1
|
Xie P. Modeling of Chemomechanical Coupling of Cytoplasmic Dynein Motors. J Phys Chem B 2024; 128:10063-10074. [PMID: 39382058 DOI: 10.1021/acs.jpcb.4c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytoplasmic dynein homodimer is a motor protein that can step processively on microtubules (MTs) toward the minus end by hydrolyzing ATP molecules. Some dynein motors show a complicated stepping behavior with variable step sizes and having both hand-overhand and inchworm steps, while some mammalian dynein motors show simplistic stepping behavior with a constant step size and having only hand-overhand steps. Here, a model for the chemomechanical coupling of the dynein is presented, based on which an analytical theory is given on the dynamics of the motor. The theoretical results explain consistently and quantitatively the available experimental data on various aspects of the dynamics of dynein with complicated stepping behavior and the dynamics of dynein with simplistic stepping behavior. The very differences in the dynamic behavior between the two motors are due solely to different elastic coefficients of the linkage connecting the two dynein heads, with the dynein motors of the complicated and simplistic stepping behaviors having small and large coefficients, respectively. Moreover, it is analyzed that the ATPase rate of the dynein head with a docked linker being larger than that with an undocked linker is indispensable for the unidirectional motility of the motor, and the small free energy change for the linker docking in the strong MT-binding state facilitates the unidirectional motility.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Shao S, Chen Y, Deng H, Pan J. Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly. J Cell Sci 2024; 137:jcs262152. [PMID: 38853670 DOI: 10.1242/jcs.262152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.
Collapse
Affiliation(s)
- Shangjin Shao
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| |
Collapse
|
3
|
Weijman JF, Vuolo L, Shak C, Pugnetti A, Mukhopadhyay AG, Hodgson LR, Heesom KJ, Roberts AJ, Stephens DJ. Roles for CEP170 in cilia function and dynein-2 assembly. J Cell Sci 2024; 137:jcs261816. [PMID: 38533689 PMCID: PMC11112123 DOI: 10.1242/jcs.261816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.
Collapse
Affiliation(s)
- Johannes F. Weijman
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anna Pugnetti
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Lorna R. Hodgson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony J. Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Mukhopadhyay AG, Toropova K, Daly L, Wells JN, Vuolo L, Mladenov M, Seda M, Jenkins D, Stephens DJ, Roberts AJ. Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport. EMBO J 2024; 43:1257-1272. [PMID: 38454149 PMCID: PMC10987677 DOI: 10.1038/s44318-024-00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.
Collapse
Affiliation(s)
- Aakash G Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Katerina Toropova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Lydia Daly
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Randall Centre of Cell & Molecular Biophysics, King's College London, London, UK
| | - Jennifer N Wells
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- MRC London Institute of Medical Sciences (LMS), London, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Miroslav Mladenov
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Anthony J Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
5
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Gonçalves-Santos F, De-Castro ARG, Rodrigues DRM, De-Castro MJG, Gassmann R, Abreu CMC, Dantas TJ. Hot-wiring dynein-2 establishes roles for IFT-A in retrograde train assembly and motility. Cell Rep 2023; 42:113337. [PMID: 37883232 DOI: 10.1016/j.celrep.2023.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Intraflagellar transport (IFT) trains, built around IFT-A and IFT-B complexes, are carried by opposing motors to import and export ciliary cargo. While transported by kinesin-2 on anterograde IFT trains, the dynein-2 motor adopts an autoinhibitory conformation until it needs to be activated at the ciliary tip to power retrograde IFT. Growing evidence has linked the IFT-A complex to retrograde IFT; however, its roles in this process remain unknown. Here, we use CRISPR-Cas9-mediated genome editing to disable the dynein-2 autoinhibition mechanism in Caenorhabditis elegans and assess its impact on IFT with high-resolution live imaging and photobleaching analyses. Remarkably, this dynein-2 "hot-wiring" approach reignites retrograde motility inside IFT-A-deficient cilia without triggering tug-of-war events. In addition to providing functional evidence that multiple mechanisms maintain dynein-2 inhibited during anterograde IFT, our data establish key roles for IFT-A in mediating motor-train coupling during IFT turnaround, promoting retrograde IFT initiation, and modulating dynein-2 retrograde motility.
Collapse
Affiliation(s)
- Francisco Gonçalves-Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Hiyamizu S, Qiu H, Tsurumi Y, Hamada Y, Katoh Y, Nakayama K. Dynein-2-driven intraciliary retrograde trafficking indirectly requires multiple interactions of IFT54 in the IFT-B complex with the dynein-2 complex. Biol Open 2023; 12:bio059976. [PMID: 37309605 PMCID: PMC10320715 DOI: 10.1242/bio.059976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Within cilia, the dynein-2 complex needs to be transported as an anterograde cargo to achieve its role as a motor to drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. We previously showed that interactions of WDR60 and the DYNC2H1-DYNC2LI1 dimer of dynein-2 with multiple IFT-B subunits, including IFT54, are required for the trafficking of dynein-2 as an IFT cargo. However, specific deletion of the IFT54-binding site from WDR60 demonstrated only a minor effect on dynein-2 trafficking and function. We here show that the C-terminal coiled-coil region of IFT54, which participates in its interaction with the DYNC2H1-DYNC2LI1 dimer of dynein-2 and with IFT20 of the IFT-B complex, is essential for IFT-B function, and suggest that the IFT54 middle linker region between the N-terminal WDR60-binding region and the C-terminal coiled-coil is required for ciliary retrograde trafficking, probably by mediating the effective binding of IFT-B to the dynein-2 complex, and thereby ensuring dynein-2 loading onto the anterograde IFT trains. The results presented here agree with the notion predicted from the previous structural models that the dynein-2 loading onto the anterograde IFT train relies on intricate, multivalent interactions between the dynein-2 and IFT-B complexes.
Collapse
Affiliation(s)
- Shunya Hiyamizu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hantian Qiu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Tsurumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Hamada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Hiyamizu S, Qiu H, Vuolo L, Stevenson NL, Shak C, Heesom KJ, Hamada Y, Tsurumi Y, Chiba S, Katoh Y, Stephens DJ, Nakayama K. Multiple interactions of the dynein-2 complex with the IFT-B complex are required for effective intraflagellar transport. J Cell Sci 2023; 136:286934. [PMID: 36632779 PMCID: PMC10110421 DOI: 10.1242/jcs.260462] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The dynein-2 complex must be transported anterogradely within cilia to then drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Here, we screened for potential interactions between the dynein-2 and IFT-B complexes and found multiple interactions among the dynein-2 and IFT-B subunits. In particular, WDR60 (also known as DYNC2I1) and the DYNC2H1-DYNC2LI1 dimer from dynein-2, and IFT54 (also known as TRAF3IP1) and IFT57 from IFT-B contribute to the dynein-2-IFT-B interactions. WDR60 interacts with IFT54 via a conserved region N-terminal to its light chain-binding regions. Expression of the WDR60 constructs in WDR60-knockout (KO) cells revealed that N-terminal truncation mutants lacking the IFT54-binding site fail to rescue abnormal phenotypes of WDR60-KO cells, such as aberrant accumulation of the IFT machinery around the ciliary tip and on the distal side of the transition zone. However, a WDR60 construct specifically lacking just the IFT54-binding site substantially restored the ciliary defects. In line with the current docking model of dynein-2 with the anterograde IFT trains, these results indicate that extensive interactions involving multiple subunits from the dynein-2 and IFT-B complexes participate in their connection.
Collapse
Affiliation(s)
- Shunya Hiyamizu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hantian Qiu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Yuki Hamada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Tsurumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Nair A, Greeny A, Rajendran R, Abdelgawad MA, Ghoneim MM, Raghavan RP, Sudevan ST, Mathew B, Kim H. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals (Basel) 2023; 16:147. [PMID: 37259299 PMCID: PMC9962247 DOI: 10.3390/ph16020147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023] Open
Abstract
KIF1A-associated neurological diseases (KANDs) are a group of inherited conditions caused by changes in the microtubule (MT) motor protein KIF1A as a result of KIF1A gene mutations. Anterograde transport of membrane organelles is facilitated by the kinesin family protein encoded by the MT-based motor gene KIF1A. Variations in the KIF1A gene, which primarily affect the motor domain, disrupt its ability to transport synaptic vesicles containing synaptophysin and synaptotagmin leading to various neurological pathologies such as hereditary sensory neuropathy, autosomal dominant and recessive forms of spastic paraplegia, and different neurological conditions. These mutations are frequently misdiagnosed because they result from spontaneous, non-inherited genomic alterations. Whole-exome sequencing (WES), a cutting-edge method, assists neurologists in diagnosing the illness and in planning and choosing the best course of action. These conditions are simple to be identified in pediatric and have a life expectancy of 5-7 years. There is presently no permanent treatment for these illnesses, and researchers have not yet discovered a medicine to treat them. Scientists have more hope in gene therapy since it can be used to cure diseases brought on by mutations. In this review article, we discussed some of the experimental gene therapy methods, including gene replacement, gene knockdown, symptomatic gene therapy, and cell suicide gene therapy. It also covered its clinical symptoms, pathogenesis, current diagnostics, therapy, and research advances currently occurring in the field of KAND-related disorders. This review also explained the impact that gene therapy can be designed in this direction and afford the remarkable benefits to the patients and society.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Alosh Greeny
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
10
|
Liu T, Shilliday F, Cook AD, Zeeshan M, Brady D, Tewari R, Sutherland CJ, Roberts AJ, Moores CA. Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission. Nat Commun 2022; 13:6988. [PMID: 36384964 PMCID: PMC9669022 DOI: 10.1038/s41467-022-34710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmodium species cause malaria and kill hundreds of thousands annually. The microtubule-based motor kinesin-8B is required for development of the flagellated Plasmodium male gamete, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B's essential role, we characterised the in vitro properties of kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined these motors' microtubule-bound structures using cryo-electron microscopy, which showed very similar modes of microtubule interaction in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is required for motility and depolymerisation activities of these motors. These data suggest that the mechanochemistry of Plasmodium kinesin-8Bs is functionally tuned to support flagella formation.
Collapse
Affiliation(s)
- Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Fiona Shilliday
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Alexander D Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
11
|
Weijman JF, Yadav SKN, Surridge KJ, Cross JA, Borucu U, Mantell J, Woolfson DN, Schaffitzel C, Dodding MP. Molecular architecture of the autoinhibited kinesin-1 lambda particle. SCIENCE ADVANCES 2022; 8:eabp9660. [PMID: 36112680 PMCID: PMC9481135 DOI: 10.1126/sciadv.abp9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.
Collapse
Affiliation(s)
- Johannes F. Weijman
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Katherine J. Surridge
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jessica A. Cross
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P. Dodding
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Mul W, Mitra A, Peterman EJG. Mechanisms of Regulation in Intraflagellar Transport. Cells 2022; 11:2737. [PMID: 36078145 PMCID: PMC9454703 DOI: 10.3390/cells11172737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cilia are eukaryotic organelles essential for movement, signaling or sensing. Primary cilia act as antennae to sense a cell's environment and are involved in a wide range of signaling pathways essential for development. Motile cilia drive cell locomotion or liquid flow around the cell. Proper functioning of both types of cilia requires a highly orchestrated bi-directional transport system, intraflagellar transport (IFT), which is driven by motor proteins, kinesin-2 and IFT dynein. In this review, we explore how IFT is regulated in cilia, focusing from three different perspectives on the issue. First, we reflect on how the motor track, the microtubule-based axoneme, affects IFT. Second, we focus on the motor proteins, considering the role motor action, cooperation and motor-train interaction plays in the regulation of IFT. Third, we discuss the role of kinases in the regulation of the motor proteins. Our goal is to provide mechanistic insights in IFT regulation in cilia and to suggest directions of future research.
Collapse
Affiliation(s)
| | | | - Erwin J. G. Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Rah G, Cha H, Kim J, Song J, Kim H, Oh YK, Ahn C, Kang M, Kim J, Yoo KH, Kim MJ, Ko HW, Ko JY, Park JH. KLC3 Regulates Ciliary Trafficking and Cyst Progression in CILK1 Deficiency-Related Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1726-1741. [PMID: 35961787 PMCID: PMC9529174 DOI: 10.1681/asn.2021111455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ciliogenesis-associated kinase 1 (CILK1) is a ciliary gene that localizes in primary cilia and regulates ciliary transport. Mutations in CILK1 cause various ciliopathies. However, the pathogenesis of CILK1-deficient kidney disease is unknown. METHODS To examine whether CILK1 deficiency causes PKD accompanied by abnormal cilia, we generated mice with deletion of Cilk1 in cells of the renal collecting duct. A yeast two-hybrid system and coimmunoprecipitation (co-IP) were used to identify a novel regulator, kinesin light chain-3 (KLC3), of ciliary trafficking and cyst progression in the Cilk1-deficient model. Immunocytochemistry and co-IP were used to examine the effect of KLC3 on ciliary trafficking of the IFT-B complex and EGFR. We evaluated the effects of these genes on ciliary trafficking and cyst progression by modulating CILK1 and KLC3 expression levels. RESULTS CILK1 deficiency leads to PKD accompanied by abnormal ciliary trafficking. KLC3 interacts with CILK1 at cilia bases and is increased in cyst-lining cells of CILK1-deficient mice. KLC3 overexpression promotes ciliary recruitment of IFT-B and EGFR in the CILK1 deficiency condition, which contributes to the ciliary defect in cystogenesis. Reduction in KLC3 rescued the ciliary defects and inhibited cyst progression caused by CILK1 deficiency. CONCLUSIONS Our findings suggest that CILK1 deficiency in renal collecting ducts leads to PKD and promotes ciliary trafficking via increased KLC3.
Collapse
Affiliation(s)
- Gyuyeong Rah
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hwayeon Cha
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Joohee Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jongmin Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Min Jung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| |
Collapse
|
14
|
Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J 2022; 41:e110410. [PMID: 35698800 PMCID: PMC9379549 DOI: 10.15252/embj.2021110410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.
Collapse
Affiliation(s)
- Joseph George Beton
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Jim Monistrol
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erin C Johnston
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anthony John Roberts
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Bernd Gerhard Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK.,Department of Physics & Astronomy, University College London, London, UK
| | - Helen R Saibil
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| |
Collapse
|
15
|
Qiu H, Tsurumi Y, Katoh Y, Nakayama K. Combinations of deletion and missense variations of the dynein-2 DYNC2LI1 subunit found in skeletal ciliopathies cause ciliary defects. Sci Rep 2022; 12:31. [PMID: 34997029 PMCID: PMC8742128 DOI: 10.1038/s41598-021-03950-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cilia play crucial roles in sensing and transducing extracellular signals. Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes, with the aid of kinesin-2 and dynein-2 motors. The dynein-2 complex drives retrograde trafficking of the IFT machinery after its transportation to the ciliary tip as an IFT cargo. Mutations in genes encoding the dynein-2-specific subunits (DYNC2H1, WDR60, WDR34, DYNC2LI1, and TCTEX1D2) are known to cause skeletal ciliopathies. We here demonstrate that several pathogenic variants of DYNC2LI1 are compromised regarding their ability to interact with DYNC2H1 and WDR60. When expressed in DYNC2LI1-knockout cells, deletion variants of DYNC2LI1 were unable to rescue the ciliary defects of these cells, whereas missense variants, as well as wild-type DYNC2LI1, restored the normal phenotype. DYNC2LI1-knockout cells coexpressing one pathogenic deletion variant together with wild-type DYNC2LI1 demonstrated a normal phenotype. In striking contrast, DYNC2LI1-knockout cells coexpressing the deletion variant in combination with a missense variant, which mimics the situation of cells of compound heterozygous ciliopathy individuals, demonstrated ciliary defects. Thus, DYNC2LI1 deletion variants found in individuals with skeletal ciliopathies cause ciliary defects when combined with a missense variant, which expressed on its own does not cause substantial defects.
Collapse
Affiliation(s)
- Hantian Qiu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuta Tsurumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,General Research Institute, Hoyu Co., Ltd., Nagakute, Aichi, 480-1136, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C, Carvalho AX, Gassmann R, Abreu CMC, Dantas TJ. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol 2022; 221:212746. [PMID: 34739033 PMCID: PMC8576871 DOI: 10.1083/jcb.202010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homologue, WDR-60, and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing retrograde motor availability at the ciliary tip. Consistent with this, we show that fewer dynein-2 motors power WDR-60–deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone’s NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT, and the NPHP module as a roadblock to dynein-2 passage through the transition zone.
Collapse
Affiliation(s)
- Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cármen Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JSH. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. eLife 2022; 11:82218. [PMID: 36476638 PMCID: PMC9799976 DOI: 10.7554/elife.82218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Research Institute, Children's National HospitalWashingtonUnited States
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown UniversityProvidenceUnited States
| |
Collapse
|
18
|
Cook AD, Roberts AJ, Atherton J, Tewari R, Topf M, Moores CA. Cryo-EM structure of a microtubule-bound parasite kinesin motor and implications for its mechanism and inhibition. J Biol Chem 2021; 297:101063. [PMID: 34375637 PMCID: PMC8526983 DOI: 10.1016/j.jbc.2021.101063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Plasmodium parasites cause malaria and are responsible annually for hundreds of thousands of deaths. Kinesins are a superfamily of microtubule-dependent ATPases that play important roles in the parasite replicative machinery, which is a potential target for antiparasite drugs. Kinesin-5, a molecular motor that cross-links microtubules, is an established antimitotic target in other disease contexts, but its mechanism in Plasmodium falciparum is unclear. Here, we characterized P. falciparum kinesin-5 (PfK5) using cryo-EM to determine the motor's nucleotide-dependent microtubule-bound structure and introduced 3D classification of individual motors into our microtubule image processing pipeline to maximize our structural insights. Despite sequence divergence in PfK5, the motor exhibits classical kinesin mechanochemistry, including ATP-induced subdomain rearrangement and cover neck bundle formation, consistent with its plus-ended directed motility. We also observed that an insertion in loop5 of the PfK5 motor domain creates a different environment in the well-characterized human kinesin-5 drug-binding site. Our data reveal the possibility for selective inhibition of PfK5 and can be used to inform future exploration of Plasmodium kinesins as antiparasite targets.
Collapse
Affiliation(s)
- Alexander D Cook
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom.
| |
Collapse
|
19
|
Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M, Diener D, Pigino G, Lechtreck K. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J Cell Sci 2021; 134:271904. [PMID: 34415027 DOI: 10.1242/jcs.259010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, the degree of train disassembly at the tip remains unknown. Here, we performed two-color imaging of fluorescent protein-tagged IFT components, which indicates that IFT-A and IFT-B proteins from a given anterograde train usually return in the same set of retrograde trains. Similarly, concurrent turnaround was typical for IFT-B proteins and the IFT dynein subunit D1bLIC-GFP but severance was observed as well. Our data support a simple model of IFT turnaround, in which IFT-A, IFT-B and IFT dynein typically remain associated at the tip and segments of the anterograde trains convert directly into retrograde trains. Continuous association of IFT-A, IFT-B and IFT dynein during tip remodeling could balance protein entry and exit, preventing the build-up of IFT material in flagella.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mareike Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Dennis Diener
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Kubo S, Yang SK, Black CS, Dai D, Valente-Paterno M, Gaertig J, Ichikawa M, Bui KH. Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM. EMBO Rep 2021; 22:e52911. [PMID: 34338432 PMCID: PMC8419702 DOI: 10.15252/embr.202152911] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Corbin S Black
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Daniel Dai
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | | | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGAUSA
| | - Muneyoshi Ichikawa
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- PRESTOJapan Science and Technology AgencyKawaguchiJapan
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
- Centre de Recherche en Biologie StructuraleMcGill UniversityMontréalQCCanada
| |
Collapse
|
21
|
Abstract
The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and tip. To provide effective transport, IFT-A and IFT-B adaptor protein complexes assemble into highly repetitive polymers, called IFT trains, that are powered by the motors kinesin-2 and IFT-dynein to move bidirectionally along the microtubules. This dynamic system must be precisely regulated to shuttle different cargo proteins between the ciliary tip and base. In this Cell Science at a Glance article and the accompanying poster, we discuss the current structural and mechanistic understanding of IFT trains and how they function as macromolecular machines to assemble the structure of the cilium.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| |
Collapse
|
22
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Vig A, Poulter JA, Ottaviani D, Tavares E, Toropova K, Tracewska AM, Mollica A, Kang J, Kehelwathugoda O, Paton T, Maynes JT, Wheway G, Arno G, Khan KN, McKibbin M, Toomes C, Ali M, Di Scipio M, Li S, Ellingford J, Black G, Webster A, Rydzanicz M, Stawiński P, Płoski R, Vincent A, Cheetham ME, Inglehearn CF, Roberts A, Heon E. DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration. Genet Med 2020; 22:2041-2051. [PMID: 32753734 PMCID: PMC7708302 DOI: 10.1038/s41436-020-0915-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.
Collapse
Affiliation(s)
- Anjali Vig
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
| | - James A Poulter
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | | | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Katerina Toropova
- Department of Biological Sciences, Birbeck, University of London, London, UK
| | - Anna Maria Tracewska
- DNA Analysis Unit, ŁUKASIEWICZ Research Network-PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Antonio Mollica
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jasmine Kang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | | | - Tara Paton
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Kamron N Khan
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Martin McKibbin
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Carmel Toomes
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Manir Ali
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shuning Li
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jamie Ellingford
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
| | - Graeme Black
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | | | | | - Anthony Roberts
- Department of Biological Sciences, Birbeck, University of London, London, UK.
| | - Elise Heon
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Institute of Medical Science, The University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
24
|
Liu X, Rao L, Gennerich A. The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat Commun 2020; 11:5952. [PMID: 33230227 PMCID: PMC7683685 DOI: 10.1038/s41467-020-19477-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
25
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
26
|
Petriman NA, Lorentzen E. Structural insights into the architecture and assembly of eukaryotic flagella. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:289-299. [PMID: 33150161 PMCID: PMC7590530 DOI: 10.15698/mic2020.11.734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Cilia and flagella are slender projections found on most eukaryotic cells including unicellular organisms such as Chlamydomonas, Trypanosoma and Tetrahymena, where they serve motility and signaling functions. The cilium is a large molecular machine consisting of hundreds of different proteins that are trafficked into the organelle to organize a repetitive microtubule-based axoneme. Several recent studies took advantage of improved cryo-EM methodology to unravel the high-resolution structures of ciliary complexes. These include the recently reported purification and structure determination of axonemal doublet microtubules from the green algae Chlamydomonas reinhardtii, which allows for the modeling of more than 30 associated protein factors to provide deep molecular insight into the architecture and repetitive nature of doublet microtubules. In addition, we will review several recent contributions that dissect the structure and function of ciliary trafficking complexes that ferry structural and signaling components between the cell body and the cilium organelle.
Collapse
Affiliation(s)
- Narcis-Adrian Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
28
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Marzo MG, Griswold JM, Markus SM. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat Cell Biol 2020; 22:559-569. [PMID: 32341548 DOI: 10.1038/s41556-020-0492-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
31
|
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble. Int J Mol Sci 2020; 21:ijms21082843. [PMID: 32325779 PMCID: PMC7215579 DOI: 10.3390/ijms21082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.
Collapse
|
32
|
Peña A, Sweeney A, Cook AD, Locke J, Topf M, Moores CA. Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy. Structure 2020; 28:450-457.e5. [PMID: 32084356 PMCID: PMC7139217 DOI: 10.1016/j.str.2020.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 01/23/2023]
Abstract
Kinesin-5 motors are vital mitotic spindle components, and disruption of their function perturbs cell division. We investigated the molecular mechanism of the human kinesin-5 inhibitor GSK-1, which allosterically promotes tight microtubule binding. GSK-1 inhibits monomeric human kinesin-5 ATPase and microtubule gliding activities, and promotes the motor's microtubule stabilization activity. Using cryoelectron microscopy, we determined the 3D structure of the microtubule-bound motor-GSK-1 at 3.8 Å overall resolution. The structure reveals that GSK-1 stabilizes the microtubule binding surface of the motor in an ATP-like conformation, while destabilizing regions of the motor around the empty nucleotide binding pocket. Density corresponding to GSK-1 is located between helix-α4 and helix-α6 in the motor domain at its interface with the microtubule. Using a combination of difference mapping and protein-ligand docking, we characterized the kinesin-5-GSK-1 interaction and further validated this binding site using mutagenesis. This work opens up new avenues of investigation of kinesin inhibition and spindle perturbation.
Collapse
Affiliation(s)
- Alejandro Peña
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Aaron Sweeney
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Alexander D Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Julia Locke
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK.
| |
Collapse
|
33
|
Vuolo L, Stevenson NL, Mukhopadhyay AG, Roberts AJ, Stephens DJ. Cytoplasmic dynein-2 at a glance. J Cell Sci 2020; 133:133/6/jcs240614. [DOI: 10.1242/jcs.240614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Cytoplasmic dynein-2 is a motor protein complex that drives the movement of cargoes along microtubules within cilia, facilitating the assembly of these organelles on the surface of nearly all mammalian cells. Dynein-2 is crucial for ciliary function, as evidenced by deleterious mutations in patients with skeletal abnormalities. Long-standing questions include how the dynein-2 complex is assembled, regulated, and switched between active and inactive states. A combination of model organisms, in vitro cell biology, live-cell imaging, structural biology and biochemistry has advanced our understanding of the dynein-2 motor. In this Cell Science at a Glance article and the accompanying poster, we discuss the current understanding of dynein-2 and its roles in ciliary assembly and function.
Collapse
Affiliation(s)
- Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Nicola L. Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Aakash G. Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
34
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
35
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
36
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
37
|
Elshenawy MM, Canty JT, Oster L, Ferro LS, Zhou Z, Blanchard SC, Yildiz A. Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin. Nat Chem Biol 2019; 15:1093-1101. [PMID: 31501589 PMCID: PMC6810841 DOI: 10.1038/s41589-019-0352-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Cytoplasmic dynein is an ATP-driven motor that transports intracellular cargos along microtubules. Dynein adopts an inactive conformation when not attached to a cargo, and motility is activated when dynein assembles with dynactin and a cargo adaptor. It was unclear how active dynein-dynactin complexes step along microtubules and transport cargos under tension. Using single-molecule imaging, we showed that dynein-dynactin advances by taking 8 to 32-nm steps toward the microtubule minus end with frequent sideways and backward steps. Multiple dyneins collectively bear a large amount of tension because the backward stepping rate of dynein is insensitive to load. Recruitment of two dyneins to dynactin increases the force generation and the likelihood of winning against kinesin in a tug-of-war but does not directly affect velocity. Instead, velocity is determined by cargo adaptors and tail-tail interactions between two closely packed dyneins. Our results show that cargo adaptors modulate dynein motility and force generation for a wide range of cellular functions.
Collapse
Affiliation(s)
- Mohamed M Elshenawy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Liya Oster
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA.
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Abstract
Cells from all three domains of life on Earth utilize motile macromolecular devices that protrude from the cell surface to generate forces that allow them to swim through fluid media. Research carried out on archaea during the past decade or so has led to the recognition that, despite their common function, the motility devices of the three domains display fundamental differences in their properties and ancestry, reflecting a striking example of convergent evolution. Thus, the flagella of bacteria and the archaella of archaea employ rotary filaments that assemble from distinct subunits that do not share a common ancestor and generate torque using energy derived from distinct fuel sources, namely chemiosmotic ion gradients and FlaI motor-catalyzed ATP hydrolysis, respectively. The cilia of eukaryotes, however, assemble via kinesin-2-driven intraflagellar transport and utilize microtubules and ATP-hydrolyzing dynein motors to beat in a variety of waveforms via a sliding filament mechanism. Here, with reference to current structural and mechanistic information about these organelles, we briefly compare the evolutionary origins, assembly and tactic motility of archaella, flagella and cilia.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California @ Davis, CA 95616, USA.
| |
Collapse
|
39
|
Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 2019; 26:823-829. [PMID: 31451806 PMCID: PMC6774794 DOI: 10.1038/s41594-019-0286-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Collapse
|
40
|
Rao L, Berger F, Nicholas MP, Gennerich A. Molecular mechanism of cytoplasmic dynein tension sensing. Nat Commun 2019; 10:3332. [PMID: 31350388 PMCID: PMC6659695 DOI: 10.1038/s41467-019-11231-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic dynein is the most complex cytoskeletal motor protein and is responsible for numerous biological functions. Essential to dynein’s function is its capacity to respond anisotropically to tension, so that its microtubule-binding domains bind microtubules more strongly when under backward load than forward load. The structural mechanisms by which dynein senses directional tension, however, are unknown. Using a combination of optical tweezers, mutagenesis, and chemical cross-linking, we show that three structural elements protruding from the motor domain—the linker, buttress, and stalk—together regulate directional tension-sensing. We demonstrate that dynein’s anisotropic response to directional tension is mediated by sliding of the coiled-coils of the stalk, and that coordinated conformational changes of dynein’s linker and buttress control this process. We also demonstrate that the stalk coiled-coils assume a previously undescribed registry during dynein’s stepping cycle. We propose a revised model of dynein’s mechanochemical cycle which accounts for our findings. The cytoplasmic motor protein dynein senses directional tension; its microtubule-binding domains bind microtubules more strongly when under backward load. Here the authors use optical tweezers to show that the linker, buttress, and stalk domains together regulate directional tension-sensing.
Collapse
Affiliation(s)
- Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Florian Berger
- Laboratory of Sensory Neuroscience, Rockefeller University, New York, NY, 10065, USA
| | - Matthew P Nicholas
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd, Rochester, NY, 14642, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
42
|
Grotjahn DA, Lander GC. Setting the dynein motor in motion: New insights from electron tomography. J Biol Chem 2019; 294:13202-13217. [PMID: 31285262 DOI: 10.1074/jbc.rev119.003095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dyneins are ATP-fueled macromolecular machines that power all minus-end microtubule-based transport processes of molecular cargo within eukaryotic cells and play essential roles in a wide variety of cellular functions. These complex and fascinating motors have been the target of countless structural and biophysical studies. These investigations have elucidated the mechanism of ATP-driven force production and have helped unravel the conformational rearrangements associated with the dynein mechanochemical cycle. However, despite decades of research, it remains unknown how these molecular motions are harnessed to power massive cellular reorganization and what are the regulatory mechanisms that drive these processes. Recent advancements in electron tomography imaging have enabled researchers to visualize dynein motors in their transport environment with unprecedented detail and have led to exciting discoveries regarding dynein motor function and regulation. In this review, we will highlight how these recent structural studies have fundamentally propelled our understanding of the dynein motor and have revealed some unexpected, unifying mechanisms of regulation.
Collapse
Affiliation(s)
- Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
43
|
Tsurumi Y, Hamada Y, Katoh Y, Nakayama K. Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking. Mol Biol Cell 2019; 30:658-670. [PMID: 30649997 PMCID: PMC6589695 DOI: 10.1091/mbc.e18-10-0678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
The dynein-2 complex drives retrograde ciliary protein trafficking by associating with the intraflagellar transport (IFT) machinery, containing IFT-A and IFT-B complexes. We recently showed that the dynein-2 complex, which comprises 11 subunits, can be divided into three subcomplexes: DYNC2H1-DYNC2LI1, WDR34-DYNLL1/DYNLL2-DYNLRB1/DYNLRB2, and WDR60-TCTEX1D2-DYNLT1/DYNLT3. In this study, we demonstrated that the WDR34 intermediate chain interacts with the two light chains, DYNLL1/DYNLL2 and DYNLRB1/DYNLRB2, via its distinct sites. Phenotypic analyses of WDR34-knockout cells exogenously expressing various WDR34 constructs showed that the interactions of the WDR34 intermediate chain with the light chains are crucial for ciliary retrograde protein trafficking. Furthermore, we found that expression of the WDR34 N-terminal construct encompassing the light chain-binding sites but lacking the WD40 repeat domain inhibits ciliary biogenesis and retrograde trafficking in a dominant-negative manner, probably by sequestering WDR60 or the light chains. Taken together with phenotypic differences of several WDR34-knockout cell lines, these results indicate that incorporation of DYNLL1/DYNLL2 and DYNLRB1/DYNLRB2 into the dynein-2 complex via interactions with the WDR34 intermediate chain is crucial for dynein-2 function in retrograde ciliary protein trafficking.
Collapse
Affiliation(s)
- Yuta Tsurumi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Hamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
45
|
Kinoshita Y, Kambara T, Nishikawa K, Kaya M, Higuchi H. Step Sizes and Rate Constants of Single-headed Cytoplasmic Dynein Measured with Optical Tweezers. Sci Rep 2018; 8:16333. [PMID: 30397249 PMCID: PMC6218510 DOI: 10.1038/s41598-018-34549-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
A power stroke of dynein is thought to be responsible for the stepping of dimeric dynein. However, the actual size of the displacement driven by a power stroke has not been directly measured. Here, the displacements of single-headed cytoplasmic dynein were measured by optical tweezers. The mean displacement of dynein interacting with microtubule was ~8 nm at 100 µM ATP, and decreased sigmoidally with a decrease in the ATP concentration. The ATP dependence of the mean displacement was explained by a model that some dynein molecules bind to microtubule in pre-stroke conformation and generate 8-nm displacement, while others bind in the post-stroke one and detach without producing a power stroke. Biochemical assays showed that the binding affinity of the post-stroke dynein to a microtubule was ~5 times higher than that of pre-stroke dynein, and the dissociation rate was ~4 times lower. Taking account of these rates, we conclude that the displacement driven by a power stroke is 8.3 nm. A working model of dimeric dynein driven by the 8-nm power stroke was proposed.
Collapse
Affiliation(s)
- Yoshimi Kinoshita
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taketoshi Kambara
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.,Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kaori Nishikawa
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoshi Kaya
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
46
|
Jordan MA, Diener DR, Stepanek L, Pigino G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat Cell Biol 2018; 20:1250-1255. [PMID: 30323187 DOI: 10.1038/s41556-018-0213-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
Movement of cargos along microtubules plays key roles in diverse cellular processes, from signalling to mitosis. In cilia, rapid movement of ciliary components along the microtubules to and from the assembly site is essential for the assembly and disassembly of the structure itself1. This bidirectional transport, known as intraflagellar transport (IFT)2, is driven by the anterograde motor kinesin-23 and the retrograde motor dynein-1b (dynein-2 in mammals)4,5. However, to drive retrograde transport, dynein-1b must first be delivered to the ciliary tip by anterograde IFT6. Although, the presence of opposing motors in bidirectional transport processes often leads to periodic stalling and slowing of cargos7, IFT is highly processive1,2,8. Using cryo-electron tomography, we show that a tug-of-war between kinesin-2 and dynein-1b is prevented by loading dynein-1b onto anterograde IFT trains in an autoinhibited form and by positioning it away from the microtubule track to prevent binding. Once at the ciliary tip, dynein-1b must transition into an active form and engage microtubules to power retrograde trains. These findings provide a striking example of how coordinated structural changes mediate the behaviour of complex cellular machinery.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dennis R Diener
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ludek Stepanek
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
47
|
King SM. Turning dyneins off bends cilia. Cytoskeleton (Hoboken) 2018; 75:372-381. [PMID: 30176122 PMCID: PMC6249098 DOI: 10.1002/cm.21483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
Ciliary and flagellar motility is caused by the ensemble action of inner and outer dynein arm motors acting on axonemal doublet microtubules. The switch point or switching hypothesis, for which much experimental and computational evidence exists, requires that dyneins on only one side of the axoneme are actively working during bending, and that this active motor region propagate along the axonemal length. Generation of a reverse bend results from switching active sliding to the opposite side of the axoneme. However, the mechanochemical states of individual dynein arms within both straight and curved regions and how these change during beating has until now eluded experimental observation. Recently, Lin and Nicastro used high-resolution cryo-electron tomography to determine the power stroke state of dyneins along flagella of sea urchin sperm that were rapidly frozen while actively beating. The results reveal that axonemal dyneins are generally in a pre-power stroke conformation that is thought to yield a force-balanced state in straight regions; inhibition of this conformational state and microtubule release on specific doublets may then lead to a force imbalance across the axoneme allowing for microtubule sliding and consequently the initiation and formation of a ciliary bend. Propagation of this inhibitory signal from base-to-tip and switching the microtubule doublet subsets that are inhibited is proposed to result in oscillatory motion.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and BiophysicsUniversity of Connecticut Health CenterFarmingtonConnecticut
| |
Collapse
|
48
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
49
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
50
|
Tan R, Foster PJ, Needleman DJ, McKenney RJ. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell 2018; 44:233-247.e4. [PMID: 29401420 DOI: 10.1016/j.devcel.2017.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
Cytoplasmic dynein-1 is a minus-end-directed motor protein that transports cargo over long distances and organizes the intracellular microtubule (MT) network. How dynein motor activity is harnessed for these diverse functions remains unknown. Here, we have uncovered a mechanism for how processive dynein-dynactin complexes drive MT-MT sliding, reorganization, and focusing, activities required for mitotic spindle assembly. We find that motors cooperatively accumulate, in limited numbers, at MT minus-ends. Minus-end accumulations drive MT-MT sliding, independent of MT orientation, resulting in the clustering of MT minus-ends. At a mesoscale level, activated dynein-dynactin drives the formation and coalescence of MT asters. Macroscopically, dynein-dynactin activity leads to bulk contraction of millimeter-scale MT networks, suggesting that minus-end accumulations of motors produce network-scale contractile stresses. Our data provide a model for how localized dynein activity is harnessed by cells to produce contractile stresses within the cytoskeleton, for example, during mitotic spindle assembly.
Collapse
Affiliation(s)
- Ruensern Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA
| | - Peter J Foster
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|