1
|
Nasim F, Kumar MS, Alvala M, Qureshi IA. Unraveling the peculiarities and development of novel inhibitors of leishmanial arginyl-tRNA synthetase. FEBS J 2024; 291:2955-2979. [PMID: 38525644 DOI: 10.1111/febs.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aminoacylation by tRNA synthetase is a crucial part of protein synthesis and is widely recognized as a therapeutic target for drug development. Unlike the arginyl-tRNA synthetases (ArgRSs) reported previously, here, we report an ArgRS of Leishmania donovani (LdArgRS) that can follow the canonical two-step aminoacylation process. Since a previously uncharacterized insertion region is present within its catalytic domain, we implemented the splicing by overlap extension PCR (SOE-PCR) method to create a deletion mutant (ΔIns-LdArgRS) devoid of this region to investigate its function. Notably, the purified LdArgRS and ΔIns-LdArgRS exhibited different oligomeric states along with variations in their enzymatic activity. The full-length protein showed better catalytic efficiency than ΔIns-LdArgRS, and the insertion region was identified as the tRNA binding domain. In addition, a benzothiazolo-coumarin derivative (Comp-7j) possessing high pharmacokinetic properties was recognized as a competitive and more specific inhibitor of LdArgRS than its human counterpart. Removal of the insertion region altered the mode of inhibition for ΔIns-LdArgRS and caused a reduction in the inhibitor's binding affinity. Both purified proteins depicted variances in the secondary structural content upon ligand binding and thus, thermostability. Apart from the trypanosomatid-specific insertion and Rossmann fold motif, LdArgRS revealed typical structural characteristics of ArgRSs, and Comp-7j was found to bind within the ATP binding pocket. Furthermore, the placement of tRNAArg near the insertion region enhanced the stability and compactness of LdArgRS compared to other ligands. This study thus reports a unique ArgRS with respect to catalytic as well as structural properties, which can be considered a plausible drug target for the derivation of novel anti-leishmanial agents.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Zou X, Ye S, Tan Y. Potential disease biomarkers for diabetic retinopathy identified through Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 14:1339374. [PMID: 38274229 PMCID: PMC10808752 DOI: 10.3389/fendo.2023.1339374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Background Diabetic retinopathy (DR), a leading cause of vision loss, has limited options for effective prevention and treatment. This study aims to utilize genomics and proteomics data to identify potential drug targets for DR. Methods We utilized plasma protein quantitative trait loci data from the Atherosclerosis Risk in Communities Study and the Icelandic Decoding Genetics Study for discovery and replication, respectively. Genetic associations with DR, including its subtypes, were derived from the FinnGen study. Mendelian Randomization (MR) analysis estimated associations between protein levels and DR risk, complemented by colocalization analysis to examine shared causal variants. Results Our MR analysis identified significant associations of specific plasma proteins with DR and proliferative DR (PDR). Elevated genetically predicted levels of WARS (OR = 1.16; 95% CI = 0.095-0.208, FDR = 1.31×10-4) and SIRPG (OR = 1.15; 95% CI = 0.071-0.201, FDR = 1.46×10-2) were associated with higher DR risk, while increased levels of ALDOC (OR = 1.56; 95% CI = 0.246-0.637, FDR = 5.48×10-3) and SIRPG (OR = 1.15; 95% CI = 0.068-0.208, FDR = 4.73×10-2) were associated with higher PDR risk. These findings were corroborated by strong colocalization evidence. Conclusions Our study highlights WARS, SIRPG, and ALDOC as significant proteins associated with DR and PDR, providing a basis for further exploration in drug development. Additional studies are needed to validate these proteins as disease biomarkers across diverse populations.
Collapse
Affiliation(s)
- Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China
| | - Suna Ye
- Senzhen Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Fan S, Lv G, Feng X, Wu G, Jin Y, Yan M, Yang Z. Structural insights into the specific interaction between Geobacillus stearothermophilus tryptophanyl-tRNA synthetase and antimicrobial Chuangxinmycin. J Biol Chem 2022; 298:101580. [PMID: 35031320 PMCID: PMC8814664 DOI: 10.1016/j.jbc.2022.101580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/29/2022] Open
Abstract
The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangxin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangteng Wu
- Research and Development Department, ArNuXon Pharm-Sci Co, Ltd, Beijing, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Zou Y, Yang Y, Fu X, He X, Liu M, Zong T, Li X, Htet Aung L, Wang Z, Yu T. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:372-387. [PMID: 34484863 PMCID: PMC8399643 DOI: 10.1016/j.omtn.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are widely found in organisms, which can activate amino acids and make them bind to tRNA through ester bond to form the corresponding aminoyl-tRNA. The classic function of ARS is to provide raw materials for protein biosynthesis. Recently, emerging evidence demonstrates that ARSs play critical roles in controlling inflammation, immune responses, and tumorigenesis as well as other important physiological and pathological processes. With the recent development of genome and exon sequencing technology, as well as the discovery of new clinical cases, ARSs have been reported to be closely associated with a variety of cardiovascular diseases (CVDs), particularly angiogenesis and cardiomyopathy. Intriguingly, aminoacylation was newly identified and reported to modify substrate proteins, thereby regulating protein activity and functions. Sensing the availability of intracellular amino acids is closely related to the regulation of a variety of cell physiology. In this review, we summarize the research progress on the mechanism of CVDs caused by abnormal ARS function and introduce the clinical phenotypes and characteristics of CVDs related to ARS dysfunction. We also highlight the potential roles of aminoacylation in CVDs. Finally, we discuss some of the limitations and challenges of present research. The current findings suggest the significant roles of ARSs involved in the progress of CVDs, which present the potential clinical values as novel diagnostic and therapeutic targets in CVD treatment.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Lynn Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| |
Collapse
|
5
|
Ahn YH, Oh SC, Zhou S, Kim TD. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22094523. [PMID: 33926067 PMCID: PMC8123658 DOI: 10.3390/ijms22094523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.
Collapse
Affiliation(s)
- Young Ha Ahn
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Correspondence: (S.Z.); (T.-D.K.)
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.Z.); (T.-D.K.)
| |
Collapse
|
6
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Mini tryptophanyl-tRNA synthetase is required for a synthetic phenotype in vascular smooth muscle cells induced by IFN-γ-mediated β2-adrenoceptor signaling. Cytokine 2020; 127:154940. [DOI: 10.1016/j.cyto.2019.154940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023]
|
8
|
Jin M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp Mol Med 2019; 51:1-10. [PMID: 30613102 PMCID: PMC6321835 DOI: 10.1038/s12276-018-0196-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tryptophanyl tRNA synthetase (WRS) is an essential enzyme as it catalyzes the ligation of tryptophan to its cognate tRNA during translation. Interestingly, mammalian WRS has evolved to acquire domains or motifs for novel functions beyond protein synthesis; WRS can also further expand its functions via alternative splicing and proteolytic cleavage. WRS is localized not only to the nucleus but also to the extracellular space, playing a key role in innate immunity, angiogenesis, and IFN-γ signaling. In addition, the expression of WRS varies significantly in different tissues and pathological states, implying that it plays unique roles in physiological homeostasis and immune defense. This review addresses the current knowledge regarding the evolution, structural features, and context-dependent functions of WRS, particularly focusing on its roles in immune regulation. Targeting tryptophanyl tRNA synthetase (WRS), an evolutionarily conserved enzyme involved in protein synthesis, could be an effective strategy for modulating the immune system. In addition to helping translate mRNA into amino acid sequences in cytoplasm, human WRS can be secreted and activate immune responses against invading pathogens. Mirim Jin at Gachon University, Incheon, South Korea, reviews recent studies on the structure, expression pattern and functions of WRS other than protein synthesis. High levels of WRS protein have been found in patients with sepsis and autoimmune diseases suggesting that inhibiting WRS could be a potential therapeutic approach for treating these conditions. Further research into WRS will shed light not only on how it regulates the immune system, but also on how it exerts other reported effects on blood vessel formation and cell migration.
Collapse
Affiliation(s)
- Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Korea. .,Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Korea.
| |
Collapse
|
9
|
Yeung ML, Jia L, Yip CCY, Chan JFW, Teng JLL, Chan KH, Cai JP, Zhang C, Zhang AJ, Wong WM, Kok KH, Lau SKP, Woo PCY, Lo JYC, Jin DY, Shih SR, Yuen KY. Human tryptophanyl-tRNA synthetase is an IFN-γ-inducible entry factor for Enterovirus. J Clin Invest 2018; 128:5163-5177. [PMID: 30153112 DOI: 10.1172/jci99411] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) receptors that have been identified to date cannot fully explain the pathogenesis of EV-A71, which is an important global cause of hand, foot, and mouth disease and life-threatening encephalitis. We identified an IFN-γ-inducible EV-A71 cellular entry factor, human tryptophanyl-tRNA synthetase (hWARS), using genome-wide RNAi library screening. The importance of hWARS in mediating virus entry and infectivity was confirmed by virus attachment, in vitro pulldown, antibody/antigen blocking, and CRISPR/Cas9-mediated deletion. Hyperexpression and plasma membrane translocation of hWARS were observed in IFN-γ-treated semipermissive (human neuronal NT2) and cDNA-transfected nonpermissive (mouse fibroblast L929) cells, resulting in their sensitization to EV-A71 infection. Our hWARS-transduced mouse infection model showed pathological changes similar to those seen in patients with severe EV-A71 infection. Expression of hWARS is also required for productive infection by other human enteroviruses, including the clinically important coxsackievirus A16 (CV-A16) and EV-D68. This is the first report to our knowledge on the discovery of an entry factor, hWARS, that can be induced by IFN-γ for EV-A71 infection. Given that we detected high levels of IFN-γ in patients with severe EV-A71 infection, our findings extend the knowledge of the pathogenicity of EV-A71 in relation to entry factor expression upon IFN-γ stimulation and the therapeutic options for treating severe EV-A71-associated complications.
Collapse
Affiliation(s)
- Man Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lilong Jia
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jade L L Teng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaoyu Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna J Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wan-Man Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Y C Lo
- Public Health Laboratory Centre, Department of Health, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infection, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China.,University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
11
|
Miyanokoshi M, Yokosawa T, Wakasugi K. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J Biol Chem 2018; 293:8428-8438. [PMID: 29666190 DOI: 10.1074/jbc.ra117.001247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Wakasugi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Ni R, Luo L. A noncanonical function of histidyl-tRNA synthetase: inhibition of vascular hyperbranching during zebrafish development. FEBS Open Bio 2018; 8:722-731. [PMID: 29744287 PMCID: PMC5929932 DOI: 10.1002/2211-5463.12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 11/09/2022] Open
Abstract
Histidyl‐tRNA synthetase (Hars) catalyzes the ligation of histidine residues to cognate tRNA. Here, we demonstrate a noncanonical function of Hars in vascular development in zebrafish. We obtained a novel zebrafish cq34 mutant which exhibited hyperbranching of cranial and intersegmental blood vessels 48 h after fertilization. The gene responsible for this phenotype was identified as hars. We found the increased expression of cdh5 and vegfa in the harscq34 mutant. Knockdown of cdh5 in the mutant reduced disordered connections of the hindbrain capillaries. Inhibition of vascular endothelial growth factor signaling suppressed the abnormal vascular branching observed in the mutant. Moreover, the human HARSmRNA rescued the vascular defects in the cq34 mutant. Thus, the noncanonical function of Hars regulates vascular development, mainly by modulating expression of cdh5 and vegfa.
Collapse
Affiliation(s)
- Rui Ni
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| |
Collapse
|
13
|
Xu X, Zhou H, Zhou Q, Hong F, Vo MN, Niu W, Wang Z, Xiong X, Nakamura K, Wakasugi K, Schimmel P, Yang XL. An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biol 2017; 15:649-658. [PMID: 28910573 PMCID: PMC6103731 DOI: 10.1080/15476286.2017.1377868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) in vertebrates contains a N-terminal extension in front of the catalytic core. Proteolytic removal of the N-terminal 93 amino acids gives rise to T2-TrpRS, which has potent anti-angiogenic activity mediated through its extracellular interaction with VE-cadherin. Zinc has been shown to have anti-angiogenic effects and can bind to human TrpRS. However, the connection between zinc and the anti-angiogenic function of TrpRS has not been explored. Here we report that zinc binding can induce structural relaxation in human TrpRS to facilitate the proteolytic generation of a T2-TrpRS-like fragment. The zinc-binding site is likely to be contained within T2-TrpRS, and the zinc-bound conformation of T2-TrpRS is mimicked by mutation H130R. We determined the crystal structure of H130R T2-TrpRS at 2.8 Å resolution, which reveals drastically different conformation from that of wild-type (WT) T2-TrpRS. The conformational change creates larger binding surfaces for VE-cadherin as suggested by molecular dynamic simulations. Surface plasmon resonance analysis indicates more than 50-fold increase in binding affinity of H130R T2-TrpRS for VE-cadherin, compared to WT T2-TrpRS. The enhanced interaction is also confirmed by a cell-based binding analysis. These results suggest that zinc plays an important role in activating TrpRS for angiogenesis regulation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China,Contact Xiaoling Xu Institute of Aging Research, School of Medicine, Hangzhou Normal University, Room D-615, No.1378 Wenyi West Road, Zhejiang Province, 311121, Hangzhou, China
| | - Huihao Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Quansheng Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Fei Hong
- aTyr Pharma, 3545 John Hopkins Court, San Diego, CA, USA
| | - My-Nuong Vo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wanqiang Niu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
| | - Xiaolin Xiong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kanaha Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA,Xiang-Lei Yang Department of Molecular Medicine, The Scripps Research Institute, BCC 110 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
14
|
Tsai PC, Soong BW, Mademan I, Huang YH, Liu CR, Hsiao CT, Wu HT, Liu TT, Liu YT, Tseng YT, Lin KP, Yang UC, Chung KW, Choi BO, Nicholson GA, Kennerson ML, Chan CC, De Jonghe P, Cheng TH, Liao YC, Züchner S, Baets J, Lee YC. A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy. Brain 2017; 140:1252-1266. [PMID: 28369220 DOI: 10.1093/brain/awx058] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022] Open
Abstract
Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Inès Mademan
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerpen 2610, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan.,Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Rung Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Hung-Ta Wu
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Radiology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yo-Tsen Liu
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Yen-Ting Tseng
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan.,Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2139, Sydney, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2139, Sydney, Australia
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei 10051, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerpen 2610, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerpen 2650, Belgium
| | - Tzu-Hao Cheng
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerpen 2610, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerpen 2650, Belgium
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
15
|
Moen SO, Edwards TE, Dranow DM, Clifton MC, Sankaran B, Van Voorhis WC, Sharma A, Manoil C, Staker BL, Myler PJ, Lorimer DD. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms. Sci Rep 2017; 7:223. [PMID: 28303005 PMCID: PMC5428304 DOI: 10.1038/s41598-017-00367-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.
Collapse
Affiliation(s)
- Spencer O Moen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA. .,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA.
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Matthew C Clifton
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Berkeley, CA, 94720, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,University of Washington, Seattle, WA, 98195-6423, USA
| | - Amit Sharma
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Colin Manoil
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195-5065, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, 98109, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, 98109, USA.,University of Washington, Department of Medical Education and Biomedical Informatics & Department of Global Health, Seattle, WA, 98195, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| |
Collapse
|
16
|
Huhn AJ, Guerra RM, Harvey EP, Bird GH, Walensky LD. Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors. Cell Chem Biol 2016; 23:1123-1134. [PMID: 27617850 DOI: 10.1016/j.chembiol.2016.07.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Anti-apoptotic BCL-2 family proteins block cell death by trapping the critical α-helical BH3 domains of pro-apoptotic members in a surface groove. Cancer cells hijack this survival mechanism by overexpressing a spectrum of anti-apoptotic members, mounting formidable apoptotic blockades that resist chemotherapeutic treatment. Drugging the BH3-binding pockets of anti-apoptotic proteins has become a highest-priority goal, fueled by the clinical success of ABT-199, a selective BCL-2 inhibitor, in reactivating apoptosis in BCL-2-dependent cancers. BFL-1 is a BCL-2 homolog implicated in melanoma, lymphoma, and other cancers, and remains undrugged. A natural juxtaposition of two unique cysteines at the binding interface of the NOXA BH3 helix and BFL-1 pocket informed the development of stapled BH3 peptides bearing acrylamide warheads to irreversibly inhibit BFL-1 by covalent targeting. Given the frequent proximity of native cysteines to regulatory binding surfaces, covalent stapled peptide inhibitors provide a new therapeutic strategy for targeting pathologic protein interactions.
Collapse
Affiliation(s)
- Annissa J Huhn
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Rachel M Guerra
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Edward P Harvey
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci Rep 2016; 6:24750. [PMID: 27094087 PMCID: PMC4837363 DOI: 10.1038/srep24750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity.
Collapse
|
18
|
Castranova D, Davis AE, Lo BD, Miller MF, Paukstelis PJ, Swift MR, Pham VN, Torres-Vázquez J, Bell K, Shaw KM, Kamei M, Weinstein BM. Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arterioscler Thromb Vasc Biol 2016; 36:655-62. [PMID: 26821951 DOI: 10.1161/atvbaha.115.307087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.
Collapse
Affiliation(s)
- Daniel Castranova
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Andrew E Davis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brigid D Lo
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Mayumi F Miller
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Paul J Paukstelis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Matthew R Swift
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Van N Pham
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Jesús Torres-Vázquez
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kameha Bell
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kenna M Shaw
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Makoto Kamei
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brant M Weinstein
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.).
| |
Collapse
|
19
|
Zeng R, Wang M, You GY, Yue RZ, Chen YC, Zeng Z, Liu R, Qiang O, Zhang L. Effect of Mini-Tyrosyl-tRNA Synthetase/Mini-Tryptophanyl-tRNA Synthetase on Angiogenesis in Rhesus Monkeys after Acute Myocardial Infarction. Cardiovasc Ther 2016; 34:4-12. [PMID: 26400816 DOI: 10.1111/1755-5922.12161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Rui Zeng
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Mian Wang
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Gui-ying You
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Rong-zheng Yue
- Department of Nephrology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Yu-cheng Chen
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Zhi Zeng
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| | - Rui Liu
- Laboratory of Peptides Related with Human Diseases; National Laboratory of Biomedicine; Sichuan University; Chengdu China
| | - Ou Qiang
- Laboratory of Peptides Related with Human Diseases; National Laboratory of Biomedicine; Sichuan University; Chengdu China
| | - Li Zhang
- Department of Cardiology; West China Hospital; School of Clinic Medicine; Sichuan University; Chengdu China
| |
Collapse
|
20
|
Pan MR, Hsu MC, Chen LT, Hung WC. G9a orchestrates PCL3 and KDM7A to promote histone H3K27 methylation. Sci Rep 2015; 5:18709. [PMID: 26688070 PMCID: PMC4685317 DOI: 10.1038/srep18709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022] Open
Abstract
Methylation of histone H3-lysine 9 (H3K9) and H3K27 by the methyltransferase G9a and polycomb repressive complex 2 (PRC2) inhibits transcription of target genes. A crosstalk between G9a and PRC2 via direct physical interaction has been shown recently. Here, we demonstrate an alternative mechanism by which G9a promotes H3K27 methylation. Overexpression of G9a increases both H3K9 and H3K27 methylation, reduces E-cadherin expression, and induces epithelial-mesenchymal transition in PANC-1 pancreatic cancer cells. Conversely, the depletion of G9a or ectopic expression of methyltransferase-dead G9a in G9a-overexpressing gemcitabine-resistant PANC-1-R cells exhibits opposite effects. G9a promotes H3K27 methylation of the E-cadherin promoter by upregulating PCL3 to increase PRC2 promoter recruitment and by downregulating the H3K27 demethylase KDM7A to silence E-cadherin gene. The depletion of PCL3 or overexpression of KDM7A elevated expression of E-cadherin in PANC-1-R cells while ectopic expression of PCL3 or knockdown of KDM7A downregulated E-cadherin in PANC-1 cells. Collectively, we provide evidence that G9a orchestrates the dynamic balance within histone-modifying enzymes to regulate H3K27 methylation and gene expression.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.,Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
21
|
Miyanokoshi M, Tanaka T, Tamai M, Tagawa YI, Wakasugi K. Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells. Sci Rep 2013; 3:3477. [PMID: 24327169 PMCID: PMC3858792 DOI: 10.1038/srep03477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022] Open
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) catalyzes the aminoacylation of tRNATrp. mRNA of a rodent-specific alternative splice variant of TrpRS (SV-TrpRS), which results in the inclusion of an additional hexapeptide at the C-terminus of full-length TrpRS (FL-TrpRS), has been identified in murine embryonic stem (ES) cells. In the present study, we evaluated the expression of mouse TrpRS mRNA by real-time reverse transcription PCR. We show that SV-TrpRS and FL-TrpRS mRNAs are highly expressed in murine ES cells, embryo, spleen, lung, liver and uterus, and that the relative expression of SV-TrpRS compared to FL-TrpRS is significantly less in the brain. Moreover, we found that interferon-γ increases the expression of TrpRS in a mouse cell line. These results provide the first evidence for tissue-specific expression and alternative splicing of mouse TrpRS.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
22
|
Highlights on trypanosomatid aminoacyl-tRNA synthesis. Subcell Biochem 2013; 74:271-304. [PMID: 24264250 DOI: 10.1007/978-94-007-7305-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids' aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.
Collapse
|
23
|
Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, de Pouplana LR, Yogavel M, Sharma A. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One 2013; 8:e66224. [PMID: 23776638 PMCID: PMC3680381 DOI: 10.1371/journal.pone.0066224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankur Garg
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arvind Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
24
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
25
|
Abstract
Endoplasmic reticulum (ER) stress occurs upon increased levels of unfolded proteins and results in activation of cellular responses such as the unfolded protein response (UPR) and ER-associated protein degradation (ERAD). To examine ER stress, we performed a quantitative proteome analysis of human neuroblastoma cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with SDS-PAGE and LC-MS/MS. Proteins associated with the ER were overrepresented in the dataset of altered proteins. In particular, ER chaperones responsible for protein folding were significantly upregulated in response to ER stress. The important ER stress regulator 78 kDa glucose-regulated protein (GRP-78 or BiP) was highly upregulated together with several proteins that have been found to form a multiprotein complex with BiP including cyclophilin B, DnaJ homolog subfamily B member 11, endoplasmin, hypoxia upregulated protein 1, protein disulfide isomerase and protein disulfide isomerase A4 upon tunicamycin-induced ER stress. Furthermore, seven aminoacyl-tRNA synthetases and five proteins belonging to the Sec61 complex were increased in response to tunicamycin-induced ER stress.
Collapse
|
26
|
Abstract
Over the past decade, the identification of cancer-associated factors has been a subject of primary interest not only for understanding the basic mechanisms of tumorigenesis but also for discovering the associated therapeutic targets. However, aminoacyl-tRNA synthetases (ARSs) have been overlooked, mostly because many assumed that they were simply 'housekeepers' that were involved in protein synthesis. Mammalian ARSs have evolved many additional domains that are not necessarily linked to their catalytic activities. With these domains, they interact with diverse regulatory factors. In addition, the expression of some ARSs is dynamically changed depending on various cellular types and stresses. This Analysis article addresses the potential pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Sunghoon Kim
- Medicinal Bioconvergence Research Center, WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | |
Collapse
|
27
|
Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. Proc Natl Acad Sci U S A 2011; 108:8239-44. [PMID: 21536907 DOI: 10.1073/pnas.1100224108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lysyl-tRNA synthetase is bound to the multi-tRNA synthetase complex (MSC) that maintains and regulates the aminoacylation and nuclear functions of LysRS. The p38 scaffold protein binds LysRS to the MSC and, only with the appropriate cue, mobilizes LysRS for redirection to the nucleus to interact with the microphthalmia associated transcription factor (MITF). In recent work, an (α(2))(2) LysRS tetramer crystallized to yield a high-resolution structure and raised the question of how LysRS is arranged (dimer or tetramer) in the MSC to interact with p38. To understand the structural organization of the LysRS-p38 complex that regulates LysRS mobilization, we investigated the complex by use of small angle X-ray scattering and hydrogen-deuterium exchange with mass spectrometry in solution. The structure revealed a surprising α(2)β(1):β(1)α(2) organization in which a dimeric p38 scaffold holds two LysRS α(2) dimers in a parallel configuration. Each of the N-terminal 48 residues of p38 binds one LysRS dimer and, in so doing, brings two copies of the LysRS dimer into the MSC. The results suggest that this unique geometry, which reconfigures the LysRS tetramer from α(2):α(2) to α(2)β(1):β(1)α(2), is designed to control both retention and mobilization of LysRS from the MSC.
Collapse
|
28
|
Inhibition of mini-TyrRS-induced angiogenesis response in endothelial cells by VE-cadherin-dependent mini-TrpRS. Heart Vessels 2011; 27:193-201. [DOI: 10.1007/s00380-011-0137-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
29
|
Merritt EA, Arakaki TL, Gillespie R, Napuli AJ, Kim JE, Buckner FS, Van Voorhis WC, Verlinde CLMJ, Fan E, Zucker F, Hol WGJ. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Mol Biochem Parasitol 2011; 177:20-8. [PMID: 21255615 DOI: 10.1016/j.molbiopara.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/27/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNA(Trp) molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNA(Trp) after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNA(Trp) recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs.
Collapse
Affiliation(s)
- Ethan A Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeng R, Chen YC, Zeng Z, Liu WQ, Jiang XF, Liu R, Qiang O, Li X. Effect of mini-tyrosyl-tRNA synthetase/mini-tryptophanyl-tRNA synthetase on ischemic angiogenesis in rats: proliferation and migration of endothelial cells. Heart Vessels 2010; 26:69-80. [PMID: 20963594 DOI: 10.1007/s00380-010-0032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/12/2010] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to determine the mechanism of mini-tyrosyl-tRNA synthetase/mini-tryptophanyl-tRNA synthetase (mini-TyrRS/mini-TrpRS) on ischemic angiogenesis in rats with acute myocardial infarction and proliferation, migration, potential signaling pathways of rat coronary venular endothelial cells (RCVECs). The effects of mini-TyrRS/mini-TrpRS on RCVECs proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The potential involvement of Erk and PI3K signaling pathways was explored using selective chemical inhibitor or Western-blot analysis. Left coronary artery ligation was used to establish the model of acute myocardial infarction in rats (Sprague-Dawley male rats, 200-250 g, 2-3 months old), 20 μl of mini-TyrRS, mini-TrpRS, or PBS (vehicle) was injected subcutaneously every 12 h. The rats were randomly divided into four experimental groups: sham operated group; coronary artery ligation (CAL); CAL + mini-TyrRS (20 μl, twice daily, 600 μg kg(-1) day(-1)); and CAL + mini-TrpRS (20 μl, twice daily, 600 μg kg(-1) day(-1)). The experiment was carried out at four time points on the 3rd, 7th, 14th, and 28th day after ligation. To determine whether mini-TyrRS/mini-TrpRS affected the angiogenesis activity of rats with myocardial infarction, we measured the myocardial infarction size by TTC staining, and microvessel density (MVD) was determined by CD34 staining. The results show that proliferation and migration in RCVECs could be promoted by mini-TyrRS at concentrations of 1-100 μg/ml, and inhibited by mini-TrpRS. Phospho-PI3-kinase and Erk expression increased significantly when mini-TyrRS was added, but could be attenuated by mini-TrpRS. Compared to the CAL group, the myocardial infarction size of the mini-TyrRS group at the 3rd, 7th, 14th, and 28th day were decreased, while mini-TrpRS increased, but only in days 14 and 28 was there a significant difference. Except that, the microvessel density of RCVECs was promoted in mini-TyrRS group but inhibited in the mini-TrpRS group. These results indicated that angiogenesis could be either stimulated by mini-TyrRS or inhibited by mini-TrpRS.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Cardiology, West China Hospital, School of Clinic Medicine, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 2010; 11:668-74. [PMID: 20700144 DOI: 10.1038/nrm2956] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the course of evolution, eukaryotic aminoacyl-tRNA synthetases (aaRSs) progressively incorporated domains and motifs that have no essential connection to aminoacylation reactions. Their accretive addition to virtually all aaRSs correlates with the progressive evolution and complexity of eukaryotes. Based on recent experimental findings focused on a few of these additions and analysis of the aaRS proteome, we propose that they are markers for aaRS-associated functions beyond translation.
Collapse
Affiliation(s)
- Min Guo
- Min Guo, Xiang-Lei Yang and Paul Schimmel are at The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
32
|
Zeng R, Chen YC, Zeng Z, Liu WQ, Liu XX, Liu R, Qiang O, Li X. Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction. Heart Vessels 2010; 25:324-32. [DOI: 10.1007/s00380-009-1200-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/27/2009] [Indexed: 11/29/2022]
|
33
|
Arakaki TL, Carter M, Napuli AJ, Verlinde CLMJ, Fan E, Zucker F, Buckner FS, Van Voorhis WC, Hol WGJ, Merritt EA. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs. J Struct Biol 2010; 171:238-43. [PMID: 20438846 DOI: 10.1016/j.jsb.2010.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/08/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
The 2.1A crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue alpha-helix. This helix replaces a beta-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this beta-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (alpha(2))(2) homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal alpha-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS.
Collapse
|
34
|
Wakasugi K. An Exposed Cysteine Residue of Human Angiostatic Mini Tryptophanyl-tRNA Synthetase. Biochemistry 2010; 49:3156-60. [DOI: 10.1021/bi1000239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, and PRESTO, Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Zhou M, Dong X, Shen N, Zhong C, Ding J. Crystal structures of Saccharomyces cerevisiae tryptophanyl-tRNA synthetase: new insights into the mechanism of tryptophan activation and implications for anti-fungal drug design. Nucleic Acids Res 2010; 38:3399-413. [PMID: 20123733 PMCID: PMC2879500 DOI: 10.1093/nar/gkp1254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Specific activation of amino acids by aminoacyl-tRNA synthetases is essential for maintaining translational fidelity. Here, we present crystal structures of Saccharomyces cerevisiae tryptophanyl-tRNA synthetase (sTrpRS) in apo form and in complexes with various ligands. In each complex, there is a sulfate ion bound at the active site which mimics the α- or β-phosphate group of ATP during tryptophan activation. In particular, in one monomer of the sTrpRS–TrpNH2O complex, the sulfate ion appears to capture a snapshot of the α-phosphate of ATP during its movement towards tryptophan. Simulation study of a human TrpRS–Trp–ATP model shows that during the catalytic process the α-phosphate of ATP is driven to an intermediate position equivalent to that of the sulfate ion, then moves further and eventually fluctuates at around 2 Å from the nucleophile. A conserved Arg may interact with the oxygen in the scissile bond at the transition state, indicating its critical role in the nucleophilic substitution. Taken together, eukaryotic TrpRSs may adopt an associative mechanism for tryptophan activation in contrast to a dissociative mechanism proposed for bacterial TrpRSs. In addition, structural analysis of the apo sTrpRS reveals a unique feature of fungal TrpRSs, which could be exploited in rational antifungal drug design.
Collapse
Affiliation(s)
- Minyun Zhou
- State Key Laboratory of Molecular Biology and Research Center for Structural Biology, Institute of Biochemistry and Cell Biology, Shanghai, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
36
|
Brown MV, Reader JS, Tzima E. Mammalian aminoacyl-tRNA synthetases: Cell signaling functions of the protein translation machinery. Vascul Pharmacol 2010; 52:21-6. [DOI: 10.1016/j.vph.2009.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 12/01/2022]
|
37
|
Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat Struct Mol Biol 2009; 17:57-61. [PMID: 20010843 DOI: 10.1038/nsmb.1706] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 09/23/2009] [Indexed: 12/11/2022]
Abstract
Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.
Collapse
|
38
|
Hansia P, Ghosh A, Vishveshwara S. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. MOLECULAR BIOSYSTEMS 2009; 5:1860-72. [PMID: 19763332 DOI: 10.1039/b903807h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.
Collapse
Affiliation(s)
- Priti Hansia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
39
|
Herzog W, Müller K, Huisken J, Stainier DYR. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res 2009; 104:1260-6. [PMID: 19423847 DOI: 10.1161/circresaha.108.191718] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a recent genetic screen, we identified mutations in genes important for vascular development and maintenance in zebrafish (Jin et al. Dev Biol. 2007;307:29-42). Mutations [corrected] at the adrasteia (adr) locus cause a pronounced dilatation of the aortic arch vessels as well as aberrant patterning of the hindbrain capillaries and, to a lesser extent, intersomitic vessels. This dilatation of the aortic arch vessels does not appear to be caused by increased cell proliferation but is dependent on vascular endothelial growth factor (Vegf) signaling. By positional cloning, we isolated seryl-tRNA synthetase (sars) as the gene affected by the adr mutations. Small interfering RNA knockdown experiments in human umbilical vein endothelial cell cultures indicate that SARS also regulates endothelial sprouting. These analyses of zebrafish and human endothelial cells reveal a new noncanonical function of Sars in endothelial development.
Collapse
Affiliation(s)
- Wiebke Herzog
- Department of Biochemistry and Biophysics and the Cardiovascular Research Institute, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
40
|
Shin SH, Kim HS, Jung SH, Xu HD, Jeong YB, Chung YJ. Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis. Exp Mol Med 2008; 40:229-36. [PMID: 18446061 DOI: 10.3858/emm.2008.40.2.229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Molecular mechanism of lung carcinogenesis and its aggressive nature is still largely elusive. To uncover the biomarkers related with tumorigenesis and behavior of lung cancer, we screened novel differentially expressed genes (DEG) in A549 lung cancer cell line by comparison with CCD-25Lu, normal pulmonary epithelial cell line, using annealing control primer(ACP)-based GeneFishing system. Of the DEGs, over-expression of leucyl-tRNA synthetase 1 (LARS1) was prominent and this up-regulation was confirmed by immunoblotting and real-time quantitative RT-PCR analysis. In addition to A549 cell line, primary lung cancer tissues also expressed higher level of LARS1 mRNA than their normal counter tissues. To explore the oncogenic potential of LARS1 over-expression in lung cancer, we knocked-down LARS1 by treating siRNA and observed the tumor behavior. LARS1 knock-down cells showed reduced ability to migrate through transwell membrane and to form colonies in both soft agar and culture plate. Taken together, these findings suggest that LARS1 may play roles in migration and growth of lung cancer cells, which suggest its potential implication in lung tumorigenesis.
Collapse
Affiliation(s)
- Seung-Hun Shin
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Aminoacylation of transfer RNAs establishes the rules of the genetic code. The reactions are catalyzed by an ancient group of 20 enzymes (one for each amino acid) known as aminoacyl tRNA synthetases (AARSs). Surprisingly, the etiology of specific diseases-including cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions-is connected to specific aminoacyl tRNA synthetases. These connections include heritable mutations in the genes for tRNA synthetases that are causally linked to disease, with both dominant and recessive disease-causing mutations being annotated. Because some disease-causing mutations do not affect aminoacylation activity or apparent enzyme stability, the mutations are believed to affect functions that are distinct from aminoacylation. Examples include enzymes that are secreted as procytokines that, after activation, operate in pathways connected to the immune system or angiogenesis. In addition, within cells, synthetases form multiprotein complexes with each other or with other regulatory factors and in that way control diverse signaling pathways. Although much has been uncovered in recent years, many novel functions, disease connections, and interpathway connections of tRNA synthetases have yet to be worked out.
Collapse
|
42
|
Small interfering RNA knockdown of mini-TyrRS and mini-TrpRS effects angiogenesis in human umbilical vein endothelial cells in hypoxic culture. Cytotechnology 2008; 56:219-31. [PMID: 19002860 DOI: 10.1007/s10616-008-9151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/23/2008] [Indexed: 02/05/2023] Open
Abstract
Aim We studied the role of mini-TyrRS and mini-TrpRS in angiogenesis by using small interfering RNA-mediated mini-TyrRS/mini-TrpRS knockout in hypoxic culture of human umbilical vein endothelial cells. Methods SiRNA was used as the main method to inhibited the gene function. Silencing efficiency was assayed by real-time reverse transcription-polymerase chain reaction and western blotting. The angiogenic activity in vitro was evaluated by transwell migration assay and Matrigel-induced capillary tube formation in hypoxic culture. Cell proliferation was determined by crystal violet staining. Results The results showed that levels of the mini-TyrRS/mini-TrpRS gene and protein in mock transfection group and negative control group were higher, but noticeably decreased in experimental group. However, no significant difference was detected between mock transfection group and negative control group, but there was a statistically significant difference compared with experimental group. For mini-TyrRS-siRNA group, the cell migration, tube formation and the rate of cell proliferation were respectively inhibited by (47.4, 56.3, 65.4, 73.7%), (60.5, 69.1, 75.9, 83.6%) and (40.4, 56.2, 61.2, 68.0%). For mini-TrpRS-siRNA, were respectively increased by (18.0, 33.8, 45.1, 56.4%), (18.3, 31.2, 40.3, 45.7%) and (8.4, 26.4, 38.2, 46.6%). Conclusion These results indicated that angiogenesis is either stimulated by mini-TyrRS or inhibited by mini-TrpRS in matrigel models in hypoxic culture, raising the possibility that mini-TyrRS stimulates a common downstream signaling event. Thus, naturally occurring fragments of two proteins involved in translation, TyrRS and TrpRS, have opposing activity on endothelial cell angiogenesis in the matrigel assays. The opposing activities of the two tRNA synthetases suggest tight regulation of the balance between pro- and anti-angiogenic stimuli.
Collapse
|
43
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
44
|
Tumor endothelial cell tube formation model for determining anti-angiogenic activity of a tRNA synthetase cytokine. Methods 2008; 44:190-5. [PMID: 18241800 DOI: 10.1016/j.ymeth.2007.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 11/20/2022] Open
Abstract
In addition to their key role in protein biosynthesis, aminoacyl-tRNA synthetases have other biological functions that appeared during their long evolutionary development. In mammalian cells, specific members of this family of enzymes are also procytokines that, upon conversion, are active cytokines in pathways for angiogenesis, and thereby connect translation to control of blood vessel development. Here we describe an in vitro assay for tube formation by tumor endothelial cells on a matrigel substrate. In contrast to normal endothelial cells, tumor endothelial cells have strong angiogenic capabilities and the ability to form vessel-like tubes on a solid substrate. In particular, we found that a SV40-immortalized mouse lymphoid endothelial cell line was robust in this assay and yielded data that could be quantified with high precision. Consequently, this specific tube formation model provides an opportunity to discover and analyze potent agents that specifically affect angiogenesis. It has proven effective for studying the angiogenic functions of tRNA synthetase cytokines.
Collapse
|
45
|
WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 2008; 29:679-90. [PMID: 18374644 DOI: 10.1016/j.molcel.2008.01.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022]
Abstract
The heterotetrameric GAIT complex suppresses translation of selected mRNAs in interferon-gamma-activated monocytic cells. Specificity is dictated by glutamyl-prolyl tRNA synthetase (EPRS) binding to a 3'UTR element in target mRNAs. EPRS consists of two synthetase cores joined by a linker containing three WHEP domains of unknown function. Here we show the critical role of EPRS WHEP domains in targeting and regulating GAIT complex binding to RNA. The upstream WHEP pair directs high-affinity binding to GAIT element-bearing mRNAs, while the overlapping, downstream pair binds NSAP1, which inhibits mRNA binding. Interaction of EPRS with ribosomal protein L13a and GAPDH induces a conformational switch that rescues mRNA binding and restores translational control. Total reconstitution from purified components indicates that the four GAIT proteins are necessary and sufficient for self-assembly of a functional complex. Our results establish the essentiality of WHEP domains in the noncanonical function of EPRS in regulating inflammatory gene expression.
Collapse
|
46
|
Shen N, Zhou M, Yang B, Yu Y, Dong X, Ding J. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Nucleic Acids Res 2008; 36:1288-99. [PMID: 18180246 PMCID: PMC2275098 DOI: 10.1093/nar/gkm1153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (hTrpRS) differs from its bacterial counterpart at several key positions of the catalytic active site and has an extra N-terminal domain, implying possibly a different catalytic mechanism. We report here the crystal structures of hTrpRS in complexes with Trp, tryptophanamide and ATP and tryptophanyl-AMP, respectively, which represent three different enzymatic states of the Trp activation reaction. Analyses of these structures reveal the molecular basis of the mechanisms of the substrate recognition and the activation reaction. The dimeric hTrpRS is structurally and functionally asymmetric with half-of-the-sites reactivity. Recognition of Trp is by an induced-fit mechanism involving conformational change of the AIDQ motif that creates a perfect pocket for the binding and activation of Trp and causes coupled movements of the N-terminal and C-terminal domains. The KMSAS loop appears to have an inherent flexibility and the binding of ATP stabilizes it in a closed conformation that secures the position of ATP for catalysis. Our structural data indicate that the catalytic mechanism of the Trp activation reaction by hTrpRS involves more moderate conformational changes of the structural elements at the active site to recognize and bind the substrates, which is more complex and fine-tuned than that of bacterial TrpRS.
Collapse
Affiliation(s)
- Ning Shen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
47
|
Kapoor M, Zhou Q, Otero F, Myers CA, Bates A, Belani R, Liu J, Luo JK, Tzima E, Zhang DE, Yang XL, Schimmel P. Evidence for Annexin II-S100A10 Complex and Plasmin in Mobilization of Cytokine Activity of Human TrpRS. J Biol Chem 2008; 283:2070-7. [DOI: 10.1074/jbc.m706028200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Calreticulin expression in the clonal plasma cells of patients with systemic light-chain (AL-) amyloidosis is associated with response to high-dose melphalan. Blood 2007; 111:549-57. [PMID: 17982021 DOI: 10.1182/blood-2007-05-090852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high doses with stem-cell transplantation, melphalan is an effective but toxic therapy for patients with systemic light-chain (AL-) amyloidosis, a protein deposition and monoclonal plasma cell disease. Melphalan can eliminate the indolent clonal plasma cells that cause the disease, an achievement called a complete response. Such a response is usually associated with extended survival, while no response (a less than 50% reduction) is not. Gene-expression studies and a stringently supervised analysis identified calreticulin as having significantly higher expression in the pretreatment plasma cells of patients with systemic AL-amyloidosis who then had a complete response to high-dose melphalan. Calreticulin is a pleiotropic calcium-binding protein found in the endoplasmic reticulum and the nucleus whose overexpression is associated with increased sensitivity to apoptotic stimuli. Real-time PCR and immunohistochemical staining also showed that expression of calreticulin was higher in the plasma cells of those with a complete response. Furthermore, wild-type murine embryonic fibroblasts were significantly more sensitive to melphalan than calreticulin knock-out murine embryonic fibroblasts. These data have important implications for understanding the activity of melphalan in plasma-cell diseases and support further investigation of calreticulin and its modulation in patients with systemic AL-amyloidosis receiving high-dose melphalan.
Collapse
|
49
|
Yang XL, Guo M, Kapoor M, Ewalt KL, Otero FJ, Skene RJ, McRee DE, Schimmel P. Functional and crystal structure analysis of active site adaptations of a potent anti-angiogenic human tRNA synthetase. Structure 2007; 15:793-805. [PMID: 17637340 PMCID: PMC2104486 DOI: 10.1016/j.str.2007.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 01/07/2023]
Abstract
Higher eukaryote tRNA synthetases have expanded functions that come from enlarged, more differentiated structures that were adapted to fit aminoacylation function. How those adaptations affect catalytic mechanisms is not known. Presented here is the structure of a catalytically active natural splice variant of human tryptophanyl-tRNA synthetase (TrpRS) that is a potent angiostatic factor. This and related structures suggest that a eukaryote-specific N-terminal extension of the core enzyme changed substrate recognition by forming an active site cap. At the junction of the extension and core catalytic unit, an arginine is recruited to replace a missing landmark lysine almost 200 residues away. Mutagenesis, rapid kinetic, and substrate binding studies support the functional significance of the cap and arginine recruitment. Thus, the enzyme function of human TrpRS has switched more to the N terminus of the sequence. This switch has the effect of creating selective pressure to retain the N-terminal extension for functional expansion.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Angiogenesis, the generation of new blood vessels from pre-existing vessels, is an integral component of wound healing, responses to inflammation and other physiologic processes. It is also an essential part of tumor growth; in the absence of new vessel formation, tumors cannot expand beyond a small volume. Although much is known about angiogenesis and its regulation, there is no overall theory that describes or explains this process. It is here suggested that the intracrine hypothesis, which ascribes to certain extracellular signaling peptides (whether hormones, growth factors, DNA-binding proteins or enzymes) a role in both intracellular biology and extracellular signaling, can contribute to a more general understanding of angiogenesis. Intracrine factors participate in angiogenesis in the following ways: (1) they can act within the cells that synthesized them (type I intracrine action), (2) they can be secreted and then taken up by their cell of synthesis to act intracellularly (type II intracrine action ), or (3) they can be secreted and internalized by a distant target cell (type III intracrine action). The parallels between the intracrine growth factor mechanisms cancer cells employ in stimulating their own growth and the mechanisms operative in endothelial cell proliferation during angiogenesis ("intracrine reciprocity") are discussed. Collectively, these explorations lead to testable hypotheses regarding the regulation of normal and pathological angiogenesis, and point to similarities between tumor-induced angiogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|