzer
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Li Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Anke Scharrer
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Eissa Ali Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Ali T Aseeri
- Section of Gastroenterology and Hepatology, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Heilos
- Department of Pediatric Nephrology and Gastroenterology, Medical University Vienna, Vienna, Austria
| | - Judith Pichler
- Department of Pediatric Nephrology and Gastroenterology, Medical University Vienna, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatric Nephrology and Gastroenterology, Medical University Vienna, Vienna, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - A S Knisely
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Graz, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Shibata S, Wang MY, Imasaki T, Shigematsu H, Wei Y, Jobichen C, Hagio H, Sivaraman J, Endow SA, Nitta R. Structural transitions in kinesin minus-end directed microtubule motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605428. [PMID: 39131399 PMCID: PMC11312455 DOI: 10.1101/2024.07.29.605428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Kinesin motor proteins hydrolyze ATP to produce force for spindle assembly and vesicle transport, performing essential functions in cell division and motility, but the structural changes required for force generation are uncertain. We now report high-resolution structures showing new transitions in the kinesin mechanochemical cycle, including power stroke fluctuations upon ATP binding and a post-hydrolysis state with bound ADP + free phosphate. We find that rate-limiting ADP release occurs upon microtubule binding, accompanied by central β-sheet twisting, which triggers the power stroke - stalk rotation and neck mimic docking - upon ATP binding. Microtubule release occurs with β-strand-to-loop transitions, implying that β-strand refolding induces Pi release and the recovery stroke. The strained β-sheet during the power stroke and strand-to-loop transitions identify the β-sheet as the long-sought motor spring.
Collapse
Affiliation(s)
- Satoki Shibata
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Matthew Y. Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5184, Japan
| | - Yuanyuan Wei
- Neuroscience & Behavioral Disorders Programme, Duke-NUS School of Medicine, SG 169857, USA
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, SG 117558, Singapore
| | - Hajime Hagio
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, SG 117558, Singapore
| | - Sharyn A. Endow
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Neuroscience & Behavioral Disorders Programme, Duke-NUS School of Medicine, SG 169857, USA
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
4
|
Adams JM, Sawe C, Rogers S, Reid J, Dasari R, Engelke MF. Characterization of the disease-causing mechanism of KIF3B mutations from ciliopathy patients. Front Mol Biosci 2024; 11:1327963. [PMID: 38665936 PMCID: PMC11043552 DOI: 10.3389/fmolb.2024.1327963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
The heterodimeric kinesin-2 motor (KIF3A/KIF3B with accessory protein KAP3) drives intraflagellar transport, essential for ciliogenesis and ciliary function. Three point mutations in the KIF3B subunit have recently been linked to disease in humans (E250Q and L523P) and Bengal cats (A334T) (Cogné et al., Am. J. Hum. Genet., 2020, 106, 893-904). Patients display retinal atrophy and, in some cases, other ciliopathy phenotypes. However, the molecular mechanism leading to disease is currently unknown. Here, we used Kif3a -/- ;Kif3b -/- (knockout) 3T3 cells, which cannot make cilia, to characterize these mutations. While reexpression of KIF3B(E250Q) and KIF3B(L523P) did not rescue ciliogenesis, reexpression of wildtype or KIF3B(A334T) restored ciliogenesis to wildtype levels. Fluorescent tagging revealed that the E250Q mutant decorated microtubules and thus is a rigor mutation. The L523P mutation, in the alpha-helical stalk domain, surprisingly did not affect formation of the KIF3A/KIF3B/KAP3 complex but instead impaired motility along microtubules. Lastly, expression of the A334T motor was reduced in comparison to all other motors, and this motor displayed an impaired ability to disperse the Golgi complex when artificially linked to this high-load cargo. In summary, this work uses cell-based assays to elucidate the molecular effects of disease-causing mutations in the KIF3B subunit on the kinesin-2 holoenzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL, United States
| |
Collapse
|
5
|
Luchniak A, Roy PS, Kumar A, Schneider IC, Gelfand VI, Jernigan RL, Gupta ML. Tubulin CFEOM mutations both inhibit or activate kinesin motor activity. Mol Biol Cell 2024; 35:ar32. [PMID: 38170592 PMCID: PMC10916880 DOI: 10.1091/mbc.e23-01-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit β-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing β-tubulin mutations inhibit kinesin-microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing β-tubulin mutations, R380C enhances kinesin activity. Expression of β-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on β-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how β-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule's role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health.
Collapse
Affiliation(s)
- Anna Luchniak
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ambuj Kumar
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Ian C. Schneider
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011
| | - Vladimir I. Gelfand
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Mohan L. Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
6
|
Campanacci V, Gigant B. The C-terminus of stathmin-like proteins governs the stability of their complexes with tubulin. Biochem Biophys Res Commun 2023; 682:244-249. [PMID: 37826947 DOI: 10.1016/j.bbrc.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two αβ-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the C-terminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.
Collapse
Affiliation(s)
- Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Ranaivoson FM, Crozet V, Benoit MPMH, Abdalla Mohammed Khalid A, Kikuti C, Sirkia H, El Marjou A, Miserey-Lenkei S, Asenjo AB, Sosa H, Schmidt CF, Rosenfeld SS, Houdusse A. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol 2023; 13:230122. [PMID: 37726093 PMCID: PMC10508983 DOI: 10.1098/rsob.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
Collapse
Affiliation(s)
- Fanomezana Moutse Ranaivoson
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Vincent Crozet
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | | | | | - Carlos Kikuti
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Helena Sirkia
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ahmed El Marjou
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Stéphanie Miserey-Lenkei
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ana B. Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph F. Schmidt
- Third Institute of Physics-Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | | | - Anne Houdusse
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| |
Collapse
|
9
|
Chen X, Portran D, Widmer LA, Stangier MM, Czub MP, Liakopoulos D, Stelling J, Steinmetz MO, Barral Y. The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. J Cell Biol 2023; 222:214052. [PMID: 37093124 PMCID: PMC10130750 DOI: 10.1083/jcb.202110126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2-Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| | - Didier Portran
- CRBM, Université de Montpellier , CNRS, Montpellier, France
| | - Lukas A Widmer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marcel M Stangier
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Mateusz P Czub
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dimitris Liakopoulos
- CRBM, Université de Montpellier , CNRS, Montpellier, France
- Laboratory of Biology, University of Ioannina, Faculty of Medicine, Ioannina, Greece
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michel O Steinmetz
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- University of Basel, Biozentrum , Basel, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| |
Collapse
|
10
|
Zhang X, Li X, Chen W, Wang Y, Diao L, Gao Y, Wang H, Bao L, Liang X, Wu HY. The distinct initiation sites and processing activities of TTLL4 and TTLL7 in glutamylation of brain tubulin. J Biol Chem 2023; 299:104923. [PMID: 37321451 PMCID: PMC10404701 DOI: 10.1016/j.jbc.2023.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the β-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than β-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and β2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangxiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Heyi Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Genova M, Grycova L, Puttrich V, Magiera MM, Lansky Z, Janke C, Braun M. Tubulin polyglutamylation differentially regulates microtubule-interacting proteins. EMBO J 2023; 42:e112101. [PMID: 36636822 PMCID: PMC9975938 DOI: 10.15252/embj.2022112101] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.
Collapse
Affiliation(s)
- Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Lenka Grycova
- Institute of BiotechnologyCzech Academy of Sciences, BIOCEVPrague WestCzech Republic
| | - Verena Puttrich
- Institute of BiotechnologyCzech Academy of Sciences, BIOCEVPrague WestCzech Republic
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Zdenek Lansky
- Institute of BiotechnologyCzech Academy of Sciences, BIOCEVPrague WestCzech Republic
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Marcus Braun
- Institute of BiotechnologyCzech Academy of Sciences, BIOCEVPrague WestCzech Republic
| |
Collapse
|
12
|
Effect of the Neck Linker on Processive Stepping of Kinesin Motor. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kinesin motor protein, which is composed of two catalytic domains connected together by a long coiled-coil stalk via two flexible neck linkers (NLs), can step processively on a microtubule towards the plus end by hydrolyzing adenosine triphosphate (ATP) molecules. To understand what the role is that the NL plays in the processive stepping, the dynamics of the kinesin motor are studied theoretically here by considering the mutation or deletion of an N-terminal cover strand that contributes to the docking of the NL in kinesin-1, the extension of the NL in kinesin-1, the mutation of the NL in kinesin-1, the swapping of the NL of kinesin-2 with that of kinesin-1, the joining of the stalk and neck of Ncd that moves towards the minus end of MT to the catalytic domain of kinesin-1, the replacement of catalytic domain of kinesin-1 with that of Ncd, and so on. The theoretical results give a consistent and quantitative explanation of various available experimental results about the effects of these mutations on motor dynamics and, moreover, provide predicted results. Additionally, the processive motility of kinesin-6 MKLP2 without NL docking is also explained. The available experimental data about the effect of NL mutations on the dynamics of the bi-directional kinesin-5 Cin8 are also explained. The studies are critically implicative to the mechanism of the stepping of the kinesin motor.
Collapse
|
13
|
Zhang C, Guo C, Russell RW, Quinn CM, Li M, Williams JC, Gronenborn AM, Polenova T. Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation. Nat Commun 2022; 13:6795. [PMID: 36357375 PMCID: PMC9649657 DOI: 10.1038/s41467-022-34026-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) and their associated proteins play essential roles in maintaining cell structure, organelle transport, cell motility, and cell division. Two motors, kinesin and cytoplasmic dynein link the MT network to transported cargos using ATP for force generation. Here, we report an all-atom NMR structure of nucleotide-free kinesin-1 motor domain (apo-KIF5B) in complex with paclitaxel-stabilized microtubules using magic-angle-spinning (MAS) NMR spectroscopy. The structure reveals the position and orientation of the functionally important neck linker and how ADP induces structural and dynamic changes that ensue in the neck linker. These results demonstrate that the neck linker is in the undocked conformation and oriented in the direction opposite to the KIF5B movement. Chemical shift perturbations and intensity changes indicate that a significant portion of ADP-KIF5B is in the neck linker docked state. This study also highlights the unique capability of MAS NMR to provide atomic-level information on dynamic regions of biological assemblies.
Collapse
Affiliation(s)
- Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mingyue Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Wattanathamsan O, Pongrakhananon V. Emerging role of microtubule-associated proteins on cancer metastasis. Front Pharmacol 2022; 13:935493. [PMID: 36188577 PMCID: PMC9515585 DOI: 10.3389/fphar.2022.935493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
The major cause of death in cancer patients is strongly associated with metastasis. While much remains to be understood, microtubule-associated proteins (MAPs) have shed light on metastatic progression’s molecular mechanisms. In this review article, we focus on the role of MAPs in cancer aggressiveness, particularly cancer metastasis activity. Increasing evidence has shown that a growing number of MAP member proteins might be fundamental regulators involved in altering microtubule dynamics, contributing to cancer migration, invasion, and epithelial-to-mesenchymal transition. MAP types have been established according to their microtubule-binding site and function in microtubule-dependent activities. We highlight that altered MAP expression was commonly found in many cancer types and related to cancer progression based on available evidence. Furthermore, we discuss and integrate the relevance of MAPs and related molecular signaling pathways in cancer metastasis. Our review provides a comprehensive understanding of MAP function on microtubules. It elucidates how MAPs regulate cancer progression, preferentially in metastasis, providing substantial scientific information on MAPs as potential therapeutic targets and prognostic markers for cancer management.
Collapse
Affiliation(s)
- Onsurang Wattanathamsan
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Varisa Pongrakhananon,
| |
Collapse
|
16
|
Anchoring geometry is a significant factor in determining the direction of kinesin-14 motility on microtubules. Sci Rep 2022; 12:15417. [PMID: 36104376 PMCID: PMC9474454 DOI: 10.1038/s41598-022-19589-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Kinesin-14 microtubule-based motors have an N-terminal tail attaching the catalytic core to its load and usually move towards microtubule minus ends, whilst most other kinesins have a C-terminal tail and move towards plus ends. Loss of conserved sequences external to the motor domain causes kinesin-14 to switch to plus-end motility, showing that an N-terminal attachment is compatible with plus-end motility. However, there has been no systematic study on the role of attachment position in minus-end motility. We therefore examined the motility of monomeric kinesin-14s differing only in their attachment point. We find that a C-terminal attachment point causes kinesin-14s to become plus-end-directed, with microtubule corkscrewing rotation direction and pitch in motility assays similar to that of kinesin-1, suggesting that both C-kinesin kinesins-14 and N-kinesin kinesin-1 share a highly conserved catalytic core function with an intrinsic plus-end bias. Thus, an N-terminal attachment is one of the requirements for minus-end motility in kinesin-14.
Collapse
|
17
|
Taguchi S, Nakano J, Imasaki T, Kita T, Saijo-Hamano Y, Sakai N, Shigematsu H, Okuma H, Shimizu T, Nitta E, Kikkawa S, Mizobuchi S, Niwa S, Nitta R. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 -tubulin complex. eLife 2022; 11:77877. [PMID: 36065637 PMCID: PMC9451533 DOI: 10.7554/elife.77877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Kinesin superfamily proteins are microtubule-based molecular motors driven by the energy of ATP hydrolysis. Among them, the kinesin-4 family is a unique motor that inhibits microtubule dynamics. Although mutations of kinesin-4 cause several diseases, its molecular mechanism is unclear because of the difficulty of visualizing the high-resolution structure of kinesin-4 working at the microtubule plus-end. Here, we report that KLP-12, a C. elegans kinesin-4 ortholog of KIF21A and KIF21B, is essential for proper length control of C. elegans axons, and its motor domain represses microtubule polymerization in vitro. The crystal structure of the KLP-12 motor domain complexed with tubulin, which represents the high-resolution structural snapshot of the inhibition state of microtubule-end dynamics, revealed the bending effect of KLP-12 for tubulin. Comparison with the KIF5B-tubulin and KIF2C-tubulin complexes, which represent the elongation and shrinking forms of microtubule ends, respectively, showed the curvature of tubulin introduced by KLP-12 is in between them. Taken together, KLP-12 controls the proper length of axons by modulating the curvature of the microtubule ends to inhibit the microtubule dynamics. From meter-long structures that allow nerve cells to stretch across a body to miniscule ‘hairs’ required for lung cells to clear mucus, many life processes rely on cells sporting projections which have the right size for their role. Networks of hollow filaments known as microtubules shape these structures and ensure that they have the appropriate dimensions. Controlling the length of microtubules is therefore essential for organisms, yet how this process takes place is still not fully elucidated. Previous research has shown that microtubules continue to grow when their end is straight but stop when it is curved. A family of molecular motors known as kinesin-4 participate in this process, but the exact mechanisms at play remain unclear. To investigate, Tuguchi, Nakano, Imasaki et al. focused on the KLP-12 protein, a kinesin-4 equivalent which helps to controls the length of microtubules in the tiny worm Caenorhabditis elegans. They performed genetic manipulations and imaged the interactions between KLP-12 and the growing end of a microtubule using X-ray crystallography. This revealed that KLP-12 controls the length of neurons by inhibiting microtubule growth. It does so by modulating the curvature of the growing end of the filament to suppress its extension. A ‘snapshot’ of KLP-12 binding to a microtubule at the resolution of the atom revealed exactly how the protein helps to bend the end of the filament to prevent it from growing further. These results will help to understand how nerve cells are shaped. This may also provide insights into the molecular mechanisms for various neurodegenerative disorders caused by problems with the human equivalents of KLP-12, potentially leading to new therapies.
Collapse
Affiliation(s)
- Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Anesthesiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Juri Nakano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoki Kita
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nat Commun 2022; 13:4198. [PMID: 35859148 PMCID: PMC9300613 DOI: 10.1038/s41467-022-31794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matthieu P M H Benoit
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caitlin Doubleday
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Irsa Shoukat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
19
|
Kuo YW, Mahamdeh M, Tuna Y, Howard J. The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail. Nat Commun 2022; 13:3651. [PMID: 35752623 PMCID: PMC9233703 DOI: 10.1038/s41467-022-31069-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Severing enzymes and molecular motors extract tubulin from the walls of microtubules by exerting mechanical force on subunits buried in the lattice. However, how much force is needed to remove tubulin from microtubules is not known, nor is the pathway by which subunits are removed. Using a site-specific functionalization method, we applied forces to the C-terminus of α-tubulin with an optical tweezer and found that a force of ~30 pN is required to extract tubulin from the microtubule wall. Additionally, we discovered that partial unfolding is an intermediate step in tubulin removal. The unfolding and extraction forces are similar to those generated by AAA-unfoldases. Lastly, we show that three kinesin-1 motor proteins can also extract tubulin from the microtubule lattice. Our results provide the first experimental investigation of how tubulin responds to mechanical forces exerted on its α-tubulin C-terminal tail and have implications for the mechanisms of severing enzymes and microtubule stability. Tubulin, the building blocks of microtubules, can be removed from the microtubule wall by mechanical forces. Using single-molecule methods, the authors show that tubulin partially unfolds prior to its removal and determined the tubulin-extraction force.
Collapse
Affiliation(s)
- Yin-Wei Kuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mohammed Mahamdeh
- Harvard Medical School, Boston, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yazgan Tuna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Morikawa M, Jerath NU, Ogawa T, Morikawa M, Tanaka Y, Shy ME, Zuchner S, Hirokawa N. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. EMBO J 2022; 41:e108899. [PMID: 35132656 PMCID: PMC8886545 DOI: 10.15252/embj.2021108899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanochemical coupling of ATPase hydrolysis and conformational dynamics in kinesin motors facilitates intramolecular interaction cycles between the kinesin motor and neck domains, which are essential for microtubule-based motility. Here, we characterized a charge-inverting KIF1A-E239K mutant that we identified in a family with axonal-type Charcot-Marie-Tooth disease and also in 24 cases in human neuropathies including spastic paraplegia and hereditary sensory and autonomic neuropathy. We show that Glu239 in the β7 strand is a key residue of the motor domain that regulates the motor-neck interaction. Expression of the KIF1A-E239K mutation has decreased ability to complement Kif1a+/- neurons, and significantly decreases ATPase activity and microtubule gliding velocity. X-ray crystallography shows that this mutation causes an excess positive charge on β7, which may electrostatically interact with a negative charge on the neck. Quantitative mass spectrometric analysis supports that the mutation hyper-stabilizes the motor-neck interaction at the late ATP hydrolysis stage. Thus, the negative charge of Glu239 dynamically regulates the kinesin motor-neck interaction, promoting release of the neck from the motor domain upon ATP hydrolysis.
Collapse
Affiliation(s)
- Manatsu Morikawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nivedita U Jerath
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIAUSA,Neuromuscular DivisionAdventHealth OrlandoWinter ParkFLUSA
| | - Tadayuki Ogawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan,Research Center for Advanced Medical ScienceDokkyo Medical UniversityMibuJapan
| | - Momo Morikawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan,Department of Anatomy and NeuroscienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yosuke Tanaka
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Michael E Shy
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Nobutaka Hirokawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
21
|
Ferro LS, Fang Q, Eshun-Wilson L, Fernandes J, Jack A, Farrell DP, Golcuk M, Huijben T, Costa K, Gur M, DiMaio F, Nogales E, Yildiz A. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 2022; 375:326-331. [PMID: 35050657 PMCID: PMC8985661 DOI: 10.1126/science.abf6154] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule (MT)-associated protein 7 (MAP7) is a required cofactor for kinesin-1-driven transport of intracellular cargoes. Using cryo-electron microscopy and single-molecule imaging, we investigated how MAP7 binds MTs and facilitates kinesin-1 motility. The MT-binding domain (MTBD) of MAP7 bound MTs as an extended α helix between the protofilament ridge and the site of lateral contact. Unexpectedly, the MTBD partially overlapped with the binding site of kinesin-1 and inhibited its motility. However, by tethering kinesin-1 to the MT, the projection domain of MAP7 prevented dissociation of the motor and facilitated its binding to available neighboring sites. The inhibitory effect of the MTBD dominated as MTs became saturated with MAP7. Our results reveal biphasic regulation of kinesin-1 by MAP7 in the context of their competitive binding to MTs.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Qianglin Fang
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Lisa Eshun-Wilson
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | | | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Teun Huijben
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | | | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Eva Nogales
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Howard Hughes Medical Institute, Chevy Chase MD, USA
| | - Ahmet Yildiz
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Physics Department, University of California, Berkeley CA, USA
| |
Collapse
|
22
|
Guo W, Sun S, Sanchez JE, Lopez-Hernandez AE, Ale TA, Chen J, Afrin T, Qiu W, Xie Y, Li L. Using a comprehensive approach to investigate the interaction between Kinesin-5/Eg5 and the microtubule. Comput Struct Biotechnol J 2022; 20:4305-4314. [PMID: 36051882 PMCID: PMC9396395 DOI: 10.1016/j.csbj.2022.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/02/2023] Open
Abstract
Kinesins are microtubule-based motor proteins that play important roles ranging from intracellular transport to cell division. Human Kinesin-5 (Eg5) is essential for mitotic spindle assembly during cell division. By combining molecular dynamics (MD) simulations with other multi-scale computational approaches, we systematically studied the interaction between Eg5 and the microtubule. We find the electrostatic feature on the motor domains of Eg5 provides attractive interactions to the microtubule. Additionally, the folding and binding energy analysis reveals that the Eg5 motor domain performs its functions best when in a weak acidic environment. Molecular dynamics analyses of hydrogen bonds and salt bridges demonstrate that, on the binding interfaces of Eg5 and the tubulin heterodimer, salt bridges play the most significant role in holding the complex. The salt bridge residues on the binding interface of Eg5 are mostly positive, while salt bridge residues on the binding interface of tubulin heterodimer are mostly negative. Such salt bridge residue distribution is consistent with electrostatic potential calculations. In contrast, the interface between α and β-tubulins is dominated by hydrogen bonds rather than salt bridges. Compared to the Eg5/α-tubulin interface, the Eg5/β-tubulin interface has a greater number of salt bridges and higher occupancy for salt bridges. This asymmetric salt bridge distribution may play a significant role in Eg5′s directionality. The residues involved in hydrogen bonds and salt bridges are identified in this work and may be helpful for anticancer drug design.
Collapse
Affiliation(s)
- Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Shengjie Sun
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Jason E. Sanchez
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | | | - Tolulope A. Ale
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Jiawei Chen
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Tanjina Afrin
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
- Department of Physics, Oregon State University, Corvallis, OR, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR, USA
| | - Yixin Xie
- Department of Information Technology, Kennesaw State University, Kennesaw, GA, USA
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
- Corresponding author.
| |
Collapse
|
23
|
Rafiei A, Schriemer DC. A Crosslinking Mass Spectrometry Protocol for the Structural Analysis of Microtubule-Associated Proteins. Methods Mol Biol 2022; 2456:211-222. [PMID: 35612744 DOI: 10.1007/978-1-0716-2124-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microtubule-associated proteins (MAPs) engage microtubules (MTs) to regulate both the MT state and wide variety of cytoskeletal functions. A comprehensive understanding of MAPs function requires the structural characterization of physical contacts MAPs make with other proteins, particularly when engaged with the microtubule (MT) lattice. Most of the interaction between MAPs and MTs evade classical structural determination techniques, as the interactions can be both heterogenous and sub-stoichiometric. Crosslinking mass spectrometry (XL-MS) can aid in MAP-MT structure analysis by providing a wealth of residue-based distance restraints. This protocol provides an XL-MS workflow for accurate and unbiased sampling of an equilibrated MAP-MT interaction, involving modifications to the preparation and validation of a MAP-MT construct suitable for crosslinking with fast-sampling heterobifunctional crosslinkers. The distance restrains obtained by this protocol can be used to generate accurate models assembled with an integrative structural modeling approach.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Alrazi IMD, Ogunwa TH, Kolawole AO, Elekofehinti OO, Omotuyi OI, Miyanishi T, Maruta S. Kolaflavanone, a biflavonoid derived from medicinal plant Garcinia, is an inhibitor of mitotic kinesin Eg5. J Biochem 2021; 170:611-622. [PMID: 34264310 DOI: 10.1093/jb/mvab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.
Collapse
Affiliation(s)
- Islam M D Alrazi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Tomisin H Ogunwa
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olaposi I Omotuyi
- Centre for Biocomputing and Drug Design, Biochemistry Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, PMB 001, Nigeria
| | - Takayuki Miyanishi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
25
|
Xie P. Dynamics of kinesin motor proteins under longitudinal and sideways loads. J Theor Biol 2021; 530:110879. [PMID: 34437882 DOI: 10.1016/j.jtbi.2021.110879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
The available single-molecule data showed that different species of N-terminal kinesin molecular motors have very different features on dependences of run length and dissociation rate upon longitudinal load acting on stalks of the motors. The prior single-molecule data for Loligo pealei kinesin-1 indicated that the sideways load has only a weak effect on the velocity, but even a small sideways load can cause a large reduction in the run length. However, these puzzling experimental data remain to be explained and the underlying physical mechanisms are unclear. Here, based on our proposed model we study analytically the dynamics of the N-terminal kinesin motors such as Loligo pealei kinesin-1, Drosophila kinesin-1, truncated kinesin-5/Eg5, truncated kinesin-12/Kif15, kinesin-2/Kif17 and kinesin-2/Kif3AB dimers under both longitudinal and sideways loads. The theoretical results explain quantitatively the available experimental data and provide predictions. The physical mechanism of different kinesin species showing very different features on the load-dependent dynamics and the physical mechanism of the effect of the sideways load on the dynamics are revealed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
26
|
Goldstein-Levitin A, Pandey H, Allhuzaeel K, Kass I, Gheber L. Intracellular functions and motile properties of bi-directional kinesin-5 Cin8 are regulated by neck linker docking. eLife 2021; 10:71036. [PMID: 34387192 PMCID: PMC8456603 DOI: 10.7554/elife.71036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we analyzed intracellular functions and motile properties of neck-linker (NL) variants of the bi-directional S. cerevisiae kinesin-5 motor, Cin8. We also examined – by modeling – the configuration of H-bonds during NL docking. Decreasing the number of stabilizing H-bonds resulted in partially functional variants, as long as a conserved backbone H-bond at the N-latch position (proposed to stabilize the docked conformation of the NL) remained intact. Elimination of this conserved H-bond resulted in production of a non-functional Cin8 variant. Surprisingly, additional H-bond stabilization of the N-latch position, generated by replacement of the NL of Cin8 by sequences of the plus-end directed kinesin-5 Eg5, also produced a nonfunctional variant. In that variant, a single replacement of N-latch asparagine with glycine, as present in Cin8, eliminated the additional H-bond stabilization and rescued the functional defects. We conclude that exact N-latch stabilization during NL docking is critical for the function of bi-directional kinesin-5 Cin8.
Collapse
Affiliation(s)
| | - Himanshu Pandey
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kanary Allhuzaeel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itamar Kass
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,InterX LTD, Ramat-Gan, Israel
| | - Larisa Gheber
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
27
|
Shi XX, Wang PY, Chen H, Xie P. Studies of Conformational Changes of Tubulin Induced by Interaction with Kinesin Using Atomistic Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:ijms22136709. [PMID: 34201478 PMCID: PMC8268240 DOI: 10.3390/ijms22136709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.-X.S.); (H.C.)
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Hong Chen
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.-X.S.); (H.C.)
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence:
| |
Collapse
|
28
|
Benoit MP, Asenjo AB, Paydar M, Dhakal S, Kwok BH, Sosa H. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nat Commun 2021; 12:3637. [PMID: 34131133 PMCID: PMC8206134 DOI: 10.1038/s41467-021-23581-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
Collapse
Affiliation(s)
- Matthieu P.M.H. Benoit
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Ana B. Asenjo
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Mohammadjavad Paydar
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Sabin Dhakal
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Benjamin H. Kwok
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hernando Sosa
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| |
Collapse
|
29
|
Pandey H, Popov M, Goldstein-Levitin A, Gheber L. Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions. Int J Mol Sci 2021; 22:6420. [PMID: 34203964 PMCID: PMC8232732 DOI: 10.3390/ijms22126420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.
Collapse
Affiliation(s)
| | | | | | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; (H.P.); (M.P.); (A.G.-L.)
| |
Collapse
|
30
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021; 60:13331-13342. [PMID: 33951246 PMCID: PMC8251789 DOI: 10.1002/anie.202100273] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions. We further observed an intricate pocket communication network and identified 56 chemically diverse fragments that bound to 10 distinct tubulin sites. Our results offer a unique structural basis for the development of novel small molecules for use as tubulin modulators in basic research applications or as drugs. Furthermore, our method lays down a framework that may help to discover new pockets in other pharmaceutically important targets and characterize them in terms of chemical tractability and allosteric modulation.
Collapse
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - Dario Gioia
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
| | - Andrea E. Prota
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - May E. Sharpe
- Swiss Light SourcePaul Scherrer Institut5232Villigen PSISwitzerland
| | - Andrea Cavalli
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
- Department of Pharmacy and BiotechnologyAlma Mater StudiorumUniversity of Bolognavia Belmeloro 640126BolognaItaly
| | - Michel O. Steinmetz
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
- University of BaselBiozentrum4056BaselSwitzerland
| |
Collapse
|
31
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Dario Gioia
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
| | - Andrea E. Prota
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - May E. Sharpe
- Swiss Light Source Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Andrea Cavalli
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
- Department of Pharmacy and Biotechnology Alma Mater Studiorum University of Bologna via Belmeloro 6 40126 Bologna Italy
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- University of Basel Biozentrum 4056 Basel Switzerland
| |
Collapse
|
32
|
Jurgens JA, Barry BJ, Lemire G, Chan WM, Whitman MC, Shaaban S, Robson CD, MacKinnon S, England EM, McMillan HJ, Kelly C, Pratt BM, O'Donnell-Luria A, MacArthur DG, Boycott KM, Hunter DG, Engle EC. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development. Eur J Hum Genet 2021; 29:816-826. [PMID: 33649541 PMCID: PMC8110841 DOI: 10.1038/s41431-020-00804-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Variants in multiple tubulin genes have been implicated in neurodevelopmental disorders, including malformations of cortical development (MCD) and congenital fibrosis of the extraocular muscles (CFEOM). Distinct missense variants in the beta-tubulin encoding genes TUBB3 and TUBB2B cause MCD, CFEOM, or both, suggesting substitution-specific mechanisms. Variants in the alpha tubulin-encoding gene TUBA1A have been associated with MCD, but not with CFEOM. Using exome sequencing (ES) and genome sequencing (GS), we identified 3 unrelated probands with CFEOM who harbored novel heterozygous TUBA1A missense variants c.1216C>G, p.(His406Asp); c.467G>A, p.(Arg156His); and c.1193T>G, p.(Met398Arg). MRI revealed small oculomotor-innervated muscles and asymmetrical caudate heads and lateral ventricles with or without corpus callosal thinning. Two of the three probands had MCD. Mutated amino acid residues localize either to the longitudinal interface at which α and β tubulins heterodimerize (Met398, His406) or to the lateral interface at which tubulin protofilaments interact (Arg156), and His406 interacts with the motor domain of kinesin-1. This series of individuals supports TUBA1A variants as a cause of CFEOM and expands our knowledge of tubulinopathies.
Collapse
Grants
- UM1 HG008900 NHGRI NIH HHS
- Howard Hughes Medical Institute
- R01 HG009141 NHGRI NIH HHS
- CIHR
- U54 HD090255 NICHD NIH HHS
- T32 NS007473 NINDS NIH HHS
- P30 EY014104 NEI NIH HHS
- P30 EY003790 NEI NIH HHS
- T32 GM007748 NIGMS NIH HHS
- T32 EY007145 NEI NIH HHS
- R01 EY027421 NEI NIH HHS
- K08 EY027850 NEI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Broad Institute of MIT and Harvard Center for Mendelian Genomics (NHGRI/NEI/NHLBI UM1HG008900), Care4Rare Canada Consortium funded by Genome Canada and the Ontario Genomics Institute (OGI-147), the Canadian Institutes of Health Research, Ontario Research Fund, Genome Alberta, Genome British Columbia, Genome Quebec, and Children’s Hospital of Eastern Ontario Foundation, U.S. Department of Health & Human Services NIH/ NEI 5K08EY027850, BCH Ophthalmology Foundation Faculty Discovery Award, Children’s Hospital Ophthalmology Foundation, Inc., Boston, MA, Howard Hughes Medical Institute
- NIH/NEI 5K08EY027850, BCH Ophthalmology Foundation Faculty Discovery Award, and Children’s Hospital Ophthalmology Foundation, Inc., Boston, MA
- NEI R01EY027421, NHLBI X01HL132377. E.C.E. is a Howard Hughes Medical Institute Investigator.
Collapse
Affiliation(s)
- Julie A Jurgens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Caroline D Robson
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eleina M England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hugh J McMillan
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Christopher Kelly
- Pediatric Ophthalmology and Physician Informatics, MultiCare Health System, Tacoma, WA, USA
| | - Brandon M Pratt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Daniel G MacArthur
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Varela PF, Chenon M, Velours C, Verhey KJ, Ménétrey J, Gigant B. Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism. FEBS Open Bio 2021; 11:564-577. [PMID: 33513284 PMCID: PMC7931232 DOI: 10.1002/2211-5463.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022] Open
Abstract
Motile kinesins are motor proteins that translocate along microtubules as they hydrolyze ATP. They share a conserved motor domain which harbors both ATPase and microtubule-binding activities. An ATP hydrolysis mechanism involving two water molecules has been proposed based on the structure of the kinesin-5 Eg5 bound to an ATP analog. Whether this mechanism is general in the kinesin superfamily remains uncertain. Here, we present structural snapshots of the motor domain of OSM-3 along its nucleotide cycle. OSM-3 belongs to the homodimeric kinesin-2 subfamily and is the Caenorhabditis elegans homologue of human KIF17. OSM-3 bound to ADP or devoid of a nucleotide shows features of ADP-kinesins with a docked neck linker. When bound to an ATP analog, OSM-3 adopts a conformation similar to those of several ATP-like kinesins, either isolated or bound to tubulin. Moreover, the OSM-3 nucleotide-binding site is virtually identical to that of ATP-like Eg5, demonstrating a shared ATPase mechanism. Therefore, our data extend to kinesin-2 the two-water ATP hydrolysis mechanism and further suggest that it is universal within the kinesin superfamily. PROTEIN DATABASE ENTRIES: 7A3Z, 7A40, 7A5E.
Collapse
Affiliation(s)
- Paloma F Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mélanie Chenon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christophe Velours
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
35
|
Mechanistic basis of propofol-induced disruption of kinesin processivity. Proc Natl Acad Sci U S A 2021; 118:2023659118. [PMID: 33495322 DOI: 10.1073/pnas.2023659118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABAA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order-disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi-pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.
Collapse
|
36
|
Mugnai ML, Thirumalai D. Step-Wise Hydration of Magnesium by Four Water Molecules Precedes Phosphate Release in a Myosin Motor. J Phys Chem B 2021; 125:1107-1117. [PMID: 33481593 DOI: 10.1021/acs.jpcb.0c10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular motors, such as myosin, kinesin, and dynein, convert the energy released by the hydrolysis of ATP into mechanical work, thus allowing them to undergo directional motion on cytoskeletal tracks. A pivotal step in the chemomechanical transduction in myosin motors occurs after they bind to the actin filament, which triggers the release of phosphate (Pi, product of ATP hydrolysis) and the rotation of the lever arm. Here, we investigate the mechanism of phosphate release in myosin VI using extensive molecular dynamics simulations involving multiple trajectories of several μs. Because the escape of phosphate is expected to occur on time-scales on the order of milliseconds or more in myosin VI, we observed Pi release only if the trajectories were initiated with a rotated phosphate inside the nucleotide binding pocket. We discovered that although Pi populates the traditional "back door" route, phosphate exits through various other gateways, thus establishing the heterogeneity in the escape routes. Remarkably, we observed that the release of phosphate is preceded by a stepwise hydration of the ADP-bound magnesium ion. The release of the anion occurred only after four water molecules hydrated the cation (Mg2+). By performing comparative structural analyses, we show that hydration of magnesium is the key step in the phosphate release in a number of ATPases and GTPases. Nature may have evolved hydration of Mg2+ as a general molecular switch for Pi release, which is a universal step in the catalytic cycle of many machines that share little sequence or structural similarity.
Collapse
Affiliation(s)
- Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Reuter M, Kooshapur H, Suda JG, Gaussmann S, Neuhaus A, Brühl L, Bharti P, Jung M, Schliebs W, Sattler M, Erdmann R. Competitive Microtubule Binding of PEX14 Coordinates Peroxisomal Protein Import and Motility. J Mol Biol 2021; 433:166765. [PMID: 33484719 DOI: 10.1016/j.jmb.2020.166765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 10/24/2022]
Abstract
Human PEX14 plays a dual role as docking protein in peroxisomal protein import and as peroxisomal anchor for microtubules (MT), which relates to peroxisome motility. For docking, the conserved N-terminal domain of PEX14 (PEX14-NTD) binds amphipathic alpha-helical ligands, typically comprising one or two aromatic residues, of which human PEX5 possesses eight. Here, we show that the PEX14-NTD also binds to microtubular filaments in vitro with a dissociation constant in nanomolar range. PEX14 interacts with two motifs in the C-terminal region of human ß-tubulin. At least one of the binding motifs is in spatial proximity to the binding site of microtubules (MT) for kinesin. Both PEX14 and kinesin can bind to MT simultaneously. Notably, binding of PEX14 to tubulin can be prevented by its association with PEX5. The data suggest that PEX5 competes peroxisome anchoring to MT by occupying the ß-tubulin-binding site of PEX14. The competitive correlation of matrix protein import and motility may facilitate the homogeneous dispersion of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Maren Reuter
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Hamed Kooshapur
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jeff-Gordian Suda
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Stefan Gaussmann
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Alexander Neuhaus
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Lena Brühl
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Pratima Bharti
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | - Wolfgang Schliebs
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany.
| | - Michael Sattler
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
38
|
Garcia-Saez I, Skoufias DA. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharmacol 2020; 184:114364. [PMID: 33310050 DOI: 10.1016/j.bcp.2020.114364] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
39
|
Atherton J, Hummel JJA, Olieric N, Locke J, Peña A, Rosenfeld SS, Steinmetz MO, Hoogenraad CC, Moores CA. The mechanism of kinesin inhibition by kinesin-binding protein. eLife 2020; 9:e61481. [PMID: 33252036 PMCID: PMC7746232 DOI: 10.7554/elife.61481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin-binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment, and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a tetratricopeptide repeat-containing, right-handed α-solenoid that sequesters the kinesin motor domain's tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.
Collapse
Affiliation(s)
- Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s CollegeLondonUnited Kingdom
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | - Jessica JA Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstitutVilligen PSISwitzerland
| | - Julia Locke
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | - Alejandro Peña
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstitutVilligen PSISwitzerland
- University of Basel, BiozentrumBaselSwitzerland
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Knossow M, Campanacci V, Khodja LA, Gigant B. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. iScience 2020; 23:101511. [PMID: 32920486 PMCID: PMC7491153 DOI: 10.1016/j.isci.2020.101511] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubules are cytoskeletal components involved in pivotal eukaryotic functions such as cell division, ciliogenesis, and intracellular trafficking. They assemble from αβ-tubulin heterodimers and disassemble in a process called dynamic instability, which is driven by GTP hydrolysis. Structures of the microtubule and of soluble tubulin have been determined by cryo-EM and by X-ray crystallography, respectively. Altogether, these data define the mechanism of tubulin assembly-disassembly at atomic or near-atomic level. We review here the structural changes that occur during assembly, tubulin switching from a curved conformation in solution to a straight one in the microtubule core. We also present more subtle changes associated with GTP binding, leading to tubulin activation for assembly. Finally, we show how cryo-EM and X-ray crystallography are complementary methods to characterize the interaction of tubulin with proteins involved either in intracellular transport or in microtubule dynamics regulation.
Collapse
Affiliation(s)
- Marcel Knossow
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Liza Ammar Khodja
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
41
|
How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1. Int J Mol Sci 2020; 21:ijms21186977. [PMID: 32972035 PMCID: PMC7555842 DOI: 10.3390/ijms21186977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.
Collapse
|
42
|
Yamagishi M, Fujimura S, Sugawa M, Nishizaka T, Yajima J. N‐terminal β‐strand of single‐headed kinesin‐1 can modulate the off‐axis force‐generation and resultant rotation pitch. Cytoskeleton (Hoboken) 2020; 77:351-361. [DOI: 10.1002/cm.21630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
| | | | - Mitsuhiro Sugawa
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
| | | | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
- Research Center for Complex Systems Biology The University of Tokyo Tokyo Japan
| |
Collapse
|
43
|
Hunter B, Allingham JS. These motors were made for walking. Protein Sci 2020; 29:1707-1723. [PMID: 32472639 DOI: 10.1002/pro.3895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
Kinesins are a diverse group of adenosine triphosphate (ATP)-dependent motor proteins that transport cargos along microtubules (MTs) and change the organization of MT networks. Shared among all kinesins is a ~40 kDa motor domain that has evolved an impressive assortment of motility and MT remodeling mechanisms as a result of subtle tweaks and edits within its sequence. Several elegant studies of different kinesin isoforms have exposed the purpose of structural changes in the motor domain as it engages and leaves the MT. However, few studies have compared the sequences and MT contacts of these kinesins systematically. Along with clever strategies to trap kinesin-tubulin complexes for X-ray crystallography, new advancements in cryo-electron microscopy have produced a burst of high-resolution structures that show kinesin-MT interfaces more precisely than ever. This review considers the MT interactions of kinesin subfamilies that exhibit significant differences in speed, processivity, and MT remodeling activity. We show how their sequence variations relate to their tubulin footprint and, in turn, how this explains the molecular activities of previously characterized mutants. As more high-resolution structures become available, this type of assessment will quicken the pace toward establishing each kinesin's design-function relationship.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
44
|
Monroy BY, Tan TC, Oclaman JM, Han JS, Simó S, Niwa S, Nowakowski DW, McKenney RJ, Ori-McKenney KM. A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Dev Cell 2020; 53:60-72.e4. [PMID: 32109385 DOI: 10.1016/j.devcel.2020.01.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023]
Abstract
Many eukaryotic cells distribute their intracellular components asymmetrically through regulated active transport driven by molecular motors along microtubule tracks. While intrinsic and extrinsic regulation of motor activity exists, what governs the overall distribution of activated motor-cargo complexes within cells remains unclear. Here, we utilize in vitro reconstitution of purified motor proteins and non-enzymatic microtubule-associated proteins (MAPs) to demonstrate that MAPs exhibit distinct influences on the motility of the three main classes of transport motors: kinesin-1, kinesin-3, and cytoplasmic dynein. Further, we dissect how combinations of MAPs affect motors and unveil MAP9 as a positive modulator of kinesin-3 motility. From these data, we propose a general "MAP code" that has the capacity to strongly bias directed movement along microtubules and helps elucidate the intricate intracellular sorting observed in highly polarized cells such as neurons.
Collapse
Affiliation(s)
- Brigette Y Monroy
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Tracy C Tan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Janah May Oclaman
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Jisoo S Han
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | | | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Belsham HR, Friel CT. Identification of key residues that regulate the interaction of kinesins with microtubule ends. Cytoskeleton (Hoboken) 2019; 76:440-446. [PMID: 31574569 PMCID: PMC6899999 DOI: 10.1002/cm.21568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end‐residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin‐13, which depolymerises microtubules, are introduced into Kinesin‐1, a walking kinesin with no effect on microtubule dynamics, the end‐residence time is increased up to several‐fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding.
Collapse
Affiliation(s)
- Hannah R Belsham
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| | - Claire T Friel
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
46
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc Natl Acad Sci U S A 2019; 116:19777-19785. [PMID: 31506355 DOI: 10.1073/pnas.1818589116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two mechanisms have been proposed for the function of motor proteins: The power stroke and the Brownian ratchet. The former refers to generation of a large downhill free energy gradient over which the motor protein moves nearly irreversibly in making a step, whereas the latter refers to biasing or rectifying the diffusive motion of the motor. Both mechanisms require input of free energy, which generally involves the processing of an ATP (adenosine 5'-triphosphate) molecule. Recent advances in experiments that reveal the details of the stepping motion of motor proteins, together with computer simulations of atomistic structures, have provided greater insights into the mechanisms. Here, we compare the various models of the power stroke and the Brownian ratchet that have been proposed. The 2 mechanisms are not mutually exclusive, and various motor proteins employ them to different extents to perform their biological function. As examples, we discuss linear motor proteins Kinesin-1 and myosin-V, and the rotary motor F1-ATPase, all of which involve a power stroke as the essential element of their stepping mechanism.
Collapse
|
48
|
Ma YL, Li T, Jin YM, Geng YZ, Ji Q. Shaft Function of Kinesin-1's α4 Helix in the Processive Movement. Cell Mol Bioeng 2019; 12:345-354. [PMID: 31719918 PMCID: PMC6816713 DOI: 10.1007/s12195-019-00581-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Kinesin-1 motor is a molecular walking machine constructed with amino acids. The understanding of how those structural elements play their mechanical roles is the key to the understanding of kinesin-1 mechanism. METHODS Using molecular dynamics simulations, we investigate the role of a helix structure, α4 (also called switch-II helix), of kinesin-1's motor domain in its processive movement along microtubule. RESULTS Through the analysis of the structure and the interactions between α4 and the surrounding residues in different nucleotide-binding states, we find that, mechanically, this helix functions as a shaft for kinesin-1's motor-domain rotation and, structurally, it is an amphipathic helix ensuring its shaft functioning. The hydrophobic side of α4 consists strictly of hydrophobic residues, making it behave like a lubricated surface in contact with the core β-sheet of kinesin-1's motor domain. The opposite hydrophilic side of α4 leans firmly against microtubule with charged residues locating at both ends to facilitate its positioning onto the intra-tubulin groove. CONCLUSIONS The special structural feature of α4 makes for an effective reduction of the conformational work in kinesin-1's force generation process.
Collapse
Affiliation(s)
- Yi-Long Ma
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Tie Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401 China
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yu-Mei Jin
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Yi-Zhao Geng
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| | - Qing Ji
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 China
- School of Science, Hebei University of Technology, Tianjin, 300401 China
| |
Collapse
|
49
|
Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 2019; 9:10477. [PMID: 31324834 PMCID: PMC6642143 DOI: 10.1038/s41598-019-46636-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin’s C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
Collapse
|
50
|
Chen GY, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa H, Hancock WO. Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Curr Biol 2019; 29:2259-2269.e4. [PMID: 31280993 DOI: 10.1016/j.cub.2019.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase mechanism by assessing motor-induced changes in the longitudinal and lateral tubulin-tubulin bonds that form the microtubule lattice. Isolated Eg5 motor domains promote microtubule nucleation, growth, and stability; thus, crosslinking tubulin by pairs of motor heads is not necessary for polymerase activity. Eg5 binds preferentially to microtubules over free tubulin, which contrasts with microtubule-depolymerizing kinesins that preferentially bind free tubulin over microtubules. Colchicine-like inhibitors that stabilize the bent conformation of tubulin allosterically inhibit Eg5 binding, consistent with a model in which Eg5 induces a curved-to-straight transition in tubulin. Domain swap experiments establish that the family-specific loop11-helix 4 junction, which resides near the nucleotide-sensing switch-II domain, is necessary and sufficient for the polymerase activity of Eg5. Thus, we propose a microtubule polymerase mechanism in which Eg5 at the plus-end promotes a curved-to-straight transition in tubulin that enhances lateral bond formation and thereby promotes microtubule growth and stability. One implication is that regulation of Eg5 motile properties by regulatory proteins or small molecule inhibitors could also have effects on intracellular microtubule dynamics.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M Cleary
- Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yalei Chen
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Jacob A Mascaro
- Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - David F J Arginteanu
- Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William O Hancock
- Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|