1
|
Vladimirova SA, Kokoreva NE, Guzhova IV, Alhasan BA, Margulis BA, Nikotina AD. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers (Basel) 2024; 16:4030. [PMID: 39682216 DOI: 10.3390/cancers16234030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Heat shock factor 1 (HSF1) plays a central role in orchestrating the heat shock response (HSR), leading to the activation of multiple heat shock proteins (HSPs) genes and approximately thousands of other genes involved in various cellular functions. In cancer cells, HSPs play a particular role in coping with the accumulation of damaged proteins resulting from dysregulated translation and post-translational processes. This proteotoxic stress is a hallmark of cancer cells and causes constitutive activation of HSR. Beyond its role in the HSR, HSF1 regulates diverse processes critical for tumor cells, including proliferation, cell death, and drug resistance. Emerging evidence also highlights HSF1's involvement in remodeling the tumor immune microenvironment as well as in the maintenance of cancer stem cells. Consequently, HSF1 has emerged as an attractive therapeutic target, prompting the development of specific HSF1 inhibitors that have progressed to clinical trials. Importantly, HSF1 possesses a broad interactome, forming protein-protein interactions (PPIs) with components of signaling pathways, transcription factors, and chromatin regulators. Many of these interactors modulate HSF1's activity and HSF1-dependent gene expression and are well-recognized targets for cancer therapy. This review summarizes the current knowledge on HSF1 interactions with molecular chaperones, protein kinases, and other regulatory proteins. Understanding the key HSF1 interactions promoting cancer progression, along with identifying factors that disrupt these protein complexes, may offer valuable insights for developing innovative therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Snezhana A Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Nadezhda E Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Bashar A Alhasan
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Li X, Wang Z, Gao B, Dai K, Wu J, Shen K, Li G, Niu X, Wu X, Li L, Shen H, Li H, Yu Z, Wang Z, Chen G. Unveiling the impact of SUMOylation at K298 site of heat shock factor 1 on glioblastoma malignant progression. Neoplasia 2024; 57:101055. [PMID: 39260131 PMCID: PMC11415976 DOI: 10.1016/j.neo.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Xinghua People's Hospital Affiliated to Yangzhou University, Xinghua 225700, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kecheng Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
Ciccarelli M, Andréasson C. Protein Misfolding Releases Human HSF1 from HSP70 Latency Control. J Mol Biol 2024; 436:168740. [PMID: 39122169 DOI: 10.1016/j.jmb.2024.168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity. Here, we have investigated the latency control and activation of human HSF1 by HSP70 and misfolded proteins. Purified oligomeric HSF1-HSP70 (HSPA1A) complexes exhibited basal DNA binding activity that was inhibited by increasing the levels of HSP70 and, importantly, misfolded proteins reverted the inhibitory effect. Using site-specific UV photo-crosslinking, we monitored HSP70-HSF1 complexes in HEK293T cells. While HSF1 was bound by the substrate binding domain of HSP70 in unstressed cells, activation of HSF1 by heat shock as well as by inducing the misfolding of newly synthesized proteins resulted in release of HSF1 from the chaperone. Taken our results together, we conclude that latent HSF1 populate dynamic complexes with HSP70, which are sensitive to increased levels of misfolded proteins that compete for binding to the HSP70 substrate binding domain. Thus, human HSF1 is activated by various stress conditions that all titrate available HSP70.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| |
Collapse
|
5
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Discovery of a CK2α'-Biased ATP-Competitive Inhibitor from a High-Throughput Screen of an Allosteric-Inhibitor-Like Compound Library. ACS Chem Neurosci 2024; 15:2703-2718. [PMID: 38908003 DOI: 10.1021/acschemneuro.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α' and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α'. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α'-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
6
|
Choi BH, Lee CJ, Kim TH, Kim DNJ, Park YS, Choi JM, Park JS. pH Dependence of HSF1 trimerization is shaped by intramolecular interactions. Biochem Biophys Res Commun 2024; 709:149824. [PMID: 38537598 DOI: 10.1016/j.bbrc.2024.149824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Heat shock factor 1 (HSF1) primarily regulates various cellular stress responses. Previous studies have shown that low pH within the physiological range directly activates HSF1 function in vitro. However, the detailed molecular mechanisms remain unclear. This study proposes a molecular mechanism based on the trimerization behavior of HSF1 at different pH values. Extensive mutagenesis of human and goldfish HSF1 revealed that the optimal pH for trimerization depended on the identity of residue 103. In particular, when residue 103 was occupied by tyrosine, a significant increase in the optimal pH was observed, regardless of the rest of the sequence. This behavior can be explained by the protonation state of the neighboring histidine residues, His101 and His110. Residue 103 plays a key role in trimerization by forming disulfide or non-covalent bonds with Cys36. If tyrosine resides at residue 103 in an acidic environment, its electrostatic interactions with positively charged histidine residues prevent effective trimerization. His101 and His110 are neutralized at a higher pH, which releases Tyr103 to interact with Cys36 and drives the effective trimerization of HSF1. This study showed that the protonation state of a histidine residue can regulate the intramolecular interactions, which consequently leads to a drastic change in the oligomerization behavior of the entire protein.
Collapse
Affiliation(s)
- Bo-Hee Choi
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea
| | - Chang-Ju Lee
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea
| | - Tae Hwan Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea
| | - David Nahm-Joon Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea; Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Young-Shang Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea.
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, South Korea.
| |
Collapse
|
7
|
Pérez-Mora S, Pérez-Ishiwara DG, Salgado-Hernández SV, Medel-Flores MO, Reyes-López CA, Rodríguez MA, Sánchez-Monroy V, Gómez-García MDC. Entamoeba histolytica: In Silico and In Vitro Oligomerization of EhHSTF5 Enhances Its Binding to the HSE of the EhPgp5 Gene Promoter. Int J Mol Sci 2024; 25:4218. [PMID: 38673804 PMCID: PMC11050682 DOI: 10.3390/ijms25084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.
Collapse
Affiliation(s)
- Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - Sandra Viridiana Salgado-Hernández
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - César Augusto Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico;
| | - Virginia Sánchez-Monroy
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| |
Collapse
|
8
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
9
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
10
|
Mayer MP, Blair L, Blatch GL, Borges TJ, Chadli A, Chiosis G, de Thonel A, Dinkova-Kostova A, Ecroyd H, Edkins AL, Eguchi T, Fleshner M, Foley KP, Fragkostefanakis S, Gestwicki J, Goloubinoff P, Heritz JA, Heske CM, Hibshman JD, Joutsen J, Li W, Lynes M, Mendillo ML, Mivechi N, Mokoena F, Okusha Y, Prahlad V, Repasky E, Sannino S, Scalia F, Shalgi R, Sistonen L, Sontag E, van Oosten-Hawle P, Vihervaara A, Wickramaratne A, Wang SXY, Zininga T. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024; 29:143-157. [PMID: 38311120 PMCID: PMC10939078 DOI: 10.1016/j.cstres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Laura Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Thiago J Borges
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gabriela Chiosis
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aurélie de Thonel
- CNRS, UMR 7216, 75250 Paris Cedex 13, Paris, France; Univeristy of Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Albena Dinkova-Kostova
- Division of Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jason Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| | - Michael Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nahid Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Fortunate Mokoena
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anushka Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn Xiang Yang Wang
- Developmental Therapeutics Program, VCU Comprehensive Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
11
|
Shi X, Zhang R, Liu Z, Zhao G, Guo J, Mao X, Fan B. Alternative Splicing Reveals Acute Stress Response of Litopenaeus vannamei at High Alkalinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:103-115. [PMID: 38206418 DOI: 10.1007/s10126-023-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.
Collapse
Affiliation(s)
- Xiang Shi
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Ruiqi Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Jintao Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Xue Mao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Baoyi Fan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
12
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Identification of CK2α' selective inhibitors by the screening of an allosteric-kinase-inhibitor-like compound library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576328. [PMID: 38328231 PMCID: PMC10849513 DOI: 10.1101/2024.01.18.576328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Protein Kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP binding site. Using computational analyses, we found a potential Type IV ("D" pocket) allosteric site on CK2α' that contained different residues than CK2α and was distal from the ATP binding pocket featured in both kinases. With this potential allosteric site in mind, we screened a commercial library containing ~29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo™ Kinase assay. Obtained hits were counter-screened against CK2α revealing two CK2α' selective compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Jon Hawkinson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
13
|
Dorantes-Palma D, Pérez-Mora S, Azuara-Liceaga E, Pérez-Rueda E, Pérez-Ishiwara DG, Coca-González M, Medel-Flores MO, Gómez-García C. Screening and Structural Characterization of Heat Shock Response Elements (HSEs) in Entamoeba histolytica Promoters. Int J Mol Sci 2024; 25:1319. [PMID: 38279319 PMCID: PMC10815948 DOI: 10.3390/ijms25021319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Entamoeba histolytica (E. histolytica) exhibits a remarkable capacity to respond to thermal shock stress through a sophisticated genetic regulation mechanism. This process is carried out via Heat Shock Response Elements (HSEs), which are recognized by Heat Shock Transcription Factors (EhHSTFs), enabling fine and precise control of gene expression. Our study focused on screening for HSEs in the promoters of the E. histolytica genome, specifically analyzing six HSEs, including Ehpgp5, EhrabB1, EhrabB4, EhrabB5, Ehmlbp, and Ehhsp100. We discovered 2578 HSEs, with 1412 in promoters of hypothetical genes and 1166 in coding genes. We observed that a single promoter could contain anywhere from one to five HSEs. Gene ontology analysis revealed the presence of HSEs in essential genes for the amoeba, including cysteine proteinases, ribosomal genes, Myb family DNA-binding proteins, and Rab GTPases, among others. Complementarily, our molecular docking analyses indicate that these HSEs are potentially recognized by EhHSTF5, EhHSTF6, and EhHSTF7 factors in their trimeric conformation. These findings suggest that E. histolytica has the capability to regulate a wide range of critical genes via HSE-EhHSTFs, not only for thermal stress response but also for vital functions of the parasite. This is the first comprehensive study of HSEs in the genome of E. histolytica, significantly contributing to the understanding of its genetic regulation and highlighting the complexity and precision of this mechanism in the parasite's survival.
Collapse
Affiliation(s)
- David Dorantes-Palma
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Ernesto Pérez-Rueda
- Unidad Académica del Estado de Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 97302, Mexico;
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Misael Coca-González
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| |
Collapse
|
14
|
Lefa P, Samiotaki M, Farmaki T. Proteome Analysis of the ROF-FKBP Mutants Reveals Functional Relations among Heat Stress Responses, Plant Development, and Protein Quality Control during Heat Acclimation in Arabidopsis thaliana. ACS OMEGA 2024; 9:2391-2408. [PMID: 38250364 PMCID: PMC10795062 DOI: 10.1021/acsomega.3c06773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In the present study, a differential screening following heat stress acclimation was performed in Arabidopsis thaliana WT and ROF-FKBP mutated plants using mass spectrometry, and the results were used to understand and analyze the effect of the ROF PPIases during thermotolerance acquisition in plants. Our data highlight the central role of these two PPIases in heat stress and point to their direct or indirect effect on other proteins participating in cellular functions such as protein folding and quality control, cell division, photosynthesis, and other metabolic and signaling processes. Specifically, the heat stress response, protein folding, and protein ER processing pathways are enhanced following a 37 °C acclimation period independent of the mutation state. However, at 37 °C, and in the double-mutated rof1-/2- plants, a higher accumulation of proteins belonging to the above pathways is observed compared with all other conditions (WT, single mutants, control, and heat-acclimated plants). Furthermore, the proteasomal pathway, involving the common member of both the protasomal and the lysosomal degradation pathway, CDC48, is over-represented in the extracts of both the untreated and heat-stressed rof1-/2- mutants compared with the other extracts. In contrast, in the single rof1- mutation, the heat acclimation pathway is suppressed at 37 °C when compared to the WT. Protein accumulation related to the heat stress and the protein quality control pathways points to a differential but also synergistic role of the two proteins. Protein complexes of other biochemical and developmental mechanisms, such as the light-harvesting complex of the photosynthetic pathway and the phosphoinositide binding proteins involved in membrane-trafficking events during cell plate formation and cytokinesis (patellin 1, 2, and 4), are negatively regulated in the rof1-/2- mutant. Our results suggest that ROF1 and ROF2 FKBPs regulate stress response, and developmental and metabolic pathways via a complex feedback mechanism involving partners that ensure protein quality control and plant survival during heat stress.
Collapse
Affiliation(s)
- Paraskevi Lefa
- Institute
of Applied Biosciences, Center for Research and Technology—Hellas, Sixth km Charilaou-Thermi rd., 57001 Thermi Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical
Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece
| | - Theodora Farmaki
- Institute
of Applied Biosciences, Center for Research and Technology—Hellas, Sixth km Charilaou-Thermi rd., 57001 Thermi Thessaloniki, Greece
| |
Collapse
|
15
|
Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, Gassman NR, Tan M. Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology. Cancers (Basel) 2023; 15:5167. [PMID: 37958341 PMCID: PMC10649344 DOI: 10.3390/cancers15215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Yeh Chin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ibrahim Haruna Ibrahim
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Brahmana A. Tjokroprawiro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Jer-Yen Yang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Institute of Biochemistry and Molecular Biology, Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
16
|
Price RM, Budzyński MA, Shen J, Mitchell JE, Kwan JJ, Teves S. Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes. Nucleic Acids Res 2023; 51:5040-5055. [PMID: 37114996 PMCID: PMC10250243 DOI: 10.1093/nar/gkad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A large number of transcription factors have been shown to bind and interact with mitotic chromosomes, which may promote the efficient reactivation of transcriptional programs following cell division. Although the DNA-binding domain (DBD) contributes strongly to TF behavior, the mitotic behaviors of TFs from the same DBD family may vary. To define the mechanisms governing TF behavior during mitosis in mouse embryonic stem cells, we examined two related TFs: Heat Shock Factor 1 and 2 (HSF1 and HSF2). We found that HSF2 maintains site-specific binding genome-wide during mitosis, whereas HSF1 binding is somewhat decreased. Surprisingly, live-cell imaging shows that both factors appear excluded from mitotic chromosomes to the same degree, and are similarly more dynamic in mitosis than in interphase. Exclusion from mitotic DNA is not due to extrinsic factors like nuclear import and export mechanisms. Rather, we found that the HSF DBDs can coat mitotic chromosomes, and that HSF2 DBD is able to establish site-specific binding. These data further confirm that site-specific binding and chromosome coating are independent properties, and that for some TFs, mitotic behavior is largely determined by the non-DBD regions.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Junzhou Shen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Jennifer E Mitchell
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - James Z J Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Kappel C, Friedrich T, Oberkofler V, Jiang L, Crawford T, Lenhard M, Bäurle I. Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis. Genome Biol 2023; 24:129. [PMID: 37254211 DOI: 10.1186/s13059-023-02970-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. RESULTS HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. CONCLUSIONS Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.
Collapse
Affiliation(s)
- Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Thomas Friedrich
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Vicky Oberkofler
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
18
|
Ma Z, Li M, Zhang H, Zhao B, Liu Z, Duan S, Meng X, Li G, Guo X. Alternative Splicing of TaHsfA2-7 Is Involved in the Improvement of Thermotolerance in Wheat. Int J Mol Sci 2023; 24:ijms24021014. [PMID: 36674529 PMCID: PMC9861123 DOI: 10.3390/ijms24021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
19
|
Liu AY, Minetti CA, Remeta DP, Breslauer KJ, Chen KY. HSF1, Aging, and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:23-49. [PMID: 35995906 DOI: 10.1007/5584_2022_733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome and maintenance of proteostasis as a protective mechanism in response to stress. Research in this particular area has accelerated dramatically over the past three decades following successful isolation, cloning, and characterization of HSF1. The intricate multi-protein complexes and transcriptional activation orchestrated by HSF1 are fundamental processes within the cellular QC machinery. Our primary focus is on the regulation and function of HSF1 in aging and neurodegenerative diseases (ND) which represent physiological and pathological states of dysfunction in protein QC. This chapter presents an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function viz-à-viz age-dependent and neuron-specific vulnerability to ND. We discuss the structural domains of HSF1 with emphasis on the intrinsically disordered regions and note that disease proteins associated with ND are often structurally disordered and exquisitely sensitive to changes in cellular environment as may occur during aging. We propose a hypothesis that age-dependent changes of the intrinsically disordered proteome likely hold answers to understand many of the functional, structural, and organizational changes of proteins and signaling pathways in aging - dysfunction of HSF1 and accumulation of disease protein aggregates in ND included.Structured AbstractsIntroduction: Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome as a cyto-protective mechanism in response to stress. There is cumulative evidence of age-related deterioration of this QC mechanism that contributes to disease vulnerability. OBJECTIVES Herein we discuss the regulation and function of HSF1 as they relate to the pathophysiological changes of protein quality control in aging and neurodegenerative diseases (ND). METHODS We present an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function vis-à-vis age-dependent and neuron-specific vulnerability to neurodegenerative diseases. RESULTS We examine the impact of intrinsically disordered regions on the function of HSF1 and note that proteins associated with neurodegeneration are natively unstructured and exquisitely sensitive to changes in cellular environment as may occur during aging. CONCLUSIONS We put forth a hypothesis that age-dependent changes of the intrinsically disordered proteome hold answers to understanding many of the functional, structural, and organizational changes of proteins - dysfunction of HSF1 in aging and appearance of disease protein aggregates in neurodegenerative diseases included.
Collapse
Affiliation(s)
- Alice Y Liu
- Department of Cell Biology and Neuroscience, Rutgers The State University of New Jersey, Piscataway, NJ, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Kenneth J Breslauer
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
20
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Kawagoe S, Kumashiro M, Mabuchi T, Kumeta H, Ishimori K, Saio T. Heat-Induced Conformational Transition Mechanism of Heat Shock Factor 1 Investigated by Tryptophan Probe. Biochemistry 2022; 61:2897-2908. [PMID: 36485006 PMCID: PMC9782367 DOI: 10.1021/acs.biochem.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A transcriptional regulatory system called heat shock response (HSR) has been developed in eukaryotic cells to maintain proteome homeostasis under various stresses. Heat shock factor-1 (Hsf1) plays a central role in HSR, mainly by upregulating molecular chaperones as a transcription factor. Hsf1 forms a complex with chaperones and exists as a monomer in the resting state under normal conditions. However, upon heat shock, Hsf1 is activated by oligomerization. Thus, oligomerization of Hsf1 is considered an important step in HSR. However, the lack of information about Hsf1 monomer structure in the resting state, as well as the structural change via oligomerization at heat response, impeded the understanding of the thermosensing mechanism through oligomerization. In this study, we applied solution biophysical methods, including fluorescence spectroscopy, nuclear magnetic resonance, and circular dichroism spectroscopy, to investigate the heat-induced conformational transition mechanism of Hsf1 leading to oligomerization. Our study showed that Hsf1 forms an inactive closed conformation mediated by intramolecular contact between leucine zippers (LZs), in which the intermolecular contact between the LZs for oligomerization is prevented. As the temperature increases, Hsf1 changes to an open conformation, where the intramolecular LZ interaction is dissolved so that the LZs can form intermolecular contacts to form oligomers in the active form. Furthermore, since the interaction sites with molecular chaperones and nuclear transporters are also expected to be exposed in the open conformation, the conformational change to the open state can lead to understanding the regulation of Hsf1-mediated stress response through interaction with multiple cellular components.
Collapse
Affiliation(s)
- Soichiro Kawagoe
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan,Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Munehiro Kumashiro
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
| | - Takuya Mabuchi
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan,Institute
of Fluid Science, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroyuki Kumeta
- Faculty of
Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan,Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo, Hokkaido 060-0810, Japan,. Phone +81-11-706-2707. Fax. +81-11-706-3501
| | - Tomohide Saio
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan,Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan,Fujii
Memorial Institute of Medical Sciences, Institute of Advanced Medical
Sciences, Tokushima University, Tokushima 770-8503, Japan,. Phone +81-88-633-9149. Fax. +81-88-633-9145
| |
Collapse
|
22
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
23
|
Wu TY, Hoh KL, Boonyaves K, Krishnamoorthi S, Urano D. Diversification of heat shock transcription factors expanded thermal stress responses during early plant evolution. THE PLANT CELL 2022; 34:3557-3576. [PMID: 35849348 PMCID: PMC9516188 DOI: 10.1093/plcell/koac204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 05/19/2023]
Abstract
The copy numbers of many plant transcription factor (TF) genes substantially increased during terrestrialization. This allowed TFs to acquire new specificities and thus create gene regulatory networks (GRNs) with new biological functions to help plants adapt to terrestrial environments. Through characterizing heat shock factor (HSF) genes MpHSFA1 and MpHSFB1 in the liverwort Marchantia polymorpha, we explored how heat-responsive GRNs widened their functions in M. polymorpha and Arabidopsis thaliana. An interspecies comparison of heat-induced transcriptomes and the evolutionary rates of HSFs demonstrated the emergence and subsequent rapid evolution of HSFB prior to terrestrialization. Transcriptome and metabolome analyses of M. polymorpha HSF-null mutants revealed that MpHSFA1 controls canonical heat responses such as thermotolerance and metabolic changes. MpHSFB1 also plays essential roles in heat responses, as well as regulating developmental processes including meristem branching and antheridiophore formation. Analysis of cis-regulatory elements revealed development- and stress-related TFs that function directly or indirectly downstream of HSFB. Male gametophytes of M. polymorpha showed higher levels of thermotolerance than female gametophytes, which could be explained by different expression levels of MpHSFA1U and MpHSFA1V on sex chromosome. We propose that the diversification of HSFs is linked to the expansion of HS responses, which enabled coordinated multicellular reactions in land plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
| | - Kar Ling Hoh
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
24
|
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat Struct Mol Biol 2022; 29:665-676. [PMID: 35835866 PMCID: PMC10177624 DOI: 10.1038/s41594-022-00800-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.
Collapse
|
25
|
Reyes A, Navarro AJ, Diethelm-Varela B, Kalergis AM, González PA. Is there a role for HSF1 in viral infections? FEBS Open Bio 2022; 12:1112-1124. [PMID: 35485710 PMCID: PMC9157408 DOI: 10.1002/2211-5463.13419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Cells undergo numerous processes to adapt to new challenging conditions and stressors. Heat stress is regulated by a family of heat shock factors (HSFs) that initiate a heat shock response by upregulating the expression of heat shock proteins (HSPs) intended to counteract cellular damage elicited by increased environmental temperature. Heat shock factor 1 (HSF1) is known as the master regulator of the heat shock response and upon its activation induces the transcription of genes that encode for molecular chaperones, such as HSP40, HSP70, and HSP90. Importantly, an accumulating body of studies relates HSF1 with viral infections; the induction of fever during viral infection may activate HSF1 and trigger a consequent heat shock response. Here, we review the role of HSF1 in different viral infections and its impact on the health outcome for the host. Studying the relationship between HSF1 and viruses could open new potential therapeutic strategies given the availability of drugs that regulate the activation of this transcription factor.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina Pontificia, Universidad Católica de Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| |
Collapse
|
26
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
27
|
Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, Meng M, Chen X, Zheng Y, Wang J, Li D, Zhang Q, Hu C, Xu L, Ma X. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 2022; 185:949-966.e19. [PMID: 35247329 DOI: 10.1016/j.cell.2022.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
28
|
Sharma C, Choi MA, Song Y, Seo YH. Rational Design and Synthesis of HSF1-PROTACs for Anticancer Drug Development. Molecules 2022; 27:1655. [PMID: 35268755 PMCID: PMC8912087 DOI: 10.3390/molecules27051655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
PROTACs employ the proteosome-mediated proteolysis via E3 ligase and recruit the natural protein degradation machinery to selectively degrade the cancerous proteins. Herein, we have designed and synthesized heterobifunctional small molecules that consist of different linkers tethering KRIBB11, a HSF1 inhibitor, with pomalidomide, a commonly used E3 ligase ligand for anticancer drug development.
Collapse
Affiliation(s)
| | | | | | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 704-701, Korea; (C.S.); (M.A.C.); (Y.S.)
| |
Collapse
|
29
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
30
|
Kevei Z, Ferreira SDS, Casenave CMP, Kurowski T, Mohareb F, Rickett D, Stain C, Thompson AJ. Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype. MOLECULAR HORTICULTURE 2022; 2:4. [PMID: 37789386 PMCID: PMC10515254 DOI: 10.1186/s43897-022-00025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 10/05/2023]
Abstract
The bushy root-2 (brt-2) tomato mutant has twisting roots, and slower plant development. Here we used whole genome resequencing and genetic mapping to show that brt-2 is caused by a serine to cysteine (S75C) substitution in the DNA binding domain (DBD) of a heat shock factor class B (HsfB) encoded by SolycHsfB4a. This gene is orthologous to the Arabidopsis SCHIZORIZA gene, also known as AtHsfB4. The brt-2 phenotype is very similar to Arabidopsis lines in which the function of AtHsfB4 is altered: a proliferation of lateral root cap and root meristematic tissues, and a tendency for lateral root cap cells to easily separate. The brt-2 S75C mutation is unusual because all other reported amino acid substitutions in the highly conserved DBD of eukaryotic heat shock factors are dominant negative mutations, but brt-2 is recessive. We further show through reciprocal grafting that brt-2 exerts its effects predominantly through the root genotype even through BRT-2 is expressed at similar levels in both root and shoot meristems. Since AtHsfB4 is induced by root knot nematodes (RKN), and loss-of-function mutants of this gene are resistant to RKNs, BRT-2 could be a target gene for RKN resistance, an important trait in tomato rootstock breeding.Gene & accession numbersSolycHsfB4a - Solyc04g078770.
Collapse
Affiliation(s)
- Zoltan Kevei
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK.
| | | | | | - Tomasz Kurowski
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Daniel Rickett
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chris Stain
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
31
|
Bello F, Orozco E, Benítez-Cardoza CG, Zamorano-Carrillo A, Reyes-López CA, Pérez-Ishiwara DG, Gómez-García C. The novel EhHSTF7 transcription factor displays an oligomer state and recognizes a heat shock element in the Entamoeba histolytica parasite. Microb Pathog 2021; 162:105349. [PMID: 34864144 DOI: 10.1016/j.micpath.2021.105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response is a conserved mechanism that allows cells to respond and survive stress damage and is transcriptionally regulated by the heat shock factors and heat shock elements. The P-glycoprotein confer the multidrug resistance phenotype; Entamoeba histolytica has the largest multidrug resistance gene family described so far; one of these genes, the EhPgp5 gene, has an emetine-inducible expression. A functional heat shock element was localized in the EhPgp5 gene promoter, indicating transcriptional regulation by heat shock factors. In this work, we determined the oligomer state of EhHSTF7 and the recognition of the heat shock element of the EhPgp5 gene. The EhHSTF7 recombinant protein was obtained as monomer and oligomer. In silico molecular docking predicts protein-DNA binding between EhHSTF7 and 5'-GAA-3' complementary bases. The rEhHSTF7 protein specifically binds to the heat shock element of the EhPgp5 gene in gel shift assays. The competition assays with heat shock element mutants indicate that 5'-GAA-3' complementary bases are necessary for the rEhHSTF7 binding. Finally, the siRNA-mediated knockdown of Ehhstf7 expression causes downregulation of EhPgp5 expression, suggesting that EhHSTF7 is likely to play a key role in the E. histolytica multidrug resistance. This is the first report of a transcription factor that recognizes a heat shock element from a gene involved in drug resistance in parasites. However, further analysis needs to demonstrate the biological relevance of the EhHSTF7 and the rest of the heat shock factors of E. histolytica, to understand the underlying regulation of transcriptional control in response to stress.
Collapse
Affiliation(s)
- Fabiola Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - César A Reyes-López
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - D Guillermo Pérez-Ishiwara
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Consuelo Gómez-García
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
32
|
Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021; 47:218-234. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Farhan Y Almalki A, Arabdin M, Khan A. The Role of Heat Shock Proteins in Cellular Homeostasis and Cell Survival. Cureus 2021; 13:e18316. [PMID: 34725587 PMCID: PMC8553296 DOI: 10.7759/cureus.18316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
This review article has been necessitated by the limited number of studies on the role of heat shock proteins (HSPs) in cellular functions. The analysis is performed by reviewing evidence in various literary works concerning the topic. The main function of HSPs is to prevent the formation of non-functional proteins and facilitate protein folding. They also enhance the survival of cells in addition to being clinically significant. HSPs protect proteins from stress factors such as temperature, pH, and low levels of oxygen. Some of the common types of HSPs include HSP70, HSP90, HSP27, and HSP100. These proteins have different weights and other features which make them suit for different cellular functions. However, they have numerous similar features which make them perform almost the same functions, yet they vary in the degree of protection that they provide for the cells. The release of HSPs is controlled by four types of HSF depending on the type of stress that a cell is subjected to. HSF1 is responsible for identifying stress factors, especially heat. HSF2 performs almost similar functions as HSF1 in addition to cellular development. HSF3 is released when the stress conditions are extreme and, hence, cannot be effectively controlled by HSF1 and HSF2. HSF4 functions by inducing negative DNA transcriptions. Other tasks of HSPs include enhancing the immune system. The cells help in the management of Alzheimer’s disease and other similar complications by forming protective tissues around brain cells. The cells also help in controlling cancer and heart diseases. However, their roles are more enhanced in managing cancer, extending to diagnosis and prediction. Further research on the HSPs and HSFs may extend their application to curing tumorous cells.
Collapse
Affiliation(s)
| | | | - Adnan Khan
- Pediatrics, Rehman Medical Institute, Peshawar, PAK
| |
Collapse
|
34
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
35
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Lu MX, Du YZ. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress. Cell Stress Chaperones 2021; 26:835-843. [PMID: 34337672 PMCID: PMC8492843 DOI: 10.1007/s12192-021-01224-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones in multiple physiological processes and are active during thermal stress. sHSP expression is controlled by heat shock transcription factor (HSF); however, few studies have been conducted on HSF in agricultural pests. Liriomyza trifolii is an introduced insect pest of horticultural and vegetable crops in China. In this study, the master regulator, HSF1, was cloned and characterized from L. trifolii, and the expression levels of HSF1 and five sHSPs were studied during heat stress. HSF1 expression in L. trifolii generally decreased with rising temperatures, whereas expression of the five sHSPs showed an increasing trend that correlated with elevated temperatures. All five sHSPs and HSF1 showed an upward trend in expression with exposure to 40 ℃ without a recovery period. When a recovery period was incorporated after thermal stress, the expression patterns of HSF1 and sHSPs in L. trifolii exposed to 40 °C was significantly lower than expression with no recovery period. To elucidate potential interactions between HSF1 and sHSPs, double-stranded RNA was synthesized to knock down HSF1 in L. trifolii by RNA interference. The knockdown of HSF1 by RNAi decreased the survival rate and expression of HSP19.5, HSP20.8, and HSP21.3 during high-temperature stress. This study expands our understanding of HSF1-regulated gene expression in L. trifolii exposed to heat stress.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
36
|
Moody R, Wilson K, Kampan NC, McNally OM, Jobling TW, Jaworowski A, Stephens AN, Plebanski M. Mapping Epitopes Recognised by Autoantibodies Shows Potential for the Diagnosis of High-Grade Serous Ovarian Cancer and Monitoring Response to Therapy for This Malignancy. Cancers (Basel) 2021; 13:cancers13164201. [PMID: 34439354 PMCID: PMC8392293 DOI: 10.3390/cancers13164201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Most women are diagnosed with high-grade serous ovarian cancer (HGSOC) at stage III, when the cancer has already spread, contributing to poor survival outcomes. However, while earlier diagnosis increases survival rates, there is a lack of early diagnosis biomarkers. Previously, autoantibodies specific for phosphorylated heat shock factor 1 (HSF1-PO4) were suggested as a potential diagnostic biomarker for early-stage HGSOC. In the present study, specific regions within HSF1 were identified, tested and confirmed as useful biomarkers, with comparable diagnostic potential to the full protein, across two separate clinical cohorts. Additionally, antibody responses to HSF1-PO4 and the corresponding peptides were found to increase following a round of standard first-line chemotherapy. Together, our data suggest that the identified short peptide sequences could be used as practical alternatives to support early diagnosis or monitor responses to chemotherapy. Abstract Autoantibodies recognising phosphorylated heat shock factor 1 (HSF1-PO4) protein are suggested as potential new diagnostic biomarkers for early-stage high-grade serous ovarian cancer (HGSOC). We predicted in silico B-cell epitopes in human and murine HSF1. Three epitope regions were synthesised as peptides. Circulating immunoglobulin A (cIgA) against the predicted peptide epitopes or HSF1-PO4 was measured using ELISA, across two small human clinical trials of HGSOC patients at diagnosis. To determine whether chemotherapy would promote changes in reactivity to either HSF1-PO4 or the HSF-1 peptide epitopes, IgA responses were further assessed in a sample of patients after a full cycle of chemotherapy. Anti-HSF1-PO4 responses correlated with antibody responses to the three selected epitope regions, regardless of phosphorylation, with substantial cross-recognition of the corresponding human and murine peptide epitope variants. Assessing reactivity to individual peptide epitopes, compared to HSF1-PO4, improved assay sensitivity. IgA responses to HSF1-PO4 further increased significantly post treatment, indicating that HSF1-PO4 is a target for immunity in response to chemotherapy. Although performed in a small cohort, these results offer potential insights into the interplay between autoimmunity and ovarian cancer and offer new peptide biomarkers for early-stage HGSOC diagnosis, to monitor responses to chemotherapy, and widely for pre-clinical HGSOC research.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Thomas W. Jobling
- Department of Gynaecological Oncology, Monash Medical Centre, Bentleigh East, VIC 3165, Australia;
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
- Correspondence:
| |
Collapse
|
37
|
Tangrodchanapong T, Sornkaew N, Yurasakpong L, Niamnont N, Nantasenamat C, Sobhon P, Meemon K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran from Sea Cucumber Holothuria scabra against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021; 26:molecules26082195. [PMID: 33920352 PMCID: PMC8070609 DOI: 10.3390/molecules26082195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.
Collapse
Affiliation(s)
- Taweesak Tangrodchanapong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
- Correspondence: or ; Tel.: +66-22-015-407
| |
Collapse
|
38
|
Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1. Biosci Rep 2021; 40:222263. [PMID: 32110802 PMCID: PMC7069920 DOI: 10.1042/bsr20200203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a powerful multifaceted oncogenic modifier that plays a role in maintaining the protein balance of cancer cells under various stresses. In recent studies, there have been reports of increased expression of HSF1 in colorectal cancer (CRC) cells, and the depletion of the HSF1 gene knockdown has inhibited colon cancer growth both in vivo and in vitro. Therefore, HSF1 is a promising target for colon cancer treatment and chemoprevention. In the present study, we found that Schizandrin A (Sch A) significantly inhibited the growth of CRC cell lines by inducing cell cycle arrest, apoptosis and death. Through HSE luciferase reporter assay and quantitative PCR (qPCR), we identified Sch A as a novel HSF1 inhibitor. In addition, Sch A could effectively inhibit the induction of HSF1 target proteins such as heat-shock protein (HSP) 70 (HSP70) and HSP27, whether in heat shock or normal temperature culture. In the Surface Plasmon Resonance (SPR) experiment, Sch A showed moderate affinity with HSF1, further confirming that Sch A might be a direct HSF1 inhibitor. The molecular docking and molecular dynamic simulation results of HSF1/Sch A suggested that Sch A formed key hydrogen bond and hydrophobic interactions with HSF1, which may contribute to its potent HSF1 inhibition. These findings provide clues for the design of novel HSF1 inhibitors and drug candidates for colon cancer treatment.
Collapse
|
39
|
Dong B, Jaeger AM, Hughes PF, Loiselle DR, Hauck JS, Fu Y, Haystead TA, Huang J, Thiele DJ. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med 2020; 12:eabb5647. [PMID: 33328331 PMCID: PMC10571035 DOI: 10.1126/scitranslmed.abb5647] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023]
Abstract
Heat shock factor 1 (HSF1) is a cellular stress-protective transcription factor exploited by a wide range of cancers to drive proliferation, survival, invasion, and metastasis. Nuclear HSF1 abundance is a prognostic indicator for cancer severity, therapy resistance, and shortened patient survival. The HSF1 gene was amplified, and nuclear HSF1 abundance was markedly increased in prostate cancers and particularly in neuroendocrine prostate cancer (NEPC), for which there are no available treatment options. Despite genetic validation of HSF1 as a therapeutic target in a range of cancers, a direct and selective small-molecule HSF1 inhibitor has not been validated or developed for use in the clinic. We described the identification of a direct HSF1 inhibitor, Direct Targeted HSF1 InhiBitor (DTHIB), which physically engages HSF1 and selectively stimulates degradation of nuclear HSF1. DTHIB robustly inhibited the HSF1 cancer gene signature and prostate cancer cell proliferation. In addition, it potently attenuated tumor progression in four therapy-resistant prostate cancer animal models, including an NEPC model, where it caused profound tumor regression. This study reports the identification and validation of a direct HSF1 inhibitor and provides a path for the development of a small-molecule HSF1-targeted therapy for prostate cancers and other therapy-resistant cancers.
Collapse
Affiliation(s)
- Bushu Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex M Jaeger
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yao Fu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dennis J Thiele
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
40
|
The ABL2 kinase regulates an HSF1-dependent transcriptional program required for lung adenocarcinoma brain metastasis. Proc Natl Acad Sci U S A 2020; 117:33486-33495. [PMID: 33318173 PMCID: PMC7777191 DOI: 10.1073/pnas.2007991117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Among all cancer types, lung cancer patients exhibit the highest prevalence of brain metastasis, often associated with cognitive impairment, seizures, decline in quality of life, and decreased survival. Limited therapeutic options are currently available to treat brain metastasis. A comprehensive understanding of the signaling pathways and transcriptional networks required for survival and growth of brain-metastatic cancer cells is needed to develop effective strategies to treat this disease. Here, we report that the Heat Shock Transcription Factor 1 (HSF1) is upregulated in brain-metastatic lung cancer cells and is required for brain metastasis in mice. Importantly, we show that the HSF1-dependent expression of E2F target genes implicated in cell cycle progression and survival is decreased by blood–brain barrier-penetrant ABL allosteric inhibitors. Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. Here, we report on the discovery of an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We find that HSF1 is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Further, we identify the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression and show that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a noncanonical, proline-independent SH3 interaction motif. Pharmacologic inhibition of the ABL2 kinase using small molecule allosteric inhibitors, but not ATP-competitive inhibitors, disrupts this interaction. Importantly, knockdown as well as pharmacologic inhibition of ABL2 using allosteric inhibitors impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Collectively, these findings reveal a targetable ABL2-HSF1-E2F signaling pathway required for survival by brain-metastatic tumor cells.
Collapse
|
41
|
Masser AE, Ciccarelli M, Andréasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res 2020; 396:112246. [PMID: 32861670 DOI: 10.1016/j.yexcr.2020.112246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
42
|
Polidano J, Vankadari N, Price JT, Wilce JA. Detailed protocol for optimised expression and purification of functional monomeric human Heat Shock Factor 1. Protein Expr Purif 2020; 176:105722. [PMID: 32768454 DOI: 10.1016/j.pep.2020.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
Heat Shock Factor 1 (HSF1) is the master regulator of the heat shock response, a universal survival mechanism throughout eukaryotic species used to buffer potentially lethal proteotoxic conditions. HSF1's function in vivo is regulated by several factors, including post translational modifications and elevated temperatures, whereupon it forms trimers to bind with heat shock elements in DNA. Unsurprisingly, HSF1 is also extremely sensitive to elevated temperatures in vitro, which poses specific technical challenges when producing HSF1 using a recombinant expression system. Although there are several useful publications which outline steps taken for HSF1 expression and purification, studies that describe specific strategies and detailed protocols to overcome HSF1 trimerisation and degradation are currently lacking. Herein, we have reported our detailed experimental protocol for the expression and purification of monomeric human HSF1 (HsHSF1) as a major species. We also propose a refined method of inducing HsHSF1 activation in vitro, that we consider more accurately mimics HsHSF1 activation in vivo and is therefore more physiologically relevant.
Collapse
Affiliation(s)
- Joseph Polidano
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia; Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
| | - Naveen Vankadari
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia
| | - John T Price
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia; Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia.
| |
Collapse
|
43
|
Pincus D. Regulation of Hsf1 and the Heat Shock Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:41-50. [PMID: 32297210 DOI: 10.1007/978-3-030-40204-4_3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heat shock response (HSR) is characterized by the induction of molecular chaperones following a sudden increase in temperature. In eukaryotes, the HSR comprises the set of genes controlled by the transcription factor Hsf1. The HSR is induced by defects in co-translational protein folding, ribosome biogenesis, organellar targeting of nascent proteins, and protein degradation by the ubiquitin proteasome system. Upon heat shock, these processes may be endogenous sources of polypeptide ligands that activate the HSR. Mechanistically, these ligands are thought to titrate the chaperone Hsp70 away from Hsf1, releasing Hsf1 to induce the full arsenal of cellular chaperones to restore protein homeostasis. In metazoans, this cell-autonomous feedback loop is modulated by the microenvironment and neuronal cues to enable tissue-level and organism-wide coordination.
Collapse
Affiliation(s)
- David Pincus
- Department of Molecular Genetics and Cell Biology, Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J 2020; 39:e104096. [PMID: 32490574 PMCID: PMC7360973 DOI: 10.15252/embj.2019104096] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine‐zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine‐zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high‐affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Laura Le Breton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
45
|
Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020; 9:E1046. [PMID: 32331382 PMCID: PMC7226471 DOI: 10.3390/cells9041046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock factor 1 (HSF1) is the primary component for initiation of the powerful heat shock response (HSR) in eukaryotes. The HSR is an evolutionarily conserved mechanism for responding to proteotoxic stress and involves the rapid expression of heat shock protein (HSP) molecular chaperones that promote cell viability by facilitating proteostasis. HSF1 activity is amplified in many tumor contexts in a manner that resembles a chronic state of stress, characterized by high levels of HSP gene expression as well as HSF1-mediated non-HSP gene regulation. HSF1 and its gene targets are essential for tumorigenesis across several experimental tumor models, and facilitate metastatic and resistant properties within cancer cells. Recent studies have suggested the significant potential of HSF1 as a therapeutic target and have motivated research efforts to understand the mechanisms of HSF1 regulation and develop methods for pharmacological intervention. We review what is currently known regarding the contribution of HSF1 activity to cancer pathology, its regulation and expression across human cancers, and strategies to target HSF1 for cancer therapy.
Collapse
Affiliation(s)
- Thomas L. Prince
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E. Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Juan Manuel Fernandez-Muñoz
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Andrew Ackerman
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Yi X, Jiang S, Qin M, Liu K, Cao P, Chen S, Deng J, Gao C. Compounds from the fruits of mangrove Sonneratia apetala: Isolation, molecular docking and antiaging effects using a Caenorhabditis elegans model. Bioorg Chem 2020; 99:103813. [PMID: 32334190 DOI: 10.1016/j.bioorg.2020.103813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 01/22/2023]
Abstract
The chemical investigation of the fruits of a mangrove Sonneratia apetala collected from the Beibu Gulf led to the isolation of four new compounds, sonneradons A-D (1-4), as well as 18 known compounds (5-22). The structures of the new compounds were elucidated based on extensive spectroscopic analysis, and the structures of the known compounds were established by comparison of their spectroscopic data with those of related metabolites. The antiaging activities of all isolates were evaluated using the nematode Caenorhabditis elegans as a model organism. The results showed that 10 compounds could protect C. elegans by extending its lifespan. Compound 1 possessed the most potent effect in the anti-heat stress assay and significantly attenuated aging-related decreases in the pumping and bending of the nematodes in the healthspan assay. Molecular docking studies suggested that compound 1 was bound to the DNA binding domain of HSF-1 and promoted the conformation of HSF-1, thus strengthening the interaction between the HSF-1 and related DNA. GLN49, ASN-74, and LYS-80 of the binding region might be the key amino residues during the interaction.
Collapse
Affiliation(s)
- Xiangxi Yi
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shu Jiang
- Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Mei Qin
- Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Kai Liu
- Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Pei Cao
- Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Shimin Chen
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Jiagang Deng
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China.
| | - Chenghai Gao
- Institutes of Marine Drugs/College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China.
| |
Collapse
|
47
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
48
|
HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol 2020; 22:151-158. [PMID: 32015439 PMCID: PMC7135912 DOI: 10.1038/s41556-019-0458-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
Under proteotoxic stress, some cells survive whereas others die. Mechanisms governing this heterogeneity in cell fate are unknown. We report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies (foci)3–6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6–10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumors. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent yet opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.
Collapse
|
49
|
Rai KK, Rai N, Aamir M, Tripathi D, Rai SP. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. J Biotechnol 2020; 309:113-130. [PMID: 31935417 DOI: 10.1016/j.jbiotec.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Salicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant's growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1-18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India; Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Deepika Tripathi
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
50
|
Alasady MJ, Mendillo ML. The Multifaceted Role of HSF1 in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:69-85. [PMID: 32297212 DOI: 10.1007/978-3-030-40204-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|