1
|
Wu K, Li X, Bai Y, Heng BC, Zhang X, Deng X. The circadian clock in enamel development. Int J Oral Sci 2024; 16:56. [PMID: 39242565 PMCID: PMC11379899 DOI: 10.1038/s41368-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/09/2024] Open
Abstract
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Collapse
Affiliation(s)
- Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- 4th Division, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
- Oral Translational Medicine Research Center Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration The First People's Hospital of Jinzhong, Jinzhong, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
2
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Otobe Y, Jeong EM, Ito S, Shinohara Y, Kurabayashi N, Aiba A, Fukada Y, Kim JK, Yoshitane H. Phosphorylation of DNA-binding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2316858121. [PMID: 38805270 PMCID: PMC11161756 DOI: 10.1073/pnas.2316858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.
Collapse
Affiliation(s)
- Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Eui Min Jeong
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Shunsuke Ito
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo060-0815, Japan
| | - Nobuhiro Kurabayashi
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| |
Collapse
|
5
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
6
|
Zhang Y, Chen G, Deng L, Gao B, Yang J, Ding C, Zhang Q, Ouyang W, Guo M, Wang W, Liu B, Zhang Q, Sung WK, Yan J, Li G, Li X. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Res 2023; 51:9001-9018. [PMID: 37572350 PMCID: PMC10516653 DOI: 10.1093/nar/gkad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Photoperiods integrate with the circadian clock to coordinate gene expression rhythms and thus ensure plant fitness to the environment. Genome-wide characterization and comparison of rhythmic genes under different light conditions revealed delayed phase under constant darkness (DD) and reduced amplitude under constant light (LL) in rice. Interestingly, ChIP-seq and RNA-seq profiling of rhythmic genes exhibit synchronous circadian oscillation in H3K9ac modifications at their loci and long non-coding RNAs (lncRNAs) expression at proximal loci. To investigate how gene expression rhythm is regulated in rice, we profiled the open chromatin regions and transcription factor (TF) footprints by time-series ATAC-seq. Although open chromatin regions did not show circadian change, a significant number of TFs were identified to rhythmically associate with chromatin and drive gene expression in a time-dependent manner. Further transcriptional regulatory networks mapping uncovered significant correlation between core clock genes and transcription factors involved in light/temperature signaling. In situ Hi-C of ZT8-specific expressed genes displayed highly connected chromatin association at the same time, whereas this ZT8 chromatin connection network dissociates at ZT20, suggesting the circadian control of gene expression by dynamic spatial chromatin conformation. These findings together implicate the existence of a synchronization mechanism between circadian H3K9ac modifications, chromatin association of TF and gene expression, and provides insights into circadian dynamics of spatial chromatin conformation that associate with gene expression rhythms.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenxia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Beibei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Zong W, Seney ML, Ketchesin KD, Gorczyca MT, Liu AC, Esser KA, Tseng GC, McClung CA, Huo Z. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model. Stat Med 2023; 42:3236-3258. [PMID: 37265194 PMCID: PMC10425922 DOI: 10.1002/sim.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).
Collapse
Affiliation(s)
- Wei Zong
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Michael T. Gorczyca
- Department of Computational and Systems Biology, University of Pittsburgh, PA, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, University of Florida, FL, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, FL, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, FL, USA
| |
Collapse
|
8
|
Morena da Silva F, Esser KA, Murach KA, Greene NP. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy. J Physiol 2023:10.1113/JP284808. [PMID: 37563881 PMCID: PMC10858298 DOI: 10.1113/jp284808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/β, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Karyn A Esser
- Department of Physiology and Ageing, College of Medicine, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Zheng G, Pang S, Wang J, Wang F, Wang Q, Yang L, Ji M, Xie D, Zhu S, Chen Y, Zhou Y, Higgins GA, Wiley JW, Hou X, Lin R. Glucocorticoid receptor-mediated Nr1d1 chromatin circadian misalignment in stress-induced irritable bowel syndrome. iScience 2023; 26:107137. [PMID: 37404374 PMCID: PMC10316663 DOI: 10.1016/j.isci.2023.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk.
Collapse
Affiliation(s)
- Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junbao Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Qi Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lili Yang
- Central Laboratory of Yan’an Hospital Affiliated to Kunming Medical University, Kunming Medical University, Kunming 650500, China
| | - Mengdie Ji
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Shengtao Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Zhou
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - John W. Wiley
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Bafna A, Banks G, Hastings MH, Nolan PM. Dynamic modulation of genomic enhancer elements in the suprachiasmatic nucleus, the site of the mammalian circadian clock. Genome Res 2023; 33:673-688. [PMID: 37156620 PMCID: PMC10317116 DOI: 10.1101/gr.277581.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker. By using histone-ChIP-seq, we identified SCN-enriched gene regulatory elements that associated with temporal gene expression. Based on tissue-specific H3K27ac and H3K4me3 marks, we successfully produced the first-ever SCN gene-regulatory map. We found that a large majority of SCN enhancers not only show robust 24-h rhythmic modulation in H3K27ac occupancy, peaking at distinct times of day, but also possess canonical E-box (CACGTG) motifs potentially influencing downstream cycling gene expression. To establish enhancer-gene relationships in the SCN, we conducted directional RNA-seq at six distinct times across the day and night, and studied the association between dynamically changing histone acetylation and gene transcript levels. About 35% of the cycling H3K27ac sites were found adjacent to rhythmic gene transcripts, often preceding the rise in mRNA levels. We also noted that enhancers encompass noncoding, actively transcribing enhancer RNAs (eRNAs) in the SCN, which in turn oscillate, along with cyclic histone acetylation, and correlate with rhythmic gene transcription. Taken together, these findings shed light on genome-wide pretranscriptional regulation operative in the central clock that confers its precise and robust oscillation necessary to orchestrate daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| |
Collapse
|
11
|
Yusifova M, Yusifov A, Polson SM, Todd WD, Schmitt EE, Bruns DR. Voluntary Wheel Running Exercise Does Not Attenuate Circadian and Cardiac Dysfunction Caused by Conditional Deletion of Bmal1. J Biol Rhythms 2023:7487304231152398. [PMID: 36802963 DOI: 10.1177/07487304231152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Circadian misalignment occurs with age, jet lag, and shift work, leading to maladaptive health outcomes including cardiovascular diseases. Despite the strong link between circadian disruption and heart disease, the cardiac circadian clock is poorly understood, prohibiting identification of therapies to restore the broken clock. Exercise is the most cardioprotective intervention identified to date and has been suggested to reset the circadian clock in other peripheral tissues. Here, we tested the hypothesis that conditional deletion of core circadian gene Bmal1 would disrupt cardiac circadian rhythm and function and that this disruption would be ameliorated by exercise. To test this hypothesis, we generated a transgenic mouse with spatial and temporal deletion of Bmal1 only in adult cardiac myocytes (Bmal1 cardiac knockout [cKO]). Bmal1 cKO mice demonstrated cardiac hypertrophy and fibrosis concomitant with impaired systolic function. This pathological cardiac remodeling was not rescued by wheel running. While the molecular mechanisms responsible for the profound cardiac remodeling are unclear, it does not appear to involve activation of the mammalian target of rapamycin (mTOR) signaling or changes in metabolic gene expression. Interestingly, cardiac deletion of Bmal1 disrupted systemic rhythms as evidenced by changes in the onset and phasing of activity in relationship to the light/dark cycle and by decreased periodogram power as measured by core temperature, suggesting cardiac clocks can regulate systemic circadian output. Together, we suggest a critical role for cardiac Bmal1 in regulating both cardiac and systemic circadian rhythm and function. Ongoing experiments will determine how disruption of the circadian clock causes cardiac remodeling in an effort to identify therapeutics to attenuate the maladaptive outcomes of a broken cardiac circadian clock.
Collapse
Affiliation(s)
| | - Aykhan Yusifov
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming
| | - Sydney M Polson
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming
| | - William D Todd
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| | - Emily E Schmitt
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming.,Wyoming WWAMI Medical Education, University of Wyoming, Laramie, Wyoming
| | - Danielle R Bruns
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming.,Wyoming WWAMI Medical Education, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
12
|
Meléndez-Fernández OH, Liu JA, Nelson RJ. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int J Mol Sci 2023; 24:3392. [PMID: 36834801 PMCID: PMC9963929 DOI: 10.3390/ijms24043392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Availability of artificial light and light-emitting devices have altered human temporal life, allowing 24-hour healthcare, commerce and production, and expanding social life around the clock. However, physiology and behavior that evolved in the context of 24 h solar days are frequently perturbed by exposure to artificial light at night. This is particularly salient in the context of circadian rhythms, the result of endogenous biological clocks with a rhythm of ~24 h. Circadian rhythms govern the temporal features of physiology and behavior, and are set to precisely 24 h primarily by exposure to light during the solar day, though other factors, such as the timing of meals, can also affect circadian rhythms. Circadian rhythms are significantly affected by night shift work because of exposure to nocturnal light, electronic devices, and shifts in the timing of meals. Night shift workers are at increased risk for metabolic disorder, as well as several types of cancer. Others who are exposed to artificial light at night or late mealtimes also show disrupted circadian rhythms and increased metabolic and cardiac disorders. It is imperative to understand how disrupted circadian rhythms alter metabolic function to develop strategies to mitigate their negative effects. In this review, we provide an introduction to circadian rhythms, physiological regulation of homeostasis by the suprachiasmatic nucleus (SCN), and SCN-mediated hormones that display circadian rhythms, including melatonin and glucocorticoids. Next, we discuss circadian-gated physiological processes including sleep and food intake, followed by types of disrupted circadian rhythms and how modern lighting disrupts molecular clock rhythms. Lastly, we identify how disruptions to hormones and metabolism can increase susceptibility to metabolic syndrome and risk for cardiovascular diseases, and discuss various strategies to mitigate the harmful consequences associated with disrupted circadian rhythms on human health.
Collapse
|
13
|
Printzi A, Mazurais D, Witten PE, Madec L, Gonzalez AA, Mialhe X, Zambonino-Infante JL, Koumoundouros G. Juvenile zebrafish (Danio rerio) are able to recover from lordosis. Sci Rep 2022; 12:21533. [PMID: 36513797 PMCID: PMC9748118 DOI: 10.1038/s41598-022-26112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.
Collapse
Affiliation(s)
- A. Printzi
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece ,grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - D. Mazurais
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - P. E. Witten
- grid.5342.00000 0001 2069 7798Department of Biology, Gent University, Gent, Belgium
| | - L. Madec
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - A.-A. Gonzalez
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - X. Mialhe
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - J.-L. Zambonino-Infante
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - G. Koumoundouros
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece
| |
Collapse
|
14
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
15
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
16
|
Deng L, Gao B, Zhao L, Zhang Y, Zhang Q, Guo M, Yang Y, Wang S, Xie L, Lou H, Ma M, Zhang W, Cao Z, Zhang Q, McClung CR, Li G, Li X. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice. Genome Biol 2022; 23:7. [PMID: 34991658 PMCID: PMC8734370 DOI: 10.1186/s13059-021-02594-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. RESULTS Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete "transcriptional factory" foci in the evening, linking chromatin architecture to coordinated transcription outputs. CONCLUSION Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Hao Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Department of Resources and Environment, Henan University of Engineering, 1 Xianghe Road, Longhu Town, Zhengzhou, 451191, Henan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
18
|
Dai R, Xu W, Chen W, Cui L, Li L, Zhou J, Jin X, Wang Y, Wang L, Sun Y. Epigenetic modification of <i>Kiss1</i> gene expression in the AVPV is essential for female reproductive aging. Biosci Trends 2022; 16:346-358. [DOI: 10.5582/bst.2022.01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ruoxi Dai
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen Xu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Urology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lisha Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jing Zhou
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xueling Jin
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
20
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
21
|
Behrends M, Engmann O. Loop Interrupted: Dysfunctional Chromatin Relations in Neurological Diseases. Front Genet 2021; 12:732033. [PMID: 34422024 PMCID: PMC8376151 DOI: 10.3389/fgene.2021.732033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
The majority of genetic variants for psychiatric disorders have been found within non-coding genomic regions. Physical interactions of gene promoters with distant regulatory elements carrying risk alleles may explain how the latter affect gene expression. Recently, whole genome maps of long-range chromosomal contacts from human postmortem brains have been integrated with gene sequence and chromatin accessibility data to decipher disease-specific alterations in chromatin architecture. Cell culture and rodent models provide a causal link between chromatin conformation, long-range chromosomal contacts, gene expression, and disease phenotype. Here, we give an overview of the techniques used to study chromatin contacts and their limitations in brain research. We present evidence for three-dimensional genome changes in physiological brain function and assess how its disturbance contributes to psychiatric disorders. Lastly, we discuss remaining questions and future research directions with a focus on clinical applications.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen, Germany
| | - Olivia Engmann
- Jena University Hospital, Institute for Human Genetics, Thüringen, Germany
| |
Collapse
|
22
|
Abstract
Epigenetics has enriched human disease studies by adding new interpretations to disease features that cannot be explained by genetic and environmental factors. However, identifying causal mechanisms of epigenetic origin has been challenging. New opportunities have risen from recent findings in intra-individual and cyclical epigenetic variation, which includes circadian epigenetic oscillations. Cytosine modifications display deterministic temporal rhythms, which may drive ageing and complex disease. Temporality in the epigenome, or the 'chrono' dimension, may help the integration of epigenetic, environmental and genetic disease studies, and reconcile several disparities stemming from the arbitrarily delimited research fields. The ultimate goal of chrono-epigenetics is to predict disease risk, age of onset and disease dynamics from within individual-specific temporal dynamics of epigenomes.
Collapse
|
23
|
Levine DC, Ramsey KM, Bass J. Circadian NAD(P)(H) cycles in cell metabolism. Semin Cell Dev Biol 2021; 126:15-26. [PMID: 34281771 DOI: 10.1016/j.semcdb.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn M Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2019756118. [PMID: 34234015 PMCID: PMC8285898 DOI: 10.1073/pnas.2019756118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Collapse
Affiliation(s)
- Yangbo Xiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ye Yuan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mariana Jimenez
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Swathi Yadlapalli
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
25
|
Yue Y, Jiang Z, Sapey E, Wu T, Sun S, Cao M, Han T, Li T, Nian H, Jiang B. Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars. BMC Genomics 2021; 22:529. [PMID: 34246232 PMCID: PMC8272290 DOI: 10.1186/s12864-021-07869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ze Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Enoch Sapey
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tingting Wu
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Mengxue Cao
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
26
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
27
|
Mosig RA, Kojima S. Timing without coding: How do long non-coding RNAs regulate circadian rhythms? Semin Cell Dev Biol 2021; 126:79-86. [PMID: 34116930 DOI: 10.1016/j.semcdb.2021.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a new class of regulatory RNAs that play important roles in disease development and a variety of biological processes. Recent studies have underscored the importance of lncRNAs in the circadian clock system and demonstrated that lncRNAs regulate core clock genes and the core clock machinery in mammals. In this review, we provide an overview of our current understanding of how lncRNAs regulate the circadian clock without coding a protein. We also offer additional insights into the challenges in understanding the functions of lncRNAs and other unresolved questions in the field. We do not cover other regulatory ncRNAs even though they also play important roles; readers are highly encouraged to refer to other excellent reviews on this topic.
Collapse
Affiliation(s)
- Rebecca A Mosig
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech 1015 Life Science Circle, Blacksburg, VA 24061, USA.
| |
Collapse
|
28
|
Furlan-Magaril M, Ando-Kuri M, Arzate-Mejía RG, Morf J, Cairns J, Román-Figueroa A, Tenorio-Hernández L, Poot-Hernández AC, Andrews S, Várnai C, Virk B, Wingett SW, Fraser P. The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle. Genome Biol 2021; 22:162. [PMID: 34099014 PMCID: PMC8185950 DOI: 10.1186/s13059-021-02374-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized. RESULTS Here we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes. CONCLUSION Our results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations.
Collapse
Affiliation(s)
- Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | - Masami Ando-Kuri
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Jörg Morf
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK
| | - Jonathan Cairns
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Abraham Román-Figueroa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Tenorio-Hernández
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - A César Poot-Hernández
- Unidad de Bioinformática y Manejo de Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Csilla Várnai
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, B15 2FG, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2SY, UK
| | - Boo Virk
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Steven W Wingett
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
29
|
Baroux C. Three-dimensional genome organization in epigenetic regulations: cause or consequence? CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102031. [PMID: 33819713 DOI: 10.1016/j.pbi.2021.102031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The evolution of the nucleus is an evolutionary milestone. By enabling genome compartmentalization, it contributes to the fine-tuning of genome functions. The genome is partitioned into functional domains differing in spatial positioning and topological folding at different scales. The rise of '3D Genomics' embracing experimental, theoretical, and modeling approaches allowed the proposal of a multiscale model of the eukaryotic genome, capturing its organizing principles and functionalities. In these efforts, resolving causality remains an important objective. Are positioning and folding the cause or consequence of functional states? This minireview presents emerging answers to this question, borrowing examples from recent studies of the three-dimensional genome in both plants and animals.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Switzerland.
| |
Collapse
|
30
|
Phillips NE, Hugues A, Yeung J, Durandau E, Nicolas D, Naef F. The circadian oscillator analysed at the single-transcript level. Mol Syst Biol 2021; 17:e10135. [PMID: 33719202 PMCID: PMC7957410 DOI: 10.15252/msb.202010135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock is an endogenous and self-sustained oscillator that anticipates daily environmental cycles. While rhythmic gene expression of circadian genes is well-described in populations of cells, the single-cell mRNA dynamics of multiple core clock genes remain largely unknown. Here we use single-molecule fluorescence in situ hybridisation (smFISH) at multiple time points to measure pairs of core clock transcripts, Rev-erbα (Nr1d1), Cry1 and Bmal1, in mouse fibroblasts. The mean mRNA level oscillates over 24 h for all three genes, but mRNA numbers show considerable spread between cells. We develop a probabilistic model for multivariate mRNA counts using mixtures of negative binomials, which accounts for transcriptional bursting, circadian time and cell-to-cell heterogeneity, notably in cell size. Decomposing the mRNA variability into distinct noise sources shows that clock time contributes a small fraction of the total variability in mRNA number between cells. Thus, our results highlight the intrinsic biological challenges in estimating circadian phase from single-cell mRNA counts and suggest that circadian phase in single cells is encoded post-transcriptionally.
Collapse
Affiliation(s)
- Nicholas E Phillips
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alice Hugues
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Master de BiologieÉcole Normale Supérieure de LyonUniversité Claude Bernard Lyon IUniversité de LyonLyonFrance
| | - Jake Yeung
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Eric Durandau
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Damien Nicolas
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Felix Naef
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
31
|
Mermet J, Yeung J, Naef F. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. PLoS Genet 2021; 17:e1009350. [PMID: 33524027 PMCID: PMC7877755 DOI: 10.1371/journal.pgen.1009350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/11/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian clock drives extensive temporal gene expression programs controlling daily changes in behavior and physiology. In mouse liver, transcription factors dynamics, chromatin modifications, and RNA Polymerase II (PolII) activity oscillate throughout the 24-hour (24h) day, regulating the rhythmic synthesis of thousands of transcripts. Also, 24h rhythms in gene promoter-enhancer chromatin looping accompany rhythmic mRNA synthesis. However, how chromatin organization impinges on temporal transcription and liver physiology remains unclear. Here, we applied time-resolved chromosome conformation capture (4C-seq) in livers of WT and arrhythmic Bmal1 knockout mice. In WT, we observed 24h oscillations in promoter-enhancer loops at multiple loci including the core-clock genes Period1, Period2 and Bmal1. In addition, we detected rhythmic PolII activity, chromatin modifications and transcription involving stable chromatin loops at clock-output gene promoters representing key liver function such as glucose metabolism and detoxification. Intriguingly, these contacts persisted in clock-impaired mice in which both PolII activity and chromatin marks no longer oscillated. Finally, we observed chromatin interaction hubs connecting neighbouring genes showing coherent transcription regulation across genotypes. Thus, both clock-controlled and clock-independent chromatin topology underlie rhythmic regulation of liver physiology.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Acetylation
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Immunoprecipitation Sequencing/methods
- Circadian Clocks/genetics
- Circadian Rhythm/genetics
- Gene Expression Regulation
- Genome/genetics
- Histones/metabolism
- Liver/metabolism
- Lysine/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA-Seq/methods
- Mice
Collapse
Affiliation(s)
- Jérôme Mermet
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jake Yeung
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Cox KH, Takahashi JS. Introduction to the Clock System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:3-20. [PMID: 34773223 DOI: 10.1007/978-3-030-81147-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Circadian (24-h) rhythms dictate almost everything we do, setting our clocks for specific times of sleeping and eating, as well as optimal times for many other basic functions. The physiological systems that coordinate circadian rhythms are intricate, but at their core, they all can be distilled down to cell-autonomous rhythms that are then synchronized within and among tissues. At first glance, these cell-autonomous rhythms may seem rather straight-forward, but years of research in the field has shown that they are strikingly complex, responding to many different external signals, often with remarkable tissue-specificity. To understand the cellular clock system, it is important to be familiar with the major players, which consist of pairs of proteins in a triad of transcriptional/translational feedback loops. In this chapter, we will go through each of the core protein pairs one-by-one, summarizing the literature as to their regulation and their broader impacts on circadian gene expression. We will conclude by briefly examining the human genetics literature, as well as providing perspectives on the future of the study of the molecular clock.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
34
|
Masri S, Nakahata Y, Eckel-Mahan K. Paolo Sassone-Corsi. J Biol Rhythms 2020. [DOI: 10.1177/0748730420962657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Kubo M. Diurnal Rhythmicity Programs of Microbiota and Transcriptional Oscillation of Circadian Regulator, NFIL3. Front Immunol 2020; 11:552188. [PMID: 33013924 PMCID: PMC7511535 DOI: 10.3389/fimmu.2020.552188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian rhythms are a very exquisite mechanism to influence on transcriptional levels and physiological activities of various molecules that affect cell metabolic pathways. Long-term alteration of circadian rhythms increases the risk of cardiovascular diseases, hypertension, hypertriglyceridemia, and metabolic syndrome. A drastic change in dietary patterns can affect synchronizing the circadian clock within the metabolic system. Therefore, the interaction between the host and the bacterial community colonizing the mammalian gastrointestinal tract has a great impact on the circadian clock in diurnal programs. Here, we propose that the microbiota regulates body composition through the transcriptional oscillation of circadian regulators. The transcriptional regulator, NFIL3 (also called E4BP4) is a good example. Compositional change of the commensal bacteria influences the rhythmic expression of NFIL3 in the epithelium, which subsequently controls obesity and insulin resistance. Therefore, control of circadian regulators would be a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
38
|
Genome-wide circadian regulation: A unique system for computational biology. Comput Struct Biotechnol J 2020; 18:1914-1924. [PMID: 32774786 PMCID: PMC7385043 DOI: 10.1016/j.csbj.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.
Collapse
Key Words
- ABSR, Autoregressive Bayesian spectral regression
- AMPK, AMP-activated protein kinase
- AR, Arrhythmic feeding
- ARSER, Harmonic regression based on autoregressive spectral estimation
- BMAL1, The aryl hydrocarbon receptor nuclear translocator-like (ARNTL)
- CCD, Cortical collecting duct
- CR, Calorie-restricted diet
- CRY, Cryptochrome
- Circadian regulatory network
- Circadian rhythms
- Circadian transcriptome
- Cycling genes
- DCT/CNT, Distal convoluted tubule and connecting tubule
- DD, Dark: dark
- Energetic cost
- HF, High fat diet
- JTK_CYCLE, Jonckheere-Terpstra-Kendall (JTK) cycle
- KD, Ketogenic diet
- LB, Ad libitum
- LD, Light:dark
- LS, Lomb-Scargle
- Liver-RE, Liver clock reconstituted BMAL1-deficient mice
- NAD, Nicotinamide adenine dinucleotides
- ND, Normal diet
- NR, Night-restricted feeding
- PAS, PER-ARNT-SIM
- PER, Period
- RAIN, Rhythmicity Analysis Incorporating Nonparametric methods
- RF, Restricted feeding
- SCN, Suprachiasmatic nucleus
- SREBP, The sterol regulatory element binding protein
- TTFL, Transcriptional-translational feedback loop
- WT, Wild type
- eJTK_CYCLE, Empirical JTK_CYCLE
Collapse
|
39
|
Levine DC, Hong H, Weidemann BJ, Ramsey KM, Affinati AH, Schmidt MS, Cedernaes J, Omura C, Braun R, Lee C, Brenner C, Peek CB, Bass J. NAD + Controls Circadian Reprogramming through PER2 Nuclear Translocation to Counter Aging. Mol Cell 2020; 78:835-849.e7. [PMID: 32369735 PMCID: PMC7275919 DOI: 10.1016/j.molcel.2020.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn M Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alison H Affinati
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark S Schmidt
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan Cedernaes
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Medical Sciences, Uppsala University, Uppsala SE-75124, Sweden
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology at Northwestern University, Evanston, IL 60208, USA
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
41
|
Dantas LLDB, Almeida-Jesus FM, de Lima NO, Alves-Lima C, Nishiyama-Jr MY, Carneiro MS, Souza GM, Hotta CT. Rhythms of Transcription in Field-Grown Sugarcane Are Highly Organ Specific. Sci Rep 2020; 10:6565. [PMID: 32300143 PMCID: PMC7162945 DOI: 10.1038/s41598-020-63440-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks improve plant fitness in a rhythmic environment. As each cell has its own circadian clock, we hypothesized that sets of cells with different functions would have distinct rhythmic behaviour. To test this, we investigated whether different organs in field-grown sugarcane follow the same rhythms in transcription. We assayed the transcriptomes of three organs during a day: leaf, a source organ; internodes 1 and 2, sink organs focused on cell division and elongation; and internode 5, a sink organ focused on sucrose storage. The leaf had twice as many rhythmic transcripts (>68%) as internodes, and the rhythmic transcriptomes of the internodes were more like each other than to those of the leaves. Among the transcripts expressed in all organs, only 7.4% showed the same rhythmic pattern. Surprisingly, the central oscillators of these organs - the networks that generate circadian rhythms - had similar dynamics, albeit with different amplitudes. The differences in rhythmic transcriptomes probably arise from amplitude differences in tissue-specific circadian clocks and different sensitivities to environmental cues, highlighted by the sampling under field conditions. The vast differences suggest that we must study tissue-specific circadian clocks in order to understand how the circadian clock increases the fitness of the whole plant.
Collapse
Affiliation(s)
- Luíza Lane de Barros Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | | - Natalia Oliveira de Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Cícero Alves-Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, São Carlos, SP, 13600-970, Brazil
| | - Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
42
|
Orozco-Solis R, Aguilar-Arnal L. Circadian Regulation of Immunity Through Epigenetic Mechanisms. Front Cell Infect Microbiol 2020; 10:96. [PMID: 32232012 PMCID: PMC7082642 DOI: 10.3389/fcimb.2020.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock orchestrates daily rhythms in many physiological, behavioral and molecular processes, providing means to anticipate, and adapt to environmental changes. A specific role of the circadian clock is to coordinate functions of the immune system both at steady-state and in response to infectious threats. Hence, time-of-day dependent variables are found in the physiology of immune cells, host-parasite interactions, inflammatory processes, or adaptive immune responses. Interestingly, the molecular clock coordinates transcriptional-translational feedback loops which orchestrate daily oscillations in expression of many genes involved in cellular functions. This clock function is assisted by tightly controlled transitions in the chromatin fiber involving epigenetic mechanisms which determine how a when transcriptional oscillations occur. Immune cells are no exception, as they also present a functional clock dictating transcriptional rhythms. Hereby, the molecular clock and the chromatin regulators controlling rhythmicity represent a unique scaffold mediating the crosstalk between the circadian and the immune systems. Certain epigenetic regulators are shared between both systems and uncovering them and characterizing their dynamics can provide clues to design effective chronotherapeutic strategies for modulation of the immune system.
Collapse
Affiliation(s)
- Ricardo Orozco-Solis
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Abstract
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
Collapse
|
44
|
Beytebiere JR, Greenwell BJ, Sahasrabudhe A, Menet JS. Clock-controlled rhythmic transcription: is the clock enough and how does it work? Transcription 2019; 10:212-221. [PMID: 31595813 DOI: 10.1080/21541264.2019.1673636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| | - Aishwarya Sahasrabudhe
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
45
|
Brunet A, Forsberg F, Fan Q, Sæther T, Collas P. Nuclear Lamin B1 Interactions With Chromatin During the Circadian Cycle Are Uncoupled From Periodic Gene Expression. Front Genet 2019; 10:917. [PMID: 31632442 PMCID: PMC6785633 DOI: 10.3389/fgene.2019.00917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Many mammalian genes exhibit circadian expression patterns concordant with periodic binding of transcription factors, chromatin modifications, and chromosomal interactions. Here we investigate whether chromatin periodically associates with nuclear lamins. Entrainment of the circadian clock is accompanied, in mouse liver, by a net gain of lamin B1–chromatin interactions genome-wide, after which the majority of lamina-associated domains (LADs) are conserved during the circadian cycle. By tailoring a bioinformatics pipeline designed to identify periodic gene expression patterns, we also observe hundreds of variable lamin B1–chromatin interactions among which oscillations occur at 64 LADs, affecting one or both LAD extremities or entire LADs. Only a small subset of these oscillations however exhibit highly significant 12, 18, 24, or 30 h periodicity. These periodic LADs display oscillation asynchrony between their 5′ and 3′ borders, and are uncoupled from periodic gene expression within or in the vicinity of these LADs. Periodic gene expression is also unrelated to variations in gene-to-nearest LAD distances detected during the circadian cycle. Accordingly, periodic genes, including central clock-control genes, are located megabases away from LADs throughout circadian time, suggesting stable residence in a transcriptionally permissive chromatin environment. We conclude that periodic LADs are not a dominant feature of variable lamin B1–chromatin interactions during the circadian cycle in mouse liver. Our results also suggest that periodic hepatic gene expression is not regulated by rhythmic chromatin associations with the nuclear lamina.
Collapse
Affiliation(s)
- Annaël Brunet
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frida Forsberg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics 2019; 11:79. [PMID: 31092281 PMCID: PMC6521413 DOI: 10.1186/s13148-019-0677-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate crucial physiological functions and behavioral aspects around a day in almost all living forms. The circadian clock is a time tracking system that permits organisms to predict and anticipate periodic environmental fluctuations. The circadian system is hierarchically organized, and a master pacemaker located in the brain synchronizes subsidiary clocks in the rest of the organism. Adequate synchrony between central and peripheral clocks ensures fitness and potentiates a healthy state. Conversely, disruption of circadian rhythmicity is associated with metabolic diseases, psychiatric disorders, or cancer, amongst other pathologies. Remarkably, the molecular machinery directing circadian rhythms consists of an intricate network of feedback loops in transcription and translation which impose 24-h cycles in gene expression across all tissues. Interestingly, the molecular clock collaborates with multitude of epigenetic remodelers to fine tune transcriptional rhythms in a tissue-specific manner. Very exciting research demonstrate that three-dimensional properties of the genome have a regulatory role on circadian transcriptional rhythmicity, from bacteria to mammals. Unexpectedly, highly dynamic long-range chromatin interactions have been revealed during the circadian cycle in mammalian cells, where thousands of regulatory elements physically interact with promoter regions every 24 h. Molecular mechanisms directing circadian dynamics on chromatin folding are emerging, and the coordinated action between the core clock and epigenetic remodelers appears to be essential for these movements. These evidences reveal a critical epigenetic regulatory layer for circadian rhythms and pave the way to uncover molecular mechanisms triggering pathological states associated to circadian misalignment.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
47
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
48
|
Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H, Spence J, Yoo SH, Chen Z, Takahashi JS, Ghaffari N, Menet JS. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. Genes Dev 2019; 33:294-309. [PMID: 30804225 PMCID: PMC6411008 DOI: 10.1101/gad.322198.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA binding is largely tissue-specific, likely because of differences in chromatin accessibility between tissues and cobinding of tissue-specific transcription factors. Our results also indicate that BMAL1 ability to drive tissue-specific rhythmic transcription is associated with not only the activity of BMAL1-bound enhancers but also the activity of neighboring enhancers. Characterization of physical interactions between BMAL1 enhancers and other cis-regulatory regions by RNA polymerase II chromatin interaction analysis by paired-end tag (ChIA-PET) reveals that rhythmic BMAL1 target gene expression correlates with rhythmic chromatin interactions. These data thus support that much of BMAL1 target gene transcription depends on BMAL1 capacity to rhythmically regulate a network of enhancers.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Alexandra J Trott
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Collin A Osborne
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Helene Vitet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Jessica Spence
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noushin Ghaffari
- Center for Bioinformatics and Genomic Systems Engineering (CBGSE), Texas A&M AgriLife Research, College Station, Texas 77845, USA
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, College Station, Texas 77845, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
49
|
Singh K, Jha NK, Thakur A. Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation. Life Sci 2019; 221:377-391. [PMID: 30721705 DOI: 10.1016/j.lfs.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Over the course of evolution, nature has forced organisms under selection pressure to hardwire an internal time keeping device that defines 24 h of a daily cycle of physiological and behavioral rhythms, known as circadian rhythms. At the cellular level, the cycle is governed by significant fractions of transcriptomes, which are under the control of transcriptional and translational feedback loop of clock genes. Intriguingly, this feedback loop is regulated at multiple stratums such as at the transcriptional and translational levels, which direct a cell towards producing a robust rhythm by sustaining the repeated stoichiometry of protein products. Moreover, with the advent of state of the art paradigms, epigenetic regulation of circadian rhythms has been becoming more evident at present time. Light-induced recurring fluctuations in chromatin acetylation concurrent with the binding of RNA Pol II and integration of miRNAs monitor the chromatin modifiers or clock genes expression to drive temporal rhythmicity. Furthermore, CLOCK protein intrinsic histone acetyl transferase activity, the interaction of CLOCK-BMAL-1 with HAT enzymes, and the involvement of many histone deacetylases also maintain the rhythmic protein profile. Additionally, the critical role of the rhythmic methylation pattern of clock genes in battery of cancer and metabolic disorders also defines its importance. Therefore, in this review, we focused on accumulating all the present data available on epigenetics and circadian rhythms. Interestingly, we also gathered evidence from the available literature pinpointing towards the dynamic nature of chromatin architecture governed by long and short-range regulatory elements DNA contacts arising daily, that was thought to be steady otherwise.
Collapse
Affiliation(s)
- Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
50
|
Pollex T, Heard E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat Genet 2019; 51:285-295. [PMID: 30643252 DOI: 10.1038/s41588-018-0305-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
During X-chromosome inactivation (XCI), one of the two X-inactivation centers (Xics) upregulates the noncoding RNA Xist to initiate chromosomal silencing in cis. How one Xic is chosen to upregulate Xist remains unclear. Models proposed include localization of one Xic at the nuclear envelope or transient homologous Xic pairing followed by asymmetric transcription factor distribution at Xist's antisense Xite/Tsix locus. Here, we use a TetO/TetR system that can inducibly relocate one or both Xics to the nuclear lamina in differentiating mouse embryonic stem cells. We find that neither nuclear lamina localization nor reduction of Xic homologous pairing influences monoallelic Xist upregulation or choice-making. We also show that transient pairing is associated with biallelic expression, not only at Xist/Tsix but also at other X-linked loci that can escape XCI. Finally, we show that Xic pairing occurs in wavelike patterns, coinciding with genome dynamics and the onset of global regulatory programs during early differentiation.
Collapse
Affiliation(s)
- Tim Pollex
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|