1
|
Li S, Zhu H, Chen JDZ. Intestinal Electrical Stimulation Synchronized With Intestinal Slow Wave Ameliorates Glucagon-Induced Hyperglycemia in Rats. Neuromodulation 2024; 27:312-320. [PMID: 37897473 DOI: 10.1016/j.neurom.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Synchronized intestinal electrical stimulation (SIES), in which intestinal electrical stimulation (IES) is delivered in synchronization with the intrinsic slow wave of small intestine, was previously reported to be more potent in accelerating small intestine transit than IES delivered at fixed frequency and phase. We hypothesized that SIES is more potent in suppressing postprandial blood glucose by enhancing the release of glucagon-like peptide-1 (GLP-1) and insulin. MATERIALS AND METHODS Rats underwent long-term implant of two pairs of electrodes at the duodenum for IES and SIES, respectively. Acute hyperglycemia was induced with glucagon, and the oral glucose tolerance test was performed on separate days with IES, SIES, or sham (no stimulation). RESULTS 1. Glucagon reduced the percentage of normal slow wave in sham (70.9% ± 4.1%) from (84.9% ± 2.6%, p = 0.006) of control, which was ameliorated by SIES (82.5% ± 3.3%, p = 0.031). 2. IES and SIES reduced glucagon-induced increase of blood glucose (192 mg/dl) at 30 minutes by 17% and 20%, respectively. SIES showed a further inhibitory effect at 60 minutes (147 vs 171 mg/dl, p = 0.003, vs sham). 3. Compared with sham (139 pg/ml), GLP-1 at 30 minutes was increased in both IES (158 pg/ml) and SIES (169 pg/ml). GLP-1 level was still high at 60 minutes in rats with SIES. 4. At 30 minutes, the plasma insulin level was increased by 18.8 μIU/ml with SIES, which was significantly higher than that with sham (7.1 μIU/ml, p < 0.001) and IES (13.2 μIU/ml, p = 0.041). CONCLUSION SIES is more effective than IES in reducing glucagon-induced acute hyperglycemia by enhancing the release of GLP-1 and insulin.
Collapse
Affiliation(s)
- Shiying Li
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Hongbing Zhu
- Transtimulation Research Inc, Oklahoma City, OK, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Li S, Kim Y, Chen JDZ, Madhoun MF. Intestinal Electrical Stimulation Alters Hypothalamic Expression of Oxytocin and Orexin and Ameliorates Diet-Induced Obesity in Rats. Obes Surg 2021; 31:1664-1672. [PMID: 33392995 PMCID: PMC10433780 DOI: 10.1007/s11695-020-05177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Intestinal electrical stimulation (IES) has been proposed as a potential treatment for obesity. The aim of this study was to explore the central mechanism underlying the reduction of food intake and body weight by IES by studying the expression of anorexigenic- and orexigenic-peptide-containing neurons in the hypothalamus. MATERIALS AND METHODS Diet-induced obese (DIO) rats were divided into three groups to receive sham, IES, and pair-feeding for 4 weeks. Food intake was measured automatically and presented as daily and body weight measured weekly. The expressions of oxytocin, an anorexigenic neuropeptide, in the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nuclei of the hypothalamus (SON) and orexin-A, an orexigenic neuropeptide, in the lateral hypothalamic area (LHA) were studied using immunohistochemistry. RESULTS Compared with sham, IES reduced daily food intake by 28.3% at week 1, 35.6% at week 2, 15.6% at week 3, and 27.1% at week 4. Consistently, IES reduced body weight by 6.3%, compared with a weight gain of 7.2% in sham, and a slight weight loss of 0.5% in pair-feeding. Compared with sham, IES increased the expression of oxytocin-immunoreactive neurons in PVN and SON. Compared with sham, IES decreased the expression of orexin-immunoreactive neurons in LHA. Rats with pair-feeding also showed a relative decease in weight without any changes in the central hormones. CONCLUSION IES reduces food intake and body weight and improves glucose tolerance and insulin sensitivity in DIO rats. Its central mechanisms involve enhancement of anorexigenic peptides and suppression of orexigenic peptides in the hypothalamus.
Collapse
Affiliation(s)
- Shiying Li
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Yeram Kim
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad F Madhoun
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA.
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Dong Y, Yin J, Zhang Y, Chen JDZ. Electronic Bypass for Diabetes: Optimization of Stimulation Parameters and Mechanisms of Glucagon-Like Peptide-1. Neuromodulation 2021; 25:1097-1105. [PMID: 33538043 DOI: 10.1111/ner.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Intestinal electrical stimulation (IES) has been proposed for treating diabetes; however, its parameters need to be further systematically optimized. This study aimed to optimize the parameters of IES and investigate its possible mechanisms involving glucagon-like peptide-1 (GLP-1) in diabetic rats. MATERIALS AND METHODS Thirty-six high-fat diet-induced diabetic rats were chronically implanted with a pair of bipolar electrodes at the duodenum for IES. The oral glucose tolerance test (OGTT) was performed in a number of sessions with IES using different parameters and biphasic charge-balanced waveforms to derive the best values for train on-time, pulse frequency, and pulse width. Incretin hormones such as GLP-1 were assessed and the GLP-1 antagonist Exendin 9-39 was used to assess the role of GLP-1 in the ameliorating effect of IES on hyperglycemia. RESULTS The most effective IES parameters in reducing blood glucose (BG) during the OGTT were derived: 1.2 sec on, 0.3 sec off, 80 Hz, 3 msec. IES with these parameters reduced BG level by at least 29% from 15 min to 180 min (p < 0.05 for all points, N = 10). IES with these stimulation parameters increased plasma GLP-1 level at 30 min, 60 min, 90 min and gastric inhibitory peptide (GIP) level at 30 min (N = 8). Exendin 9-39 blocked the inhibitory effect of IES on BG (p > 0.05, IES + Exendin 9-39 vs. sham-IES, N = 8). CONCLUSION IES with the most effective parameters derived in this study improves hyperglycemia in diabetic rats. The ameliorating effect of IES on hyperglycemia is attributed to the enhanced release of GLP-1. IES has great potential for treating diabetes.
Collapse
Affiliation(s)
- Yan Dong
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiling Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Intestinal Electrical Stimulation Enhances Release of Postprandial Incretin Hormones Via Cholinergic Mechanisms. Obes Surg 2021; 31:1957-1966. [PMID: 33469859 DOI: 10.1007/s11695-021-05228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Intestinal electrical stimulation (IES) has been reported to reduce body weight and improve glucose tolerance in obese and diabetic rats. Our study aimed to investigate possible IES mechanisms involving incretin hormones using intraduodenal glucose infusion in rats. We hypothesized that the enhanced release of postprandial glucagon-like peptide-1 (GLP-1) at early phase by IES was mediated through neuro/paracrine mechanisms involving the vagal nerve and glucose-dependent insulinotropic peptide (GIP). METHODS Fifteen normal male Sprague-Dawley rats chronically implanted with duodenal electrodes for IES, and an intra-duodenum catheter for the infusion of glucose were studied in a series of sessions with IES of different parameters with and without atropine and M3 receptor antagonist. Blood samples were collected via the tail vein for the measurement of blood glucose, and plasma GLP-1, and GIP. RESULTS (1) Compared to sham-IES, IES of 0.3 ms reduced blood glucose by 16.5-28.4% between 30 and 120 min (all time points p < 0.05), and IES of 3-ms reduced blood glucose at 60 (12.6%) and 90 min (11.8%). IES of 0.3 ms showed a greater hypoglycemic effect than 3 ms (p = 0.024) at 30 min. (2) IES elevated plasma GLP-1 with 0.3 ms (p = 0.001) and with 3 ms p = 0.03). (3) IES substantially elevated plasma GIP with 0.3 ms (p = 0.002) and with 3 ms (p < 0.001). (4) Pretreatment of atropine and the M3 receptor antagonist 4-DAMP blocked the effects of IES on GLP-1, GIP, and blood glucose. CONCLUSIONS IES reduces postprandial blood glucose by enhancing the release of GLP-1 and GIP mediated via the cholinergic mechanism.
Collapse
|
5
|
Ouyang X, Li S, Tan Y, Lin L, Yin J, Chen JDZ. Intestinal electrical stimulation attenuates hyperglycemia and prevents loss of pancreatic β cells in type 2 diabetic Goto-Kakizaki rats. Nutr Diabetes 2019; 9:4. [PMID: 30728346 PMCID: PMC6365494 DOI: 10.1038/s41387-019-0072-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND/OBJECTIVE Recently, intestinal electrical stimulation (IES) has been reported to result in weight loss; however, it is unclear whether it has a therapeutic potential for diabetes. The aim of the present study was to explore the potential hypoglycemic effects of IES and its possible mechanisms involving β cells in diabetic rats. SUBJECTS/METHODS Diabetic Goto-Kakizaki (GK) rats were chronically implanted with one pair of electrodes in the duodenum. The oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed with or without IES, and plasma glucagon-like peptide-1 (GLP-1) and insulin level were measured. In the other two OGTT sessions, rats were treated with either Exendin (9-39) (GLP-1 antagonist) or Exendin (9-39) plus IES to investigate the underlying mechanism involving GLP-1. Gastric emptying and small intestinal transit were also measured with or without IES. In a chronic study, GK rats were treated with IES or Sham-IES for 8 weeks. Blood glucose, plasma GLP-1 and insulin level, body weight, and food intake were measured. Pancreas weight, islet β-cell apoptosis, and proliferation were also analyzed. RESULTS Acute IES reduced blood glucose level from 60 to 120 min during OGTT by 16-20% (all p < 0.05, vs. Sham-IES). GLP-1 antagonist significantly blocked the inhibitory effect of IES on hyperglycemia from 15 to 120 min (all p < 0.05). IES accelerated the small intestinal transit by 15% (p = 0.004). After 8 weeks of chronic stimulation, IES significantly reduced blood glucose (p < 0.05) and body weight (p = 0.02) and increased the plasma GLP-1 concentration (p < 0.05). Furthermore, we observed that chronic IES reduced pancreatic β-cell apoptosis (p = 0.045), but showed no effects on β-cell proliferation. CONCLUSIONS Our study firstly proved the hypoglycemic effect of IES in a rodent model of type 2 diabetes, possibly attributed to the increasing GLP-1 secretion and improvement in β-cell functions.
Collapse
Affiliation(s)
- Xiaojun Ouyang
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Division of Geriatrics and Gerontology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiying Li
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Yan Tan
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Division of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lin Lin
- Division of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyun Yin
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiande D Z Chen
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA. .,Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
McKenzie P, Stocker A, Du P, Lahr C, Cheng LK, McElmurray L, Kedar A, Boatright B, Hassan H, Hughes M, Omer E, Bhandari B, Abell TL. The Effect of Gastric Electrical Stimulation on Small Bowel Motility in Patients With Gastroparesis and Concomitant Pancreatic and Small Bowel Dysfunction: From Animal Model to Human Application. Neuromodulation 2018; 22:723-729. [PMID: 30525253 DOI: 10.1111/ner.12888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/12/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Patients with gastroparesis often have biliary/pancreatic and small bowel symptoms but the effects of gastric electrical stimulation on small bowel electrical activity of the mid-gut have not been studied. Animal model aim: Establish gastric and upper small bowel/biliary slow wave activity relationships with electrical stimulation. Human study aim: Demonstrate improvement in symptoms associated with proximal small bowel dysmotility in gastric stimulated patients. MATERIALS AND METHODS Animal model: In vivo evoked responses of duodenal and Sphincter of Oddi measures recorded during gastric electrical stimulation in a nonsurvival swine model (N = 3). High-resolution electrical slow wave mapping of frequency, amplitude, and their ratio, for duodenal and Sphincter of Oddi electrical activity were recorded. Human study: Patients (N = 8) underwent temporary gastric stimulation with small bowel electrodes. Subjective and objective data was collected before and after temporary gastric stimulation. Symptom scores, gastric emptying times, and mucosal electrograms via low-resolution mapping were recorded. RESULTS Animal gastric stimulation resulted in some changes in electrical activity parameters, especially with the highest energies delivered but the changes were not statistically significant. Human study revealed improvement in symptom and illness severity scores, and changes in small bowel mucosal slow wave activity. CONCLUSIONS Gastric electrical stimulation in an animal model seems to show nonsignificant effects small bowel slow wave activity and myoelectric signaling, suggesting the existence of intrinsic neural connections. Human data shows more significance, with possible potential for therapeutic use of electrical stimulation in patients with gastroparesis and pancreato-biliary and small bowel symptoms of the mid-gut. This study was limited by the nonsurvival pig model, small sample size, and open label human study.
Collapse
Affiliation(s)
- Patrick McKenzie
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Abigail Stocker
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Peng Du
- University of Auckland, Auckland, New Zealand
| | | | - Leo K Cheng
- University of Auckland, Auckland, New Zealand
| | - Lindsay McElmurray
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Archana Kedar
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | | | - Hamza Hassan
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Michael Hughes
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Endashaw Omer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Bikash Bhandari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Thomas L Abell
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
de Camp NV, Heimann A, Kempski O, Bergeler J. Accelerometer-Based Assessment of Intestinal Peristalsis: Toward Miniaturized Low-Power Solutions for Intestinal Implants. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2018; 6:2700507. [PMID: 30245946 PMCID: PMC6147734 DOI: 10.1109/jtehm.2018.2864975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
Intestinal electrical stimulation via implants is already used to treat several disorders like constipation or incontinence. Stimulation parameters are most often empiric and not based on systematic studies. One prerequisite to evaluate effects of intestinal electrical stimulation is a direct assessment of intestinal motility. Some common methods are strain gauge transducers or manometry. With both the methods, it is not possible to record the exact 3-D movement. Therefore, we established a new method to record gastrointestinal motility with ultraminiaturized accelerometers, directly glued to the outer surface of the stomach, small intestine, and colon. With this technique, we were able to record precise local motility changes after electrical stimulation. Due to the low energy demand and the small size of the system, it is potentially useful for chronic measurements at multiple sites of the intestinal tract. We will present our first results regarding stimulation-dependent motility changes using up to eight implanted accelerometers in an acute pig model.
Collapse
Affiliation(s)
- Nora Vanessa de Camp
- Medical CenterJohannes Gutenberg University Mainz55122MainzGermany.,Department of Behavioral PhysiologyHumboldt University of Berlin10099BerlinGermany.,Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University of Berlin14195BerlinGermany
| | - Axel Heimann
- Medical CenterJohannes Gutenberg University Mainz55122MainzGermany
| | - Oliver Kempski
- Medical CenterJohannes Gutenberg University Mainz55122MainzGermany
| | - Juergen Bergeler
- Medical CenterJohannes Gutenberg University Mainz55122MainzGermany.,Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University of Berlin14195BerlinGermany
| |
Collapse
|
8
|
Li S, Zhu W, Zhang S, Chen JDZ. Chronic intestinal electrical stimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats. Obesity (Silver Spring) 2017; 25:1061-1068. [PMID: 28437585 DOI: 10.1002/oby.21852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity is a contributing factor to insulin resistance and type 2 diabetes. The aim of this study was to study the therapeutic potential of intestinal electrical stimulation (IES) for obesity and associated glucose intolerance and insulin resistance in diet-induced obesity (DIO) rats. METHODS DIO rats were divided into two groups to receive sham or IES for 8 weeks. Oral glucose tolerance and insulin tolerance tests were performed. Gastric emptying and small bowel transit tests were performed. Blood samples were collected for the analysis of insulin and free fatty acid (FFA). RESULTS Chronic IES reduced food intake and body weight and decreased the adiposity index in DIO rats. Compared with chow-fed rats, DIO rats had an elevated fasting plasma glucose level, impaired glucose tolerance, and impaired insulin sensitivity, which were improved after chronic IES. FFA was elevated in DIO rats and suppressed with IES. Chronic IES delayed gastric emptying but accelerated small bowel transit. CONCLUSIONS IES reduces food intake and body weight and improves glucose tolerance and insulin resistance in DIO rats. The ameliorating effect on glycemic control may be due to the weight loss and suppression of plasma FFA. Other mechanisms such as the modulation of gastrointestinal transit may also be involved.
Collapse
Affiliation(s)
- Shiying Li
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma, USA
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Weijian Zhu
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma, USA
- Department of Acupuncture and Moxibustion, Jiangsu Province Hospital, Nanjing, China
| | - Sujuan Zhang
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma, USA
- Department of Gastroenterology, Tianjin No. 254 Hospital, Tianjin, China
| | - Jiande D Z Chen
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma, USA
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
An Optimized IES Method and Its Inhibitory Effects and Mechanisms on Food Intake and Body Weight in Diet-Induced Obese Rats: IES for Obesity. Obes Surg 2017; 27:3215-3222. [DOI: 10.1007/s11695-017-2743-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Pulse Width-Dependent Effects of Intestinal Electrical Stimulation for Obesity: Role of Gastrointestinal Motility and Hormones. Obes Surg 2016; 27:70-77. [DOI: 10.1007/s11695-016-2238-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yin J, Chen JDZ. Gastrointestinal Electrical Neuromodulation for Functional Gastrointestinal Diseases, Obesity and Diabetes. Bioelectron Med 2015. [DOI: 10.15424/bioelectronmed.2015.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Rashti F, Gupta E, Ebrahimi S, Shope TR, Koch TR, Gostout CJ. Development of minimally invasive techniques for management of medically-complicated obesity. World J Gastroenterol 2014; 20:13424-13445. [PMID: 25309074 PMCID: PMC4188895 DOI: 10.3748/wjg.v20.i37.13424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/15/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
The field of bariatric surgery has been rapidly growing and evolving over the past several decades. During the period that obesity has become a worldwide epidemic, new interventions have been developed to combat this complex disorder. The development of new laparoscopic and minimally invasive treatments for medically-complicated obesity has made it essential that gastrointestinal physicians obtain a thorough understanding of past developments and possible future directions in bariatrics. New laparoscopic advancements provide patients and practitioners with a variety of options that have an improved safety profile and better efficacy without open, invasive surgery. The mechanisms of weight loss after bariatric surgery are complex and may in part be related to altered release of regulatory peptide hormones from the gut. Endoscopic techniques designed to mimic the effects of bariatric surgery and endolumenal interventions performed entirely through the gastrointestinal tract offer potential advantages. Several of these new techniques have demonstrated promising, preliminary results. We outline herein historical and current trends in the development of bariatric surgery and its transition to safer and more minimally invasive procedures designed to induce weight loss.
Collapse
|
13
|
Yan Y, Xiang XL, Qian W, Xu JY, Hou XH. Changes of neuronal activities after gut electrical stimulation with different parameters and locations in lateral hypothalamus area of obese rats. ACTA ACUST UNITED AC 2014; 34:510-515. [PMID: 25135719 DOI: 10.1007/s11596-014-1307-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/10/2014] [Indexed: 12/12/2022]
Abstract
This study tested the effects of the gastrointestinal pulse train electrical stimulation with different parameters and at different locations on the neuronal activities of the lateral hypothalamus area (LHA) in obese rats in order to find the optimal stimulation parameter and location. Eight gastric electrical stimulations (GES) with different parameters were performed and the neuronal activities of gastric-distension responsive (GD-R) neurons in LHA were observed. The effects of stimulations with 8 parameters were compared to find the optimal parameter. Then the optimal parameter was used to perform electrical stimulation at duodenum and ileum, and the effects of the duodenal and ileac stimulation on the GD-R neurons in LHA were compared with the gastric stimulation of optimal parameter. The results showed that GES with the lowest energy parameter (0.3 ms, 3 mA, 20 Hz, 2 s on, 3 s off) activated the least neurons. The effects of GES with other parameters whose pulse width was 0.3 ms were not significantly different from those of the lowest energy parameter. Most gastric stimulations whose pulse width was 3 ms activated more LHA neurons than the smallest energy parameter stimulation, and the effects of those 3 ms gastric stimulations were similar. Accordingly, the lowest energy parameter was recognized as the optimal parameter. The effects of stimulations with the optimal parameter at stomach, duodenum and ileum on the LHA neuronal activities were not different. Collectively, gastrointestinal electrical stimulation (GIES) with relatively large pulse width might have stronger effects to the neuronal activities of GD-R neurons in LHA of obese rats. The effects of the GIES at different locations (stomach, duodenum and ileum) on those neurons are similar, and GES is preferential because of its easy clinical performance and safety.
Collapse
Affiliation(s)
- Yun Yan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Lian Xiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun-Ying Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao-Hua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
14
|
Guo XJ, Yao SK. Advances in research of colonic electrical stimulation. Shijie Huaren Xiaohua Zazhi 2014; 22:795-800. [DOI: 10.11569/wcjd.v22.i6.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years great attention has been paid to the study of colonic electrical stimulation. Colonic electrical stimulation is expected to become a valuable option for treatment of gastrointestinal dysfunction. This article reviews the classification, mechanisms and clinical applications of colonic electrical stimulation.
Collapse
|