1
|
Park JH, Bassalo MC, Lin GM, Chen Y, Doosthosseini H, Schmitz J, Roubos JA, Voigt CA. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol 2023; 12:1119-1132. [PMID: 36943773 PMCID: PMC10127285 DOI: 10.1021/acssynbio.2c00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The optimization of cellular functions often requires the balancing of gene expression, but the physical construction and screening of alternative designs are costly and time-consuming. Here, we construct a strain of Saccharomyces cerevisiae that contains a "sensor array" containing bacterial regulators that respond to four small-molecule inducers (vanillic acid, xylose, aTc, IPTG). Four promoters can be independently controlled with low background and a 40- to 5000-fold dynamic range. These systems can be used to study the impact of changing the level and timing of gene expression without requiring the construction of multiple strains. We apply this approach to the optimization of a four-gene heterologous pathway to the terpene linalool, which is a flavor and precursor to energetic materials. Using this approach, we identify bottlenecks in the metabolic pathway. This work can aid the rapid automated strain development of yeasts for the bio-manufacturing of diverse products, including chemicals, materials, fuels, and food ingredients.
Collapse
Affiliation(s)
- Jong Hyun Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Marcelo C Bassalo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Geng-Min Lin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ye Chen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Joep Schmitz
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Johannes A Roubos
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Takhaveev V, Özsezen S, Smith EN, Zylstra A, Chaillet ML, Chen H, Papagiannakis A, Milias-Argeitis A, Heinemann M. Temporal segregation of biosynthetic processes is responsible for metabolic oscillations during the budding yeast cell cycle. Nat Metab 2023; 5:294-313. [PMID: 36849832 PMCID: PMC9970877 DOI: 10.1038/s42255-023-00741-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/10/2023] [Indexed: 03/01/2023]
Abstract
Many cell biological and biochemical mechanisms controlling the fundamental process of eukaryotic cell division have been identified; however, the temporal dynamics of biosynthetic processes during the cell division cycle are still elusive. Here, we show that key biosynthetic processes are temporally segregated along the cell cycle. Using budding yeast as a model and single-cell methods to dynamically measure metabolic activity, we observe two peaks in protein synthesis, in the G1 and S/G2/M phase, whereas lipid and polysaccharide synthesis peaks only once, during the S/G2/M phase. Integrating the inferred biosynthetic rates into a thermodynamic-stoichiometric metabolic model, we find that this temporal segregation in biosynthetic processes causes flux changes in primary metabolism, with an acceleration of glucose-uptake flux in G1 and phase-shifted oscillations of oxygen and carbon dioxide exchanges. Through experimental validation of the model predictions, we demonstrate that primary metabolism oscillates with cell-cycle periodicity to satisfy the changing demands of biosynthetic processes exhibiting unexpected dynamics during the cell cycle.
Collapse
Affiliation(s)
- Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Serdar Özsezen
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Edward N Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andre Zylstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Marten L Chaillet
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Haoqi Chen
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Biology and Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Calderon RH, Dalton J, Zhang Y, Quail PH. Shade triggers posttranscriptional PHYTOCHROME-INTERACTING FACTOR-dependent increases in H3K4 trimethylation. PLANT PHYSIOLOGY 2022; 190:1915-1926. [PMID: 35674379 PMCID: PMC9614472 DOI: 10.1093/plphys/kiac282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The phytochrome (phy)-PHYTOCHROME-INTERACTING FACTOR (PIF) sensory module perceives and transduces light signals to direct target genes (DTGs), which then drive the adaptational responses in plant growth and development appropriate to the prevailing environment. These signals include the first exposure of etiolated seedlings to sunlight upon emergence from subterranean darkness and the change in color of the light that is filtered through, or reflected from, neighboring vegetation ("shade"). Previously, we identified three broad categories of rapidly signal-responsive genes: those repressed by light and conversely induced by shade; those repressed by light, but subsequently unresponsive to shade; and those responsive to shade only. Here, we investigate the potential role of epigenetic chromatin modifications in regulating these contrasting patterns of phy-PIF module-induced expression of DTGs in Arabidopsis (Arabidopsis thaliana). Using RNA-seq and ChIP-seq to determine time-resolved profiling of transcript and histone 3 lysine 4 trimethylation (H3K4me3) levels, respectively, we show that, whereas the initial dark-to-light transition triggers a rapid, apparently temporally coincident decline of both parameters, the light-to-shade transition induces similarly rapid increases in transcript levels that precede increases in H3K4me3 levels. Together with other recent findings, these data raise the possibility that, rather than being causal in the shade-induced expression changes, H3K4me3 may function to buffer the rapidly fluctuating shade/light switching that is intrinsic to vegetational canopies under natural sunlight conditions.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Jutta Dalton
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
| |
Collapse
|
4
|
Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly. PLoS Genet 2022; 18:e1010277. [PMID: 35793348 PMCID: PMC9292117 DOI: 10.1371/journal.pgen.1010277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 07/18/2022] [Accepted: 05/28/2022] [Indexed: 12/01/2022] Open
Abstract
The nucleosome remodeling complexes (CRs) SWI/SNF, RSC, and Ino80C cooperate in evicting or repositioning nucleosomes to produce nucleosome depleted regions (NDRs) at the promoters of many yeast genes induced by amino acid starvation. We analyzed mutants depleted of the catalytic subunits of these CRs for binding of transcriptional activator Gcn4 and recruitment of TATA-binding protein (TBP) during preinitiation complex (PIC) assembly. RSC and Ino80 were found to enhance Gcn4 binding to both UAS elements in NDRs upstream of promoters and to unconventional binding sites within nucleosome-occupied coding sequences; and SWI/SNF contributes to UAS binding when RSC is depleted. All three CRs are actively recruited by Gcn4 to most UAS elements and appear to enhance Gcn4 binding by reducing nucleosome occupancies at the binding motifs, indicating a positive regulatory loop. SWI/SNF acts unexpectedly in WT cells to prevent excessive Gcn4 binding at many UAS elements, indicating a dual mode of action that is modulated by the presence of RSC. RSC and SWI/SNF collaborate to enhance TBP recruitment at Gcn4 target genes, together with Ino80C, in a manner associated with nucleosome eviction at the TBP binding sites. Cooperation among the CRs in TBP recruitment is also evident at the highly transcribed ribosomal protein genes, while RSC and Ino80C act more broadly than SWI/SNF at the majority of other constitutively expressed genes to stimulate this step in PIC assembly. Our findings indicate a complex interplay among the CRs in evicting promoter nucleosomes to regulate activator binding and stimulate PIC assembly. ATP-dependent chromatin remodelers (CRs), including SWI/SNF and RSC in budding yeast, are thought to stimulate transcription by repositioning or evicting promoter nucleosomes, and we recently implicated the CR Ino80C in this process as well. The relative importance of these CRs in stimulating activator binding and recruitment of TATA-binding protein (TBP) to promoters is incompletely understood. Examining mutants depleted of the catalytic subunits of these CRs, we determined that RSC and Ino80C stimulate binding of transcription factor Gcn4 to nucleosome-depleted regions, or linkers between genic nucleosomes, at multiple target genes activated by Gcn4 in amino acid-starved cells, frequently via evicting nucleosomes from the Gcn4 binding motifs. At some genes, SWI/SNF functionally complements RSC, while opposing RSC at others to limit Gcn4 binding. The CRs in turn are recruited by Gcn4, consistent with a positive feedback loop that enhances Gcn4 binding. The three CRs also cooperate to enhance TBP recruitment, again involving nucleosome depletion, at both Gcn4 target and highly expressed ribosomal protein genes, whereas only RSC and Ino80C act broadly throughout the genome to enhance this key step in preinitiation complex assembly. Our findings illuminate functional cooperation among multiple CRs in regulating activator binding and promoter activation.
Collapse
|
5
|
Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data. mSystems 2022; 7:e0134721. [PMID: 35695574 PMCID: PMC9239220 DOI: 10.1128/msystems.01347-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic alterations in order to facilitate the coordination of dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle enables adaptation of the cells to varying nutritional status through oscillations in gene expression and metabolite production levels. In this process, yeast metabolism is altered between diverse cellular states based on changing oxygen consumption levels: quiescent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive building [RB]) phases. We characterized metabolic alterations during the yeast metabolic cycle using a variety of approaches. Gene expression levels are widely used for condition-specific metabolic simulations, whereas the use of epigenetic information in metabolic modeling is still limited despite the clear relationship between epigenetics and metabolism. This prompted us to investigate the contribution of epigenomic information to metabolic predictions for progression of the yeast metabolic cycle. In this regard, we determined altered pathways through the prediction of regulated reactions and corresponding model genes relying on differential chromatin accessibility levels. The predicted metabolic alterations were confirmed via data analysis and literature. We subsequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast model. The use of ATAC-seq data considerably enhanced the predictive capability of the model. To the best of our knowledge, this is the first attempt to use genome-wide chromatin accessibility data in metabolic modeling. The preliminary results showed that epigenomic data sets can pave the way for more accurate metabolic simulations. IMPORTANCE Dynamic chromatin organization mediates the emergence of condition-specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its metabolic profile via regulation of genome accessibility and robust transcriptional oscillations under nutrient-limited conditions. Thus, both epigenetic information and transcriptomic information are crucial in the understanding of condition-specific metabolic behavior in this organism. Based on genome-wide alterations in chromatin accessibility and transcription, we investigated the yeast metabolic cycle, which is a remarkable example of coordinated and dynamic yeast behavior. In this regard, we assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic modeling. To our knowledge, this is the first attempt to use chromatin accessibility data in the reconstruction of context-specific metabolic models, despite the extensive use of transcriptomic data. As a result of comparative analyses, we propose that the incorporation of epigenetic information is a promising approach in the accurate prediction of metabolic dynamics.
Collapse
|
6
|
Morrison AJ. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J 2022; 289:1302-1314. [PMID: 34036737 PMCID: PMC8613311 DOI: 10.1111/febs.16032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
Collapse
|
7
|
Hsieh WC, Sutter BM, Ruess H, Barnes SD, Malladi VS, Tu BP. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Mol Cell 2022; 82:60-74.e5. [PMID: 34995509 PMCID: PMC8794035 DOI: 10.1016/j.molcel.2021.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023]
Abstract
Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.
Collapse
Affiliation(s)
- Wen-Chuan Hsieh
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Holly Ruess
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer D. Barnes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Venkat S. Malladi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA,Correspondence and Lead Contact:
| |
Collapse
|
8
|
Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep 2021; 11:15912. [PMID: 34354157 PMCID: PMC8342468 DOI: 10.1038/s41598-021-95398-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenome editing methods enable the precise manipulation of epigenetic modifications, such as histone posttranscriptional modifications (PTMs), for uncovering their biological functions. While histone PTMs have been correlated with certain gene expression status, the causalities remain elusive. Histone H3 Lysine 27 acetylation (H3K27ac) and histone H3 Lysine 4 trimethylation (H3K4me3) are both associated with active genes, and located at active promoters and enhancers or around transcriptional start sites (TSSs). Although crosstalk between histone lysine acetylation and H3K4me3 has been reported, relationships between specific epigenetic marks during transcriptional activation remain largely unclear. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-based epigenome editing methods, we discovered that the ectopic introduction of H3K27ac in the promoter region lead to H3K4me3 enrichment around TSS and transcriptional activation, while H3K4me3 installation at the promoter cannot induce H3K27ac increase and failed to activate gene expression. Blocking the reading of H3K27ac by BRD proteins using inhibitor JQ1 abolished H3K27ac-induced H3K4me3 installation and downstream gene activation. Furthermore, we uncovered that BRD2, not BRD4, mediated H3K4me3 installation and gene activation upon H3K27ac writing. Our studies revealed the relationships between H3K27ac and H3K4me3 in gene activation process and demonstrated the application of CRISPR/dCas-based epigenome editing methods in elucidating the crosstalk between epigenetic mechanisms.
Collapse
|
9
|
Reshetnikov VV, Kisaretova PE, Ershov NI, Merkulova TI, Bondar NP. Social defeat stress in adult mice causes alterations in gene expression, alternative splicing, and the epigenetic landscape of H3K4me3 in the prefrontal cortex: An impact of early-life stress. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110068. [PMID: 32810572 DOI: 10.1016/j.pnpbp.2020.110068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Chronic stress is the leading risk factor of a broad range of severe psychopathologies. Nonetheless, the molecular mechanisms triggering these pathological processes are not well understood. In our study, we investigated the effects of 15-day social defeat stress (SDS) on the genome-wide landscape of trimethylation at the 4th lysine residue of histone H3 (H3K4me3) and on the transcriptome in the prefrontal cortex of mice that were reared normally (group SDS) or subjected to maternal separation early in life (group MS+SDS). The mice with the history of stress early in life showed increased susceptibility to SDS in adulthood and demonstrated long-lasting genome-wide alterations in gene expression and splicing as well as in the H3K4me3 epigenetic landscape in the prefrontal cortex. Thus, the high-throughput techniques applied here allowed us to simultaneously detect, for the first time, genome-wide epigenetic and transcriptional changes in the murine prefrontal cortex that are associated with both chronic SDS and increased susceptibility to this stressor.
Collapse
Affiliation(s)
- V V Reshetnikov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.
| | - P E Kisaretova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - N P Bondar
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
10
|
Poramba-Liyanage DW, Korthout T, Cucinotta CE, van Kruijsbergen I, van Welsem T, El Atmioui D, Ovaa H, Tsukiyama T, van Leeuwen F. Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes. Genome Res 2020; 30:635-646. [PMID: 32188699 PMCID: PMC7197482 DOI: 10.1101/gr.256255.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template.
Collapse
Affiliation(s)
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Christine E Cucinotta
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dris El Atmioui
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Huib Ovaa
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression. Mol Metab 2020; 38:100973. [PMID: 32251664 PMCID: PMC7300377 DOI: 10.1016/j.molmet.2020.100973] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND ATP-dependent chromatin remodelers are evolutionarily conserved complexes that alter nucleosome positioning to influence many DNA-templated processes, such as replication, repair, and transcription. In particular, chromatin remodeling can dynamically regulate gene expression by altering accessibility of chromatin to transcription factors. SCOPE OF REVIEW This review provides an overview of the importance of chromatin remodelers in the regulation of metabolic gene expression. Particular emphasis is placed on the INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers in both yeast and mammals. This review details discoveries from the initial identification of chromatin remodelers in Saccharomyces cerevisiae to recent discoveries in the metabolic requirements of developing embryonic tissues in mammals. MAJOR CONCLUSIONS INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers regulate the expression of energy metabolism pathways in S. cerevisiae and mammals in response to diverse nutrient environments. In particular, the INO80 complex organizes the temporal expression of gene expression in the metabolically synchronized S. cerevisiae system. INO80-mediated chromatin remodeling is also needed to constrain cell division during metabolically favorable conditions. Conversely, the BAF/PBAF remodeler regulates tissue-specific glycolytic metabolism and is disrupted in cancers that are dependent on glycolysis for proliferation. The role of chromatin remodeling in metabolic gene expression is downstream of the metabolic signaling pathways, such as the TOR pathway, a critical regulator of metabolic homeostasis. Furthermore, the INO80 and BAF/PBAF chromatin remodelers have both been shown to regulate heart development, the tissues of which have unique requirements for energy metabolism during development. Collectively, these results demonstrate that chromatin remodelers communicate metabolic status to chromatin and are a central component of homeostasis pathways that optimize cell fitness, organismal development, and prevent disease.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, Stanford CA 94305, USA.
| |
Collapse
|
12
|
Santos DA, Shi L, Tu BP, Weissman JS. Cycloheximide can distort measurements of mRNA levels and translation efficiency. Nucleic Acids Res 2019; 47:4974-4985. [PMID: 30916348 PMCID: PMC6547433 DOI: 10.1093/nar/gkz205] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 01/26/2023] Open
Abstract
Regulation of the efficiency with which an mRNA is translated into proteins represents a key mechanism for controlling gene expression. Such regulation impacts the number of actively translating ribosomes per mRNA molecule, referred to as translation efficiency (TE), which can be monitored using ribosome profiling and RNA-seq, or by evaluating the position of an mRNA in a polysome gradient. Here we show that in budding yeast, under nutrient limiting conditions, the commonly used translation inhibitor cycloheximide induces rapid transcriptional upregulation of hundreds of genes involved in ribosome biogenesis. Cycloheximide also prevents translation of these newly transcribed messages, leading to an apparent drop in TE of these genes under conditions that include key transitions during the yeast metabolic cycle, meiosis, and amino acid starvation; however, this effect is abolished when cycloheximide pretreatment is omitted. This response requires TORC1 signaling, and is modulated by the genetic background as well as the vehicle used to deliver the drug. The present work highlights an important caveat to the use of translation inhibitors when measuring TE or mRNA levels, and will hopefully aid in future experimental design as well as interpretation of prior results.
Collapse
Affiliation(s)
- Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lei Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Gowans GJ, Bridgers JB, Zhang J, Dronamraju R, Burnetti A, King DA, Thiengmany AV, Shinsky SA, Bhanu NV, Garcia BA, Buchler NE, Strahl BD, Morrison AJ. Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Mol Cell 2019; 76:909-921.e3. [PMID: 31676231 DOI: 10.1016/j.molcel.2019.09.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Metabolic signaling to chromatin often underlies how adaptive transcriptional responses are controlled. While intermediary metabolites serve as co-factors for histone-modifying enzymes during metabolic flux, how these modifications contribute to transcriptional responses is poorly understood. Here, we utilize the highly synchronized yeast metabolic cycle (YMC) and find that fatty acid β-oxidation genes are periodically expressed coincident with the β-oxidation byproduct histone crotonylation. Specifically, we found that H3K9 crotonylation peaks when H3K9 acetylation declines and energy resources become limited. During this metabolic state, pro-growth gene expression is dampened; however, mutation of the Taf14 YEATS domain, a H3K9 crotonylation reader, results in de-repression of these genes. Conversely, exogenous addition of crotonic acid results in increased histone crotonylation, constitutive repression of pro-growth genes, and disrupted YMC oscillations. Together, our findings expose an unexpected link between metabolic flux and transcription and demonstrate that histone crotonylation and Taf14 participate in the repression of energy-demanding gene expression.
Collapse
Affiliation(s)
- Graeme J Gowans
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jibo Zhang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Burnetti
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Devin A King
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Stephen A Shinsky
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Ashby J Morrison
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 2019; 365:1428-1434. [PMID: 31604271 PMCID: PMC7158748 DOI: 10.1126/science.aaw3134] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Circadian rhythmicity is a defining feature of mammalian metabolism that synchronizes metabolic processes to day-night light cycles. Here, we show that the intestinal microbiota programs diurnal metabolic rhythms in the mouse small intestine through histone deacetylase 3 (HDAC3). The microbiota induced expression of intestinal epithelial HDAC3, which was recruited rhythmically to chromatin, and produced synchronized diurnal oscillations in histone acetylation, metabolic gene expression, and nutrient uptake. HDAC3 also functioned noncanonically to coactivate estrogen-related receptor α, inducing microbiota-dependent rhythmic transcription of the lipid transporter gene Cd36 and promoting lipid absorption and diet-induced obesity. Our findings reveal that HDAC3 integrates microbial and circadian cues for regulation of diurnal metabolic rhythms and pinpoint a key mechanism by which the microbiota controls host metabolism.
Collapse
Affiliation(s)
- Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhao Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Arata Y, Takagi H. Quantitative Studies for Cell-Division Cycle Control. Front Physiol 2019; 10:1022. [PMID: 31496950 PMCID: PMC6713215 DOI: 10.3389/fphys.2019.01022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
The cell-division cycle (CDC) is driven by cyclin-dependent kinases (CDKs). Mathematical models based on molecular networks, as revealed by molecular and genetic studies, have reproduced the oscillatory behavior of CDK activity. Thus, one basic system for representing the CDC is a biochemical oscillator (CDK oscillator). However, genetically clonal cells divide with marked variability in their total duration of a single CDC round, exhibiting non-Gaussian statistical distributions. Therefore, the CDK oscillator model does not account for the statistical nature of cell-cycle control. Herein, we review quantitative studies of the statistical properties of the CDC. Over the past 70 years, studies have shown that the CDC is driven by a cluster of molecular oscillators. The CDK oscillator is coupled to transcriptional and mitochondrial metabolic oscillators, which cause deterministic chaotic dynamics for the CDC. Recent studies in animal embryos have raised the possibility that the dynamics of molecular oscillators underlying CDC control are affected by allometric volume scaling among the cellular compartments. Considering these studies, we discuss the idea that a cluster of molecular oscillators embedded in different cellular compartments coordinates cellular physiology and geometry for successful cell divisions.
Collapse
Affiliation(s)
| | - Hiroaki Takagi
- Department of Physics, School of Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
16
|
Kim T, Seo HD, Hennighausen L, Lee D, Kang K. Octopus-toolkit: a workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data. Nucleic Acids Res 2019; 46:e53. [PMID: 29420797 PMCID: PMC5961211 DOI: 10.1093/nar/gky083] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Octopus-toolkit is a stand-alone application for retrieving and processing large sets of next-generation sequencing (NGS) data with a single step. Octopus-toolkit is an automated set-up-and-analysis pipeline utilizing the Aspera, SRA Toolkit, FastQC, Trimmomatic, HISAT2, STAR, Samtools, and HOMER applications. All the applications are installed on the user's computer when the program starts. Upon the installation, it can automatically retrieve original files of various epigenomic and transcriptomic data sets, including ChIP-seq, ATAC-seq, DNase-seq, MeDIP-seq, MNase-seq and RNA-seq, from the gene expression omnibus data repository. The downloaded files can then be sequentially processed to generate BAM and BigWig files, which are used for advanced analyses and visualization. Currently, it can process NGS data from popular model genomes such as, human (Homo sapiens), mouse (Mus musculus), dog (Canis lupus familiaris), plant (Arabidopsis thaliana), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and budding yeast (Saccharomyces cerevisiae) genomes. With the processed files from Octopus-toolkit, the meta-analysis of various data sets, motif searches for DNA-binding proteins, and the identification of differentially expressed genes and/or protein-binding sites can be easily conducted with few commands by users. Overall, Octopus-toolkit facilitates the systematic and integrative analysis of available epigenomic and transcriptomic NGS big data.
Collapse
Affiliation(s)
- Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hogyu David Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
17
|
INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division. Cell Rep 2019; 22:611-623. [PMID: 29346761 PMCID: PMC5949282 DOI: 10.1016/j.celrep.2017.12.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.
Collapse
|
18
|
Kuang Z, Ji Z, Boeke JD, Ji H. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes. Nucleic Acids Res 2019; 46:e2. [PMID: 29325176 PMCID: PMC5758894 DOI: 10.1093/nar/gkx905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Choudhury R, Singh S, Arumugam S, Roguev A, Stewart AF. The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev 2019; 33:550-564. [PMID: 30842216 PMCID: PMC6499330 DOI: 10.1101/gad.322222.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
In this study, Choudhury et al. report that yeast Set1C/COMPASS is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. This presents a new paradigm for the establishment of epigenetic detail, in which dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.
Collapse
Affiliation(s)
- Rupam Choudhury
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Sukhdeep Singh
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science, ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Assen Roguev
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94518, USA
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| |
Collapse
|
20
|
Saint M, Bertaux F, Tang W, Sun XM, Game L, Köferle A, Bähler J, Shahrezaei V, Marguerat S. Single-cell imaging and RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nat Microbiol 2019; 4:480-491. [PMID: 30718845 DOI: 10.1038/s41564-018-0330-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery. We identify sets of highly variable genes during rapid proliferation in constant culture conditions. By integrating single-cell RNA sequencing and cell-size data, we provide insights into genes that are regulated during cell growth and division, including genes whose expression does not scale with cell size. We further analyse the heterogeneity of gene expression during adaptive and acute responses to changing environments. Entry into the stationary phase is preceded by a gradual, synchronized adaptation in gene regulation that is followed by highly variable gene expression when growth decreases. Conversely, sudden and acute heat shock leads to a stronger, coordinated response and adaptation across cells. This analysis reveals that the magnitude of global gene expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote.
Collapse
Affiliation(s)
- Malika Saint
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
- Institut Pasteur, Paris, France
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Köferle
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
- Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Planegg, Germany
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK.
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
21
|
McCullough LL, Pham TH, Parnell TJ, Connell Z, Chandrasekharan MB, Stillman DJ, Formosa T. Establishment and Maintenance of Chromatin Architecture Are Promoted Independently of Transcription by the Histone Chaperone FACT and H3-K56 Acetylation in Saccharomyces cerevisiae. Genetics 2019; 211:877-892. [PMID: 30679261 PMCID: PMC6404263 DOI: 10.1534/genetics.118.301853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Collapse
Affiliation(s)
- Laura L McCullough
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Trang H Pham
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Timothy J Parnell
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Zaily Connell
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
22
|
Hernandez I, Dhiman H, Klanert G, Jadhav V, Auer N, Hanscho M, Baumann M, Esteve-Codina A, Dabad M, Gómez J, Alioto T, Merkel A, Raineri E, Heath S, Rico D, Borth N. Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture. Biotechnol Bioeng 2019; 116:677-692. [PMID: 30512195 PMCID: PMC6492168 DOI: 10.1002/bit.26891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
The existence of dynamic cellular phenotypes in changing environmental conditions is of major interest for cell biologists who aim to understand the mechanism and sequence of regulation of gene expression. In the context of therapeutic protein production by Chinese Hamster Ovary (CHO) cells, a detailed temporal understanding of cell‐line behavior and control is necessary to achieve a more predictable and reliable process performance. Of particular interest are data on dynamic, temporally resolved transcriptional regulation of genes in response to altered substrate availability and culture conditions. In this study, the gene transcription dynamics throughout a 9‐day batch culture of CHO cells was examined by analyzing histone modifications and gene expression profiles in regular 12‐ and 24‐hr intervals, respectively. Three levels of regulation were observed: (a) the presence or absence of DNA methylation in the promoter region provides an ON/OFF switch; (b) a temporally resolved correlation is observed between the presence of active transcription‐ and promoter‐specific histone marks and the expression level of the respective genes; and (c) a major mechanism of gene regulation is identified by interaction of coding genes with long non‐coding RNA (lncRNA), as observed in the regulation of the expression level of both neighboring coding/lnc gene pairs and of gene pairs where the lncRNA is able to form RNA–DNA–DNA triplexes. Such triplex‐forming regions were predominantly found in the promoter or enhancer region of the targeted coding gene. Significantly, the coding genes with the highest degree of variation in expression during the batch culture are characterized by a larger number of possible triplex‐forming interactions with differentially expressed lncRNAs. This indicates a specific role of lncRNA‐triplexes in enabling rapid and large changes in transcription. A more comprehensive understanding of these regulatory mechanisms will provide an opportunity for new tools to control cellular behavior and to engineer enhanced phenotypes.
Collapse
Affiliation(s)
- Inmaculada Hernandez
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heena Dhiman
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Vaibhav Jadhav
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Norbert Auer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Michael Hanscho
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Anna Esteve-Codina
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica Gómez
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Angelika Merkel
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emanuele Raineri
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simon Heath
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
23
|
Sánchez-Gaya V, Casaní-Galdón S, Ugidos M, Kuang Z, Mellor J, Conesa A, Tarazona S. Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach. Front Genet 2018; 9:578. [PMID: 30555512 PMCID: PMC6284056 DOI: 10.3389/fgene.2018.00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022] Open
Abstract
The Yeast Metabolic Cycle (YMC) is a model system in which levels of around 60% of the yeast transcripts cycle over time. The spatial and temporal resolution provided by the YMC has revealed that changes in the yeast metabolic landscape and chromatin status can be related to cycling gene expression. However, the interplay between histone modifications and transcription factor activity during the YMC is still poorly understood. Here we apply an innovative statistical approach to integrate chromatin state (ChIP-seq) and gene expression (RNA-seq) data to investigate the transcriptional control during the YMC. By using the multivariate regression models N-PLS (Partial Least Squares) and MORE (Multi-Omics REgulation) methodologies, we assessed the contribution of histone marks and transcription factors to the regulation of gene expression in the YMC. We found that H3K18ac and H3K9ac were the most important histone modifications, whereas Sfp1, Hfi1, Pip2, Mig2, and Yhp1 emerged as the most relevant transcription factors. A significant association in the co-regulation of gene expression was found between H3K18ac and the transcription factors Pip2 (involved in fatty acids metabolism), Xbp1 (cyclin implicated in the regulation of carbohydrate and amino acid metabolism), and Hfi1 (involved in the formation of the SAGA complex). These results evidence the crucial role of histone lysine acetylation levels in the regulation of gene expression in the YMC through the coordinated action of transcription factors and lysine acetyltransferases.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Manuel Ugidos
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Zheng Kuang
- Institute for Systems Genetics, NYU Langone Health, New York, NY, United States
| | - Jane Mellor
- Department of Biochemistry University of Oxford, Oxford, United Kingdom
| | - Ana Conesa
- BioBam Bioinformatics S.L., Valencia, Spain.,Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sonia Tarazona
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain.,Applied Statistics, Operational Research and Quality Department Polytechnic University of Valencia, Valencia, Spain
| |
Collapse
|
24
|
Ye C, Tu BP. Sink into the Epigenome: Histones as Repositories That Influence Cellular Metabolism. Trends Endocrinol Metab 2018; 29:626-637. [PMID: 30001904 PMCID: PMC6109460 DOI: 10.1016/j.tem.2018.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/28/2023]
Abstract
Epigenetic modifications on chromatin are most commonly thought to be involved in the transcriptional regulation of gene expression. Due to their dependency on small-molecule metabolites, these modifications can relay information about cellular metabolic state to the genome for the activation or repression of particular sets of genes. In this review we discuss emerging evidence that these modifications might also have a metabolic purpose. Due to their abundance, the histones have the capacity to store substantial amounts of useful metabolites or to enable important metabolic transformations. Such metabolic functions for histones could help to explain the widespread occurrence of particular modifications that may not always be strongly correlated with transcriptional activity.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
25
|
Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M. Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 2018; 9:346. [PMID: 30214456 PMCID: PMC6125400 DOI: 10.3389/fgene.2018.00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic mental illness in which patients often achieve protracted periods of abstinence prior to relapse. Epigenetic mechanisms may provide an explanation for the persisting gene expression changes that can be observed even after long periods of abstinence and may contribute to relapse. In this study, we examined two histone modifications, histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3), in the prefrontal cortex of Withdrawal Seizure Resistant (WSR) mice 21 days after 72 h of ethanol vapor exposure. These histone modifications were selected because they are associated with active promoters (H3K4me3) and repressed gene expression in a euchromatic environment (H3K27me3). We performed a genome-wide analysis to identify differences in H3K4me3 and H3K27me3 levels in post-ethanol exposure vs. control mice by ChIP-seq. We detected a global reduction in H3K4me3 peaks and increase in H3K27me3 peaks in post-ethanol exposure mice compared to controls, these changes are consistent with persistent reductions in gene expression. Pathway analysis of genes displaying changes in H3K4me3 and H3K27me3 revealed enrichment for genes involved in proteoglycan and calcium signaling pathways, respectively. Microarray analysis of 7,683 genes and qPCR analysis identified eight genes displaying concordant regulation of gene expression and H3K4me3/H3K27me3. We also compared changes in H3K4me3 and/or H3K27me3 from our study with changes in gene expression in response to ethanol from published literature and we found that the expression of 52% of the genes with altered H3K4me3 binding and 40% of genes with H3K27me3 differences are altered by ethanol exposure. The chromatin changes associated with the 21-day post-exposure period suggest that this period is a unique state in the addiction cycle that differs from ethanol intoxication and acute withdrawal. These results provide insights into the enduring effects of ethanol on proteoglycan and calcium signaling genes in the brain.
Collapse
Affiliation(s)
- David P. Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Nathan H. Lazar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Lucia Carbone
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
26
|
Bruzzone MJ, Grünberg S, Kubik S, Zentner GE, Shore D. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes Dev 2018; 32:1252-1265. [PMID: 30108132 PMCID: PMC6120713 DOI: 10.1101/gad.312173.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Here, Bruzzone et al. explore the relative contributions of the transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. They show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect, and their findings suggest that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels. The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.
Collapse
Affiliation(s)
- Maria Jessica Bruzzone
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Slawomir Kubik
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
27
|
Siqueira JA, Hardoim P, Ferreira PCG, Nunes-Nesi A, Hemerly AS. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants. TRENDS IN PLANT SCIENCE 2018; 23:731-747. [PMID: 29934041 DOI: 10.1016/j.tplants.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Pablo Hardoim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil.
| |
Collapse
|
28
|
Dai Z, Mentch SJ, Gao X, Nichenametla SN, Locasale JW. Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nat Commun 2018; 9:1955. [PMID: 29769529 PMCID: PMC5955993 DOI: 10.1038/s41467-018-04426-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/27/2018] [Indexed: 01/07/2023] Open
Abstract
Nutrition and metabolism are known to influence chromatin biology and epigenetics through post-translational modifications, yet how this interaction influences genomic architecture and connects to gene expression is unknown. Here we consider, as a model, the metabolically-driven dynamics of H3K4me3, a histone methylation mark that is known to encode information about active transcription, cell identity, and tumor suppression. We analyze the genome-wide changes in H3K4me3 and gene expression in response to alterations in methionine availability in both normal mouse physiology and human cancer cells. Surprisingly, we find that the location of H3K4me3 peaks is largely preserved under methionine restriction, while the response of H3K4me3 peak width encodes almost all aspects of H3K4me3 biology including changes in expression levels, and the presence of cell identity and cancer-associated genes. These findings may reveal general principles for how nutrient availability modulates specific aspects of chromatin dynamics to mediate biological function.
Collapse
Affiliation(s)
- Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke Molecular Physiology Institute, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Samantha J Mentch
- Department of Pharmacology and Cancer Biology, Duke Molecular Physiology Institute, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke Molecular Physiology Institute, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Molecular Physiology Institute, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Stress response factors drive regrowth of quiescent cells. Curr Genet 2018; 64:807-810. [PMID: 29455333 DOI: 10.1007/s00294-018-0813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
Quiescent cells exploit an array of transcription factors to activate stress response machinery and maintain survival under nutrient-limited conditions. Our recent findings reveal that these transcription factors also play an important role in the exit of quiescence and regrowth. By studying Saccharomyces cerevisiae under a continuous, nutrient-limited condition, we found that Msn2 and Msn4 function as master regulators of glycolytic genes in the quiescent-like phase. They control the timing of transition from quiescence to growth by regulating the accumulation rate of acetyl-CoA, a key metabolite that is downstream of glycolysis and drives growth. These findings suggest a model that Msn2/4 not only protect the cells from starvation but also facilitate their regrowth from quiescence. Thus, understanding the functions of stress response transcription factors in metabolic regulation will provide deeper insight into how quiescent cells manage the capacity of regrowth.
Collapse
|
30
|
Abstract
Recently, we reported that a major function of histone acetylation at the yeast FLO1 gene was to regulate transcription elongation. Here, we discuss possible mechanisms by which histone acetylation might regulate RNA polymerase II processivity, and comment on the contribution to transcription of chromatin remodelling at gene coding regions and promoters.
Collapse
Affiliation(s)
- Michael C Church
- a Stowers Institute for Medical Research , 1000 E 50th Street, Kansas City , MO , United States
| | - Alastair B Fleming
- b Department of Microbiology , Moyne Institute, Trinity College Dublin, University of Dublin , Dublin , Ireland
| |
Collapse
|
31
|
Ahsendorf T, Müller FJ, Topkar V, Gunawardena J, Eils R. Transcription factors, coregulators, and epigenetic marks are linearly correlated and highly redundant. PLoS One 2017; 12:e0186324. [PMID: 29216191 PMCID: PMC5720766 DOI: 10.1371/journal.pone.0186324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 11/30/2022] Open
Abstract
The DNA microstates that regulate transcription include sequence-specific transcription factors (TFs), coregulatory complexes, nucleosomes, histone modifications, DNA methylation, and parts of the three-dimensional architecture of genomes, which could create an enormous combinatorial complexity across the genome. However, many proteins and epigenetic marks are known to colocalize, suggesting that the information content encoded in these marks can be compressed. It has so far proved difficult to understand this compression in a systematic and quantitative manner. Here, we show that simple linear models can reliably predict the data generated by the ENCODE and Roadmap Epigenomics consortia. Further, we demonstrate that a small number of marks can predict all other marks with high average correlation across the genome, systematically revealing the substantial information compression that is present in different cell lines. We find that the linear models for activating marks are typically cell line-independent, while those for silencing marks are predominantly cell line-specific. Of particular note, a nuclear receptor corepressor, transducin beta-like 1 X-linked receptor 1 (TBLR1), was highly predictive of other marks in two hematopoietic cell lines. The methodology presented here shows how the potentially vast complexity of TFs, coregulators, and epigenetic marks at eukaryotic genes is highly redundant and that the information present can be compressed onto a much smaller subset of marks. These findings could be used to efficiently characterize cell lines and tissues based on a small number of diagnostic marks and suggest how the DNA microstates, which regulate the expression of individual genes, can be specified.
Collapse
Affiliation(s)
- Tobias Ahsendorf
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Ved Topkar
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard College, Boston, Massachusetts, United States of America
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
32
|
Machné R, Murray DB, Stadler PF. Similarity-Based Segmentation of Multi-Dimensional Signals. Sci Rep 2017; 7:12355. [PMID: 28955039 PMCID: PMC5617875 DOI: 10.1038/s41598-017-12401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022] Open
Abstract
The segmentation of time series and genomic data is a common problem in computational biology. With increasingly complex measurement procedures individual data points are often not just numbers or simple vectors in which all components are of the same kind. Analysis methods that capitalize on slopes in a single real-valued data track or that make explicit use of the vectorial nature of the data are not applicable in such scenaria. We develop here a framework for segmentation in arbitrary data domains that only requires a minimal notion of similarity. Using unsupervised clustering of (a sample of) the input yields an approximate segmentation algorithm that is efficient enough for genome-wide applications. As a showcase application we segment a time-series of transcriptome sequencing data from budding yeast, in high temporal resolution over ca. 2.5 cycles of the short-period respiratory oscillation. The algorithm is used with a similarity measure focussing on periodic expression profiles across the metabolic cycle rather than coverage per time point.
Collapse
Affiliation(s)
- Rainer Machné
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany. .,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, Vienna, A-1090, Austria.
| | - Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103, Leipzig, Germany. .,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, Vienna, A-1090, Austria. .,Center for RNA in Technology and Health, Univ. Copenhagen, Grønneg ardsvej 3, Frederiksberg C, Denmark. .,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
33
|
Kuang Z, Pinglay S, Ji H, Boeke JD. Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. eLife 2017; 6:29938. [PMID: 28949295 PMCID: PMC5634782 DOI: 10.7554/elife.29938] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Nutrient availability and stresses impact a cell's decision to enter a growth state or a quiescent state. Acetyl-CoA stimulates cell growth under nutrient-limiting conditions, but how cells generate acetyl-CoA under starvation stress is less understood. Here, we show that general stress response factors, Msn2 and Msn4, function as master transcriptional regulators of yeast glycolysis via directly binding and activating genes encoding glycolytic enzymes. Yeast cells lacking Msn2 and Msn4 exhibit prevalent repression of glycolytic genes and a significant delay of acetyl-CoA accumulation and reentry into growth from quiescence. Thus Msn2/4 exhibit a dual role in activating carbohydrate metabolism genes and stress response genes. These results suggest a possible mechanism by which starvation-induced stress response factors may prime quiescent cells to reenter growth through glycolysis when nutrients are limited.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States.,Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| |
Collapse
|
34
|
Chen J, Sutter BM, Shi L, Tu BP. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle. Nat Chem Biol 2017; 13:1179-1186. [PMID: 28920930 PMCID: PMC5659745 DOI: 10.1038/nchembio.2478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The GATOR1/SEACIT complex consisting of Iml1-Npr2-Npr3 inhibits Target of Rapamycin Complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite hallmarks of increased TORC1 signaling. Such mutants perceive they are amino acid-replete and thus repress metabolic activities that are important for achieving this state. We find that npr2Δ mutants have defective mitochondrial TCA cycle activity and retrograde response. Supplementation of glutamine, and especially aspartate, which are nitrogen-containing forms of TCA cycle intermediates, rescue growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings reveal that negative regulators of TORC1 such as GATOR1/SEACIT regulate the cataplerotic synthesis of these amino acids from the TCA cycle in tune with the amino acid and nitrogen status of cells.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer 2017; 3:713-725. [PMID: 28958389 DOI: 10.1016/j.trecan.2017.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/04/2023]
Abstract
JARID1 proteins are histone demethylases that both regulate normal cell fates during development and contribute to the epigenetic plasticity that underlies malignant transformation. This H3K4 demethylase family participates in multiple repressive transcriptional complexes at promoters and has broader regulatory effects on chromatin that remain ill-defined. There is growing understanding of the oncogenic and tumor suppressive functions of JARID1 proteins, which are contingent on cell context and the protein isoform. Their contributions to stem cell-like dedifferentiation, tumor aggressiveness, and therapy resistance in cancer have sustained interest in the development of JARID1 inhibitors. Here we review the diverse and context-specific functions of the JARID1 proteins that may impact the utilization of emerging targeted inhibitors of this histone demethylase family in cancer therapy.
Collapse
Affiliation(s)
- Kayla M Harmeyer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole D Facompre
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Voichek Y, Bar-Ziv R, Barkai N. A role for Rtt109 in buffering gene-dosage imbalance during DNA replication. Nucleus 2017; 7:375-81. [PMID: 27485376 DOI: 10.1080/19491034.2016.1216743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chromatin can function as an integrator of DNA-related processes, allowing communication, for example, between DNA replication and gene transcription. Such communication is needed to overcome the gene-dosage imbalance introduced during DNA replication, when certain genes are replicated prior to others. Increased transcription of early replicating genes could alter regulatory balances. This does not occur, suggesting a mechanism that suppresses expression from newly replicated DNA. Critical to this buffering is Rtt109, which acetylates the internal K56 residue of newly synthesized histone H3 prior to incorporation onto DNA. H3K56ac distinguishes replicated from non-replicated DNA, communicating this information to the transcription machinery to ensure expression homeostasis during S phase.
Collapse
Affiliation(s)
- Yoav Voichek
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| | - Raz Bar-Ziv
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| | - Naama Barkai
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
37
|
Mellor J. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nat Struct Mol Biol 2017; 23:1035-1044. [PMID: 27922609 DOI: 10.1038/nsmb.3311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
Metabolic cycles result from the partitioning of oxidative and reductive metabolism into rhythmic phases of gene expression and oscillating post-translational protein modifications. Relatively little is known about how these switches in gene expression are controlled, although recent studies have suggested that transcription itself may play a central role. This review explores the molecular basis of the metabolic and gene-expression oscillations in the yeast Saccharomyces cerevisiae, as well as how they relate to other biological time-keeping mechanisms, such as circadian rhythms.
Collapse
Affiliation(s)
- Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Ye C, Sutter BM, Wang Y, Kuang Z, Tu BP. A Metabolic Function for Phospholipid and Histone Methylation. Mol Cell 2017; 66:180-193.e8. [PMID: 28366644 DOI: 10.1016/j.molcel.2017.02.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/31/2017] [Accepted: 02/27/2017] [Indexed: 11/28/2022]
Abstract
S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
39
|
|
40
|
Albert B, Knight B, Merwin J, Martin V, Ottoz D, Gloor Y, Bruzzone MJ, Rudner A, Shore D. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis. Mol Cell 2016; 64:720-733. [PMID: 27818142 DOI: 10.1016/j.molcel.2016.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/12/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
Abstract
Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription.
Collapse
Affiliation(s)
- Benjamin Albert
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Britta Knight
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Jason Merwin
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Victoria Martin
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Diana Ottoz
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Yvonne Gloor
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Adam Rudner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Shore
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
41
|
Sebé-Pedrós A, Peña MI, Capella-Gutiérrez S, Antó M, Gabaldón T, Ruiz-Trillo I, Sabidó E. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation. Dev Cell 2016; 39:186-197. [PMID: 27746046 DOI: 10.1016/j.devcel.2016.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 07/17/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Cell-specific regulation of protein levels and activity is essential for the distribution of functions among multiple cell types in animals. The finding that many genes involved in these regulatory processes have a premetazoan origin raises the intriguing possibility that the mechanisms required for spatially regulated cell differentiation evolved prior to the appearance of animals. Here, we use high-throughput proteomics in Capsaspora owczarzaki, a close unicellular relative of animals, to characterize the dynamic proteome and phosphoproteome profiles of three temporally distinct cell types in this premetazoan species. We show that life-cycle transitions are linked to extensive proteome and phosphoproteome remodeling and that they affect key genes involved in animal multicellularity, such as transcription factors and tyrosine kinases. The observation of shared features between Capsaspora and metazoans indicates that elaborate and conserved phosphosignaling and proteome regulation supported temporal cell-type differentiation in the unicellular ancestor of animals.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Marcia Ivonne Peña
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 LT Utrecht, the Netherlands
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain; Departament de Genètica, Microbilogia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
42
|
Ramakrishnan S, Pokhrel S, Palani S, Pflueger C, Parnell TJ, Cairns BR, Bhaskara S, Chandrasekharan MB. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun 2016; 7:11949. [PMID: 27325136 PMCID: PMC4919544 DOI: 10.1038/ncomms11949] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/17/2016] [Indexed: 02/03/2023] Open
Abstract
Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation-demethylation together control chromatin dynamics during various facets of transcriptional regulation.
Collapse
Affiliation(s)
- Saravanan Ramakrishnan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srijana Pokhrel
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Christian Pflueger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Bradley R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
43
|
Sliva A, Kuang Z, Meluh PB, Boeke JD. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes. G3 (BETHESDA, MD.) 2016; 6:881-92. [PMID: 26837954 PMCID: PMC4825658 DOI: 10.1534/g3.115.026757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating.
Collapse
Affiliation(s)
- Anna Sliva
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016 Human Genetics Program, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zheng Kuang
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016
| | - Pamela B Meluh
- Calico Life Sciences, Google Inc., San Francisco, California 94080
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016
| |
Collapse
|
44
|
Abstract
Genome replication introduces a stepwise increase in the DNA template available for transcription. Genes replicated early in S phase experience this increase before late-replicating genes, raising the question of how expression levels are affected by DNA replication. We show that in budding yeast, messenger RNA (mRNA) synthesis rate is buffered against changes in gene dosage during S phase. This expression homeostasis depends on acetylation of H3 on its internal K56 site by Rtt109/Asf1. Deleting these factors, mutating H3K56 or up-regulating its deacetylation, increases gene expression in S phase in proportion to gene replication timing. Therefore, H3K56 acetylation on newly deposited histones reduces transcription efficiency from replicated DNA, complementing its role in guarding genome stability. Our study provides molecular insight into the mechanism maintaining expression homeostasis during DNA replication.
Collapse
Affiliation(s)
- Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Nocetti N, Whitehouse I. Nucleosome repositioning underlies dynamic gene expression. Genes Dev 2016; 30:660-72. [PMID: 26966245 PMCID: PMC4803052 DOI: 10.1101/gad.274910.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
Nocetti and Whitehouse report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.
Collapse
Affiliation(s)
- Nicolas Nocetti
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
46
|
Wang GZ, Hickey SL, Shi L, Huang HC, Nakashe P, Koike N, Tu BP, Takahashi JS, Konopka G. Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. Cell Rep 2015; 13:1868-80. [PMID: 26655902 DOI: 10.1016/j.celrep.2015.10.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephanie L Hickey
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prachi Nakashe
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae. Appl Environ Microbiol 2015; 81:6484-95. [PMID: 26162874 DOI: 10.1128/aem.01631-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases.
Collapse
|
48
|
Huang Z, Cai L, Tu BP. Dietary control of chromatin. Curr Opin Cell Biol 2015; 34:69-74. [PMID: 26094239 DOI: 10.1016/j.ceb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/28/2022]
Abstract
Organisms must be able to rapidly alter gene expression in response to changes in their nutrient environment. This review summarizes evidence that epigenetic modifications of chromatin depend on particular metabolites of intermediary metabolism, enabling the facile regulation of gene expression in tune with metabolic state. Nutritional or dietary control of chromatin is an often-overlooked, yet fundamental regulatory mechanism directly linked to human physiology. Nutrient-sensitive epigenetic marks are dynamic, suggesting rapid turnover, and may have functions beyond the regulation of gene transcription, including pH regulation and as carbon sources in cancer cells.
Collapse
Affiliation(s)
- Zhiguang Huang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Zerihun MB, Vaillant C, Jost D. Effect of replication on epigenetic memory and consequences on gene transcription. Phys Biol 2015; 12:026007. [PMID: 25884278 DOI: 10.1088/1478-3975/12/2/026007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene activity in eukaryotes is in part regulated at the level of chromatin through the assembly of local chromatin states that are more or less permissive to transcription. How do these chromatin states achieve their functions and whether or not they contribute to the epigenetic inheritance of the transcriptional program remain to be elucidated. In cycling cells, stability is indeed strongly challenged by the periodic occurrence of replication and cell division. To address this question, we perform simulations of the stochastic dynamics of chromatin states when driven out-of-equilibrium by periodic perturbations. We show how epigenetic memory is significantly affected by the cell cycle length. In addition, we develop a simple model to connect the epigenetic state to the transcriptional state and gene activity. In particular, it suggests that replication may induce transcriptional bursting at repressive loci. Finally, we discuss how our findings-effect of replication and link to gene transcription-have original and deep implications to various biological contexts of epigenetic memory.
Collapse
Affiliation(s)
- Mehari B Zerihun
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR 5672, Lyon, France
| | | | | |
Collapse
|
50
|
Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 2015; 33:125-31. [PMID: 25703630 PMCID: PMC4380630 DOI: 10.1016/j.ceb.2015.02.003] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Acetyl-CoA represents a key node in metabolism due to its intersection with many metabolic pathways and transformations. Emerging evidence reveals that cells monitor the levels of acetyl-CoA as a key indicator of their metabolic state, through distinctive protein acetylation modifications dependent on this metabolite. We offer the following conceptual model for understanding the role of this sentinel metabolite in metabolic regulation. High nucleocytosolic acetyl-CoA amounts are a signature of a “growth” or “fed” state and promote its utilization for lipid synthesis and histone acetylation. In contrast, under “survival” or “fasted” states, acetyl-CoA is preferentially directed into the mitochondria to promote mitochondrial-dependent activities such as the synthesis of ATP and ketone bodies. Fluctuations in acetyl-CoA within these subcellular compartments enable the substrate-level regulation of acetylation modifications, but also necessitates the function of sirtuin deacetylases to catalyze removal of spontaneous modifications that might be unintended. Thus, understanding the sources, fates, and consequences of acetyl-CoA as a carrier of two-carbon units has started to reveal its underappreciated but profound influence on the regulation of numerous life processes.
Collapse
Affiliation(s)
- Lei Shi
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States.
| |
Collapse
|