1
|
Bettin N, Querido E, Gialdini I, Grupelli GP, Goretti E, Cantarelli M, Andolfato M, Soror E, Sontacchi A, Jurikova K, Chartrand P, Cusanelli E. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends. SCIENCE ADVANCES 2024; 10:eadk4387. [PMID: 38865460 PMCID: PMC11168465 DOI: 10.1126/sciadv.adk4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Collapse
Affiliation(s)
- Nicole Bettin
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Irene Gialdini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Glenda Paola Grupelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elena Goretti
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Cantarelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Andolfato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eslam Soror
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandra Sontacchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
2
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
3
|
Wang Y. Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1. Immunohorizons 2024; 8:198-213. [PMID: 38392560 PMCID: PMC10916360 DOI: 10.4049/immunohorizons.2400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, IA City, IA
| |
Collapse
|
4
|
Wang Y. Erdr1 orchestrates macrophage polarization and determines cell fate via dynamic interplay with YAP1 and Mid1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557960. [PMID: 37781614 PMCID: PMC10541097 DOI: 10.1101/2023.09.17.557960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely distributed, extremely conserved secreted factor found in both humans and mice. Erdr1 is highly linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, it has emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in T cells and NK cell function, its role in macrophage remains unclear. This study aims to explore the function and mechanism of Erdr1 in IL-1β production in macrophages. Data manifest Erdr1 could play an inhibition role in IL-1β production, which also has been reported by previous research. What significance is we discovered Erdr1 can promote IL-1β production which is associated with Erdr1 dose and cell density. We observed that Erdr1 was inhibited in pro-inflammatory (M1) macrophages but was upregulated in anti-inflammatory (M2) macrophages compared to naive macrophages. We hypothesized that Erdr1 dual drives and modulates IL-1β production by binding with distinct adaptors via concentration change. Mechanistically, we demonstrated that Erdr1 dual regulates IL-1β production by dynamic interaction with YAP1 and Mid1 by distinct domains. Erdr1-YAP1 interplay mediates macrophage M2 polarization by promoting an anti-inflammatory response, enhancing catabolic metabolism, and leading to sterile cell death. Whereas, Erdr1-Mid1 interplay mediates macrophage M1 polarization by initiating a pro-inflammatory response, facilitating anabolic metabolism, and causing inflammatory cell death. This study highlights Erdr1 orchestrates macrophage polarization and determines cell date by regulating YAP1 through non-classical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA (Current)
| |
Collapse
|
5
|
Chen YC, Chen CY, Chiang TW, Chan MH, Hsiao M, Ke HM, Tsai I, Chuang TJ. Detecting intragenic trans-splicing events from non-co-linearly spliced junctions by hybrid sequencing. Nucleic Acids Res 2023; 51:7777-7797. [PMID: 37497782 PMCID: PMC10450196 DOI: 10.1093/nar/gkad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | | | | |
Collapse
|
6
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
7
|
Biswas U, Deb Mallik T, Pschirer J, Lesche M, Sameith K, Jessberger R. Cohesin SMC1β promotes closed chromatin and controls TERRA expression at spermatocyte telomeres. Life Sci Alliance 2023; 6:e202201798. [PMID: 37160312 PMCID: PMC10172765 DOI: 10.26508/lsa.202201798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Previous data showed that meiotic cohesin SMC1β protects spermatocyte telomeres from damage. The underlying reason, however, remained unknown as the expressions of telomerase and shelterin components were normal in Smc1β -/- spermatocytes. Here. we report that SMC1β restricts expression of the long noncoding RNA TERRA (telomeric repeat containing RNA) in spermatocytes. In somatic cell lines increased TERRA was reported to cause telomere damage through altering telomere chromatin structure. In Smc1β -/- spermatocytes, we observed strongly increased levels of TERRA which accumulate on damaged chromosomal ends, where enhanced R-loop formation was found. This suggested a more open chromatin configuration near telomeres in Smc1β -/- spermatocytes, which was confirmed by ATAC-seq. Telomere-distal regions were not affected by the absence of SMC1β but RNA-seq revealed increased transcriptional activity in telomere-proximal regions. Thus, SMC1β promotes closed chromatin specifically near telomeres and limits TERRA expression in spermatocytes.
Collapse
Affiliation(s)
- Uddipta Biswas
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tanaya Deb Mallik
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Pschirer
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Lesche
- Center for Molecular and Cellular Bioengineering, Genome Center Technology Platform, Dresden, Germany
| | - Katrin Sameith
- Center for Molecular and Cellular Bioengineering, Genome Center Technology Platform, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Ryabykh GK, Kuznetsov SV, Korostelev YD, Sigorskikh AI, Zharikova AA, Mironov AA. RNA-Chrom: a manually curated analytical database of RNA-chromatin interactome. Database (Oxford) 2023; 2023:baad025. [PMID: 37221043 PMCID: PMC10205464 DOI: 10.1093/database/baad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023]
Abstract
Every year there is more and more evidence that non-coding RNAs play an important role in biological processes affecting various levels of organization of living systems: from the cellular (regulation of gene expression, remodeling and maintenance of chromatin structure, co-transcriptional suppression of transposons, splicing, post-transcriptional RNA modifications, etc.) to cell populations and even organismal ones (development, aging, cancer, cardiovascular and many other diseases). The development and creation of mutually complementary databases that will aggregate, unify and structure different types of data can help to reach the system level of studying non-coding RNAs. Here we present the RNA-Chrom manually curated analytical database, which contains the coordinates of billions of contacts of thousands of human and mouse RNAs with chromatin. Through the user-friendly web interface (https://rnachrom2.bioinf.fbb.msu.ru/), two approaches to the analysis of the RNA-chromatin interactome were implemented. Firstly, to find out whether the RNA of interest to a user contacts with chromatin, and if so, with which genes or DNA loci? Secondly, to find out which RNAs are in contact with the DNA locus of interest to a user (and probably participate in its regulation), and if there are such, what is the nature of their interaction? For a more detailed study of contact maps and their comparison with other data, the web interface allows a user to view them in the UCSC Genome Browser. Database URL https://genome.ucsc.edu/.
Collapse
Affiliation(s)
- G K Ryabykh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - S V Kuznetsov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Y D Korostelev
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - A I Sigorskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - A A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., Moscow, 101000, Russia
| | - A A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
9
|
Telomere Transcription in MLL-Rearranged Leukemia Cell Lines: Increased Levels of TERRA Associate with Lymphoid Lineage and Are Independent of Telomere Length and Ploidy. Biomedicines 2023; 11:biomedicines11030925. [PMID: 36979904 PMCID: PMC10046226 DOI: 10.3390/biomedicines11030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Telomere transcription into telomeric repeat-containing RNA (TERRA) is an integral component of all aspects of chromosome end protection consisting of telomerase- or recombination-dependent telomere elongation, telomere capping, and the preservation of the (sub)telomeric heterochromatin structure. The chromatin modifier and transcriptional regulator MLL binds to telomeres and regulates TERRA transcription in telomere length homeostasis and response to telomere dysfunction. MLL fusion proteins (MLL-FPs), the product of MLL rearrangements in leukemia, also bind to telomeric chromatin. However, an effect on telomere transcription in MLL-rearranged (MLL-r) leukemia has not yet been evaluated. Here, we show increased UUAGGG repeat-containing RNA levels in MLL-r acute lymphoblastic leukemia (ALL) when compared to non-MLL-r ALL and myeloid leukemia. MLL rearrangements do not affect telomere length and UUAGGG repeat-containing RNA levels correlate with mean telomere length and reflect increased levels of TERRA. Furthermore, high levels of TERRA in MLL-r ALL occur in the presence of telomerase activity and are independent of ploidy, an underestimated source of variation on the overall transcriptome size in a cell. This MLL rearrangement-dependent and lymphoid lineage-associated increase in levels of TERRA supports a sustained telomere transcription by MLL-FPs that correlates with marked genomic stability previously reported in pediatric MLL-r ALL.
Collapse
|
10
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
11
|
Guh CY, Shen HJ, Chen LW, Chiu PC, Liao IH, Lo CC, Chen Y, Hsieh YH, Chang TC, Yen CP, Chen YY, Chen TWW, Chen LY, Wu CS, Egly JM, Chu HPC. XPF activates break-induced telomere synthesis. Nat Commun 2022; 13:5781. [PMID: 36184605 PMCID: PMC9527253 DOI: 10.1038/s41467-022-33428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative Lengthening of Telomeres (ALT) utilizes a recombination mechanism and break-induced DNA synthesis to maintain telomere length without telomerase, but it is unclear how cells initiate ALT. TERRA, telomeric repeat-containing RNA, forms RNA:DNA hybrids (R-loops) at ALT telomeres. We show that depleting TERRA using an RNA-targeting Cas9 system reduces ALT-associated PML bodies, telomere clustering, and telomere lengthening. TERRA interactome reveals that TERRA interacts with an extensive subset of DNA repair proteins in ALT cells. One of TERRA interacting proteins, the endonuclease XPF, is highly enriched at ALT telomeres and recruited by telomeric R-loops to induce DNA damage response (DDR) independent of CSB and SLX4, and thus triggers break-induced telomere synthesis and lengthening. The attraction of BRCA1 and RAD51 at telomeres requires XPF in FANCM-deficient cells that accumulate telomeric R-loops. Our results suggest that telomeric R-loops activate DDR via XPF to promote homologous recombination and telomere replication to drive ALT.
Collapse
Affiliation(s)
- Chia-Yu Guh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Hong-Jhih Shen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Liv WeiChien Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Pei-Chen Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - I-Hsin Liao
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Chen-Chia Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yunfei Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Ting-Chia Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Chien-Ping Yen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Shyi Wu
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Strasbourg, France.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Ping Catherine Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan.
| |
Collapse
|
12
|
Grimm NB, Lee JT. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends Genet 2022; 38:920-943. [PMID: 35248405 PMCID: PMC9915138 DOI: 10.1016/j.tig.2022.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
The human X-chromosome harbors only 4% of our genome but carries over 20% of genes associated with intellectual disability. Given that they inherit only one X-chromosome, males are more frequently affected by X-linked neurodevelopmental genetic disorders than females. However, despite inheriting two X-chromosomes, females can also be affected because X-chromosome inactivation enables only one of two X-chromosomes to be expressed per cell. For Rett syndrome and similar X-linked disorders affecting females, disease-specific treatments have remained elusive. However, a cure may be found within their own cells because every sick cell carries a healthy copy of the affected gene on the inactive X (Xi). Therefore, selective Xi reactivation may be a viable approach that would address the root cause of various X-linked disorders. Here, we discuss Rett syndrome and compare current approaches in the pharmaceutical pipeline to restore MECP2 function. We then focus on Xi reactivation and review available methods, lessons learned, and future directions.
Collapse
Affiliation(s)
- Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Ryabykh GK, Mylarshchikov DE, Kuznetsov SV, Sigorskikh AI, Ponomareva TY, Zharikova AA, Mironov AA. RNA–Chromatin Interactome: What? Where? When? Mol Biol 2022. [DOI: 10.1134/s0026893322020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Karlsen TR, Olsen MB, Kong XY, Yang K, Quiles-Jiménez A, Kroustallaki P, Holm S, Lines GT, Aukrust P, Skarpengland T, Bjørås M, Dahl TB, Nilsen H, Gregersen I, Halvorsen B. NEIL3-deficient bone marrow displays decreased hematopoietic capacity and reduced telomere length. Biochem Biophys Rep 2022; 29:101211. [PMID: 35079641 PMCID: PMC8777121 DOI: 10.1016/j.bbrep.2022.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Deficiency of NEIL3, a DNA repair enzyme, has significant impact on mouse physiology, including vascular biology and gut health, processes related to aging. Leukocyte telomere length (LTL) is suggested as a marker of biological aging, and shortened LTL is associated with increased risk of cardiovascular disease. NEIL3 has been shown to repair DNA damage in telomere regions in vitro. Herein, we explored the role of NEIL3 in telomere maintenance in vivo by studying bone marrow cells from atherosclerosis-prone NEIL3-deficient mice. We found shortened telomeres and decreased activity of the telomerase enzyme in bone marrow cells derived from Apoe -/- Neil3 -/- as compared to Apoe -/- mice. Furthermore, Apoe -/- Neil3 -/- mice had decreased leukocyte levels as compared to Apoe -/- mice, both in bone marrow and in peripheral blood. Finally, RNA sequencing of bone marrow cells from Apoe -/- Neil3 -/- and Apoe -/- mice revealed different expression levels of genes involved in cell cycle regulation, cellular senescence and telomere protection. This study points to NEIL3 as a telomere-protecting protein in murine bone marrow in vivo.
Collapse
Affiliation(s)
- Tom Rune Karlsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria B. Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiang Y. Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Penelope Kroustallaki
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tuva B. Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital HF, Rikshospitalet, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
17
|
Libertini G, Shubernetskaya O, Corbi G, Ferrara N. Is Evidence Supporting the Subtelomere-Telomere Theory of Aging? BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1526-1539. [PMID: 34937532 DOI: 10.1134/s0006297921120026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The telomere theory tries to explain cellular mechanisms of aging as mainly caused by telomere shortening at each duplication. The subtelomere-telomere theory overcomes various shortcomings of telomere theory by highlighting the essential role of subtelomeric DNA in aging mechanisms. The present work illustrates and deepens the correspondence between assumptions and implications of subtelomere-telomere theory and experimental results. In particular, it is investigated the evidence regarding the relationships between aging and (i) epigenetic modifications; (ii) oxidation and inflammation; (iii) telomere protection; (iv) telomeric heterochromatin hood; (v) gradual cell senescence; (vi) cell senescence; and (vii) organism decline with telomere shortening. The evidence appears broadly in accordance or at least compatible with the description and implications of the subtelomere-telomere theory. In short, phenomena of cellular aging, by which the senescence of the whole organism is determined in various ways, appear substantially dependent on epigenetic modifications regulated by the subtelomere-telomere-telomeric hood-telomerase system. These phenomena appear to be not random, inevitable, and irreversible but rather induced and regulated by genetically determined mechanisms, and modifiable and reversible by appropriate methods. All this supports the thesis that aging is a genetically programmed and regulated phenoptotic phenomenon and is against the opposite thesis of aging as caused by random and inevitable degenerative factors.
Collapse
Affiliation(s)
- Giacinto Libertini
- Member of the Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
18
|
Abstract
Telomeres protect chromosome ends from nucleolytic degradation, uncontrolled recombination by DNA repair enzymes and checkpoint signaling, and they provide mechanisms for their maintenance by semiconservative DNA replication, telomerase and homologous recombination. The telomeric long noncoding RNA TERRA is transcribed from a large number of chromosome ends. TERRA has been implicated in modulating telomeric chromatin structure and checkpoint signaling, and in telomere maintenance by homology directed repair, and telomerase – when telomeres are damaged or very short. Recent work indicates that TERRA association with telomeres involves the formation of DNA:RNA hybrid structures that can be formed post transcription by the RAD51 DNA recombinase, which in turn may trigger homologous recombination between telomeric repeats and telomere elongation. In this review, we describe the mechanisms of TERRA recruitment to telomeres, R-loop formation and its regulation by shelterin proteins. We discuss the consequences of R-loop formation, with regard to telomere maintenance by DNA recombination and how this may impinge on telomere replication while counteracting telomere shortening in normal cells and in ALT cancer cells, which maintain telomeres in the absence of telomerase.
Collapse
Affiliation(s)
- Rita Valador Fernandes
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
19
|
Saha A, Gaurav AK, Pandya UM, Afrin M, Sandhu R, Nanavaty V, Schnur B, Li B. TbTRF suppresses the TERRA level and regulates the cell cycle-dependent TERRA foci number with a TERRA binding activity in its C-terminal Myb domain. Nucleic Acids Res 2021; 49:5637-5653. [PMID: 34048580 PMCID: PMC8191777 DOI: 10.1093/nar/gkab401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Amit Kumar Gaurav
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Unnati M Pandya
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Marjia Afrin
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Brittny Schnur
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Yin H, Wei C, Lee JT. Revisiting the consequences of deleting the X inactivation center. Proc Natl Acad Sci U S A 2021; 118:e2102683118. [PMID: 34161282 PMCID: PMC8237661 DOI: 10.1073/pnas.2102683118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells equalize X-linked dosages between the male (XY) and female (XX) sexes by silencing one X chromosome in the female sex. This process, known as "X chromosome inactivation" (XCI), requires a master switch within the X inactivation center (Xic). The Xic spans several hundred kilobases in the mouse and includes a number of regulatory noncoding genes that produce functional transcripts. Over three decades, transgenic and deletional analyses have demonstrated both the necessity and sufficiency of the Xic to induce XCI, including the steps of X chromosome counting, choice, and initiation of whole-chromosome silencing. One recent study, however, reported that deleting the noncoding sequences of the Xic surprisingly had no effect for XCI and attributed a sufficiency to drive counting to the coding gene, Rnf12/Rlim Here, we revisit the question by creating independent Xic deletion cell lines. Multiple independent clones carrying heterozygous deletions of the Xic display an inability to up-regulate Xist expression, consistent with a counting defect. This defect is rescued by a second site mutation in Tsix occurring in trans, bypassing the defect in counting. These findings reaffirm the essential nature of noncoding Xic elements for the initiation of XCI.
Collapse
Affiliation(s)
- Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
21
|
DNA-RNA Hybrid (R-Loop): From a Unified Picture of the Mammalian Telomere to the Genome-Wide Profile. Cells 2021; 10:cells10061556. [PMID: 34205454 PMCID: PMC8233970 DOI: 10.3390/cells10061556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular extract without antibody that allows their physical isolation and determination of their RNA nucleotide sequence. We then define in the normal mouse and human sperm genomes the notion of stable DNA associated RNA terminal R-loop complexes, including TERRA molecules synthesized from local promoters of every chromosome. Furthermore, the first strong evidence of all telomeric structures, applied additionally to the whole murine sperm genome compared to the testes, showed reproducible R-loop complexes of the whole genome and suggesting a defined profile in the sperm genome for the next generation.
Collapse
|
22
|
Libertini G, Corbi G, Nicola F. Importance and Meaning of TERRA Sequences for Aging Mechanisms. BIOCHEMISTRY (MOSCOW) 2021; 85:1505-1517. [PMID: 33705290 DOI: 10.1134/s0006297920120044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Any theory suggesting an adaptive meaning for aging implicitly postulates the existence of specific mechanisms, genetically determined and modulated, causing progressive decline of an organism. According to the subtelomere-telomere theory, each telomere is covered by a hood formed in the first cell of an organism having a size preserved at each subsequent duplication. Telomere shortening, which is quantitatively different for each cell type according to the telomerase regulation, causes the hood to slide on the subtelomere repressing it by the telomeric position effect. At this point, the theory postulates existence of subtelomeric regulatory sequences, whose progressive transcriptional repression by the hood should cause cellular alterations that would be the likely determinant of aging manifestations. However, sequences with characteristics of these hypothetical sequences have already been described and documented. They are the [sub]TElomeric Repeat-containing RNA (TERRA) sequences. The repression of TERRA sequences causes progressively: (i) down- or up-regulation of many other regulatory sequences; (ii) increase in the probability of activation of cell senescence program (blockage of the ability to replicate and very significant alterations of the cellular functions). When cell senescence program has not been triggered and the repression is partial, there is a partial alteration of the cellular functions that is easily reversible by telomerase activation. Location of the extremely important sequences in chromosomal parts that are most vulnerable to repression by the telomeric hood is evolutionarily unjustifiable if aging is not considered adaptive: this location must be necessarily adaptive with the specific function of determining aging of the cell and consequently of the whole organism.
Collapse
Affiliation(s)
- G Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Asti, 14100, Italy.
| | - G Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy.,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - F Nicola
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy.,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
23
|
Viceconte N, Loriot A, Lona Abreu P, Scheibe M, Fradera Sola A, Butter F, De Smet C, Azzalin CM, Arnoult N, Decottignies A. PAR-TERRA is the main contributor to telomeric repeat-containing RNA transcripts in normal and cancer mouse cells. RNA (NEW YORK, N.Y.) 2021; 27:106-121. [PMID: 33127860 PMCID: PMC7749631 DOI: 10.1261/rna.076281.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/28/2020] [Indexed: 05/12/2023]
Abstract
Telomeric repeat-containing RNA (TERRA) molecules play important roles at telomeres, from heterochromatin regulation to telomerase activity control. In human cells, TERRA is transcribed from subtelomeric promoters located on most chromosome ends and associates with telomeres. The origin of mouse TERRA molecules is, however, unclear, as transcription from the pseudoautosomal PAR locus was recently suggested to account for the vast majority of TERRA in embryonic stem cells (ESC). Here, we confirm the production of TERRA from both the chromosome 18q telomere and the PAR locus in mouse embryonic fibroblasts, ESC, and various mouse cancer and immortalized cell lines, and we identify two novel sources of TERRA on mouse chromosome 2 and X. Using various approaches, we show that PAR-TERRA molecules account for the majority of TERRA transcripts, displaying an increase of two to four orders of magnitude compared to the telomeric 18q transcript. Finally, we present a SILAC-based pull-down screen revealing a large overlap between TERRA-interacting proteins in human and mouse cells, including PRC2 complex subunits, chromatin remodeling factors, DNA replication proteins, Aurora kinases, shelterin complex subunits, Bloom helicase, Coilin, and paraspeckle proteins. Hence, despite originating from distinct genomic regions, mouse and human TERRA are likely to play similar functions in cells.
Collapse
Affiliation(s)
- Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Axelle Loriot
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Patrícia Lona Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marion Scheibe
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Albert Fradera Sola
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Charles De Smet
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nausica Arnoult
- MCBD-University of Colorado Boulder, Boulder, Colorado 80309-0347, USA
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
24
|
Toubiana S, Larom G, Smoom R, Duszynski RJ, Godley LA, Francastel C, Velasco G, Selig S. Regulation of telomeric function by DNA methylation differs between humans and mice. Hum Mol Genet 2020; 29:3197-3210. [PMID: 32916696 DOI: 10.1093/hmg/ddaa206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Gal Larom
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Robert J Duszynski
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Lucy A Godley
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Guillaume Velasco
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Sara Selig
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
25
|
Aeby E, Lee HG, Lee YW, Kriz A, del Rosario BC, Oh HJ, Boukhali M, Haas W, Lee JT. Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nat Cell Biol 2020; 22:1116-1129. [PMID: 32807903 DOI: 10.1038/s41556-020-0558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing "BioRBP", an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X-X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.
Collapse
|
26
|
Barral A, Déjardin J. Telomeric Chromatin and TERRA. J Mol Biol 2020; 432:4244-4256. [DOI: 10.1016/j.jmb.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
|
27
|
Katoh K, Aiba K, Fukushi D, Yoshimura J, Suzuki Y, Mitsui J, Morishita S, Tuji S, Yamada K, Wakamatsu N. Clinical and molecular genetic characterization of two female patients harboring the Xq27.3q28 deletion with different ratios of X chromosome inactivation. Hum Mutat 2020; 41:1447-1460. [PMID: 32485067 DOI: 10.1002/humu.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 11/10/2022]
Abstract
A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.
Collapse
Affiliation(s)
- Kimiko Katoh
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kaori Aiba
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Tuji
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.,Department of Neurology, Neurology and Stroke Center, Takamatsu Municipal Hospital, Takamatsu, Kagawa, Japan.,Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
28
|
Brieño-Enríquez MA, Moak SL, Abud-Flores A, Cohen PE. Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouse†. Biol Reprod 2020; 100:950-962. [PMID: 30423030 DOI: 10.1093/biolre/ioy243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and telomeric repeat-containing RNA (TERRA). Proposed TERRA functions are wide ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the presence and role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization, we identify TERRA transcripts in female PGCs at 11.5, 12.5, and 13.5 days postcoitum. In male PGCs, the earliest detection TERRA was at 12.5 dpc where we observed cells with either zero or one TERRA focus. Using qRT-PCR, we evaluated chromosome-specific TERRA expression. Female PGCs showed TERRA expression at 11.5 dpc from eight different chromosome subtelomeric regions (chromosomes 1, 2, 7, 9, 11, 13, 17, and 18) while in male PGCs, TERRA expression was confined to the chromosome 17. Most TERRA transcription in 13.5 dpc male PGCs arose from chromosomes 2 and 6. TERRA interacting proteins were evaluated using identification of direct RNA interacting proteins (iDRiP), which identified 48 in female and 26 in male protein interactors from PGCs at 13.5 dpc. We validated two different proteins: the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Steffanie L Moak
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Anyul Abud-Flores
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Kwapisz M, Morillon A. Subtelomeric Transcription and its Regulation. J Mol Biol 2020; 432:4199-4219. [PMID: 32035903 PMCID: PMC7374410 DOI: 10.1016/j.jmb.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The subtelomeres, highly heterogeneous repeated sequences neighboring telomeres, are transcribed into coding and noncoding RNAs in a variety of organisms. Telomereproximal subtelomeric regions produce non-coding transcripts i.e., ARRET, αARRET, subTERRA, and TERRA, which function in telomere maintenance. The role and molecular mechanisms of the majority of subtelomeric transcripts remain unknown. This review depicts the current knowledge and puts into perspective the results obtained in different models from yeasts to humans.
Collapse
Affiliation(s)
- Marta Kwapisz
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
30
|
Porreca RM, Herrera-Moyano E, Skourti E, Law PP, Gonzalez Franco R, Montoya A, Faull P, Kramer H, Vannier JB. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. eLife 2020; 9:49817. [PMID: 31934863 PMCID: PMC6986873 DOI: 10.7554/elife.49817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/11/2020] [Indexed: 12/29/2022] Open
Abstract
Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.
Collapse
Affiliation(s)
- Rosa Maria Porreca
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Emilia Herrera-Moyano
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eleni Skourti
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roser Gonzalez Franco
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,The Francis Crick Institute, Proteomics Mass Spectrometry Science and Technology Platform, London, United Kingdom
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability group, Medical Research Council - London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Saha A, Nanavaty VP, Li B. Telomere and Subtelomere R-loops and Antigenic Variation in Trypanosomes. J Mol Biol 2019; 432:4167-4185. [PMID: 31682833 DOI: 10.1016/j.jmb.2019.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei is a kinetoplastid parasite that causes African trypanosomiasis, which is fatal if left untreated. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune responses. VSGs are exclusively expressed from subtelomeric expression sites (ESs) where VSG genes are flanked by upstream 70 bp repeats and downstream telomeric repeats. The telomere downstream of the active VSG is transcribed into a long-noncoding RNA (TERRA), which forms RNA:DNA hybrids (R-loops) with the telomeric DNA. At an elevated level, telomere R-loops cause more telomeric and subtelomeric double-strand breaks (DSBs) and increase VSG switching rate. In addition, stabilized R-loops are observed at the 70 bp repeats and immediately downstream of ES-linked VSGs in RNase H defective cells, which also have an increased amount of subtelomeric DSBs and more frequent VSG switching. Although subtelomere plasticity is expected to be beneficial to antigenic variation, severe defects in subtelomere integrity and stability increase cell lethality. Therefore, regulation of the telomere and 70 bp repeat R-loop levels is important for the balance between antigenic variation and cell fitness in T. brucei. In addition, the high level of the active ES transcription favors accumulation of R-loops at the telomere and 70 bp repeats, providing an intrinsic mechanism for local DSB formation, which is a strong inducer of VSG switching.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal P Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
32
|
Nguyen HQ, Lee SD, Wu CT. Paircounting. Trends Genet 2019; 35:787-790. [PMID: 31521404 DOI: 10.1016/j.tig.2019.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
X inactivation presents two longstanding puzzles: the counting and choice of X chromosomes. Here, we consider counting and choice in the context of pairing, both of the X and of the autosomes.
Collapse
Affiliation(s)
- Huy Q Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - S Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
33
|
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019; 8:cells8030246. [PMID: 30875900 PMCID: PMC6468625 DOI: 10.3390/cells8030246] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
Collapse
|
34
|
Pollex T, Heard E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat Genet 2019; 51:285-295. [PMID: 30643252 DOI: 10.1038/s41588-018-0305-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
During X-chromosome inactivation (XCI), one of the two X-inactivation centers (Xics) upregulates the noncoding RNA Xist to initiate chromosomal silencing in cis. How one Xic is chosen to upregulate Xist remains unclear. Models proposed include localization of one Xic at the nuclear envelope or transient homologous Xic pairing followed by asymmetric transcription factor distribution at Xist's antisense Xite/Tsix locus. Here, we use a TetO/TetR system that can inducibly relocate one or both Xics to the nuclear lamina in differentiating mouse embryonic stem cells. We find that neither nuclear lamina localization nor reduction of Xic homologous pairing influences monoallelic Xist upregulation or choice-making. We also show that transient pairing is associated with biallelic expression, not only at Xist/Tsix but also at other X-linked loci that can escape XCI. Finally, we show that Xic pairing occurs in wavelike patterns, coinciding with genome dynamics and the onset of global regulatory programs during early differentiation.
Collapse
Affiliation(s)
- Tim Pollex
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
35
|
Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nat Commun 2018; 9:5004. [PMID: 30479398 PMCID: PMC6258728 DOI: 10.1038/s41467-018-07446-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/24/2018] [Indexed: 01/17/2023] Open
Abstract
The mammalian inactive X-chromosome (Xi) is structurally distinct from all other chromosomes and serves as a model for how the 3D genome is organized. The Xi shows weakened topologically associated domains and is instead organized into megadomains and superloops directed by the noncoding loci, Dxz4 and Firre. Their functional significance is presently unclear, though one study suggests that they permit Xi genes to escape silencing. Here, we find that megadomains do not precede Xist expression or Xi gene silencing. Deleting Dxz4 disrupts the sharp megadomain border, whereas deleting Firre weakens intra-megadomain interactions. However, deleting Dxz4 and/or Firre has no impact on Xi silencing and gene escape. Nor does it affect Xi nuclear localization, stability, or H3K27 methylation. Additionally, ectopic integration of Dxz4 and Xist is not sufficient to form megadomains on autosomes. We conclude that Dxz4 and megadomains are dispensable for Xi silencing and escape from X-inactivation. The mammalian inactive X-chromosome (Xi) is organized into megadomains and superloops directed by the noncoding loci, Dxz4 and Firre. Here the authors provide evidence that megadomains do not precede Xist expression or Xi gene silencing, and suggest that Dxz4, Firre, and megadomains are dispensable for Xi silencing and escape from X-inactivation.
Collapse
|
36
|
Diman A, Decottignies A. Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn. FEBS J 2017; 285:1389-1398. [PMID: 29240300 DOI: 10.1111/febs.14363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Long noncoding RNAs, produced from distinct regions of the chromosomes, are emerging as new key players in several important biological processes. The long noncoding RNAs add a new layer of complexity to cellular regulatory pathways, from transcription to cellular trafficking or chromatin remodeling. More than 25 years ago, the discovery of a transcriptional activity at telomeres of protozoa ended the long-lasting belief that telomeres were transcriptionally silent. Since then, progressively accumulating evidences established that production of TElomeric Repeat-containing RNA (TERRA) was a general feature of eukaryotic cells. Whether TERRA molecules always originate from the telomeres or whether they can be transcribed from internal telomeric repeats as well is however still a matter of debate. Whether TERRA transcripts always localize to telomeres and play similar roles in all eukaryotic cells is also unclear. We review the studies on TERRA localization in the cell, its composition and some aspects of its transcriptional regulation to summarize the current knowledge and controversies about the genomic origin of TERRA, with a focus on human and mouse TERRA.
Collapse
Affiliation(s)
- Aurélie Diman
- Genetic & Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic & Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
DNA-RNA interactions are critical for chromosome condensation in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:12225-12230. [PMID: 29087325 DOI: 10.1073/pnas.1711285114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosome (nucleoid) conformation dictates faithful regulation of gene transcription. The conformation is condition-dependent and is guided by several nucleoid-associated proteins (NAPs) and at least one nucleoid-associated noncoding RNA, naRNA4. Here we investigated the molecular mechanism of how naRNA4 and the major NAP, HU, acting together organize the chromosome structure by establishing multiple DNA-DNA contacts (DNA condensation). We demonstrate that naRNA4 uniquely acts by forming complexes that may not involve long stretches of DNA-RNA hybrid. Also, uncommonly, HU, a chromosome-associated protein that is essential in the DNA-RNA interactions, is not present in the final complex. Thus, HU plays a catalytic (chaperone) role in the naRNA4-mediated DNA condensation process.
Collapse
|
38
|
Krivega I, Dean A. A tetrad of chromatin interactions for chromosome pairing in X inactivation. Nat Struct Mol Biol 2017; 24:607-608. [PMID: 28771462 PMCID: PMC6247907 DOI: 10.1038/nsmb.3447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An unusual pairing of homologous X chromosomes occurs during X inactivation. A new study in mouse embryonic stem cells shows that telomeres and the telomeric RNA PAR-TERRA are responsible for additional pairwise interactions that guide Xic–Xic pairing.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology at the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology at the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|