1
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
2
|
Zhao C, Hu B, Zhang Z, Luo Q, Nie Q, Zhang X, Li H. CD36 AFFECTS CHICKEN CARCASS, SKIN YELLOWNESS Detection of CD36 gene polymorphism associated with chicken carcass traits and skin yellowness. Poult Sci 2023; 102:102691. [PMID: 37120870 PMCID: PMC10173766 DOI: 10.1016/j.psj.2023.102691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Investigations into the association between chicken traits and genetic variations provide helpful breeding information to improve production performance and economic benefits in chickens. The single nucleotide polymorphism technique is an important method in agricultural molecular breeding. In this study, we detected 11 SNPs in the CD36 gene, 2 SNPs (g.-1974 A>G, g.-1888 T>C) located in the 5' flanking regions, 8 SNPs (g.23496 G>A, g.23643 C>T, g.23931 T>C, g.23937 G>A, g.31256 C>A, g.31258 C>T, g.31335 C>T, g.31534 A>C) located in the intron region, 1 SNPs (g.23743 G>T) located in the exon region and it belongs to synonymous mutation. In SNPs g.23743 G>T, the abdominal fat weight and abdominal fat weight rate of the GG genotype were lower than that of the TT genotype. In SNPs g.23931 T>C, the full-bore weight rate and half-bore weight rate of the TT genotype were higher compared with the CC genotype. And the SNPs g.-1888 T>C, g.23496 G>A, g.23643 C>T, g.31335 C>T and g.31534 A>C were significantly associated with skin yellowness traits, the cloacal skin yellowness before slaughter of the TT genotype was higher than that of the TC and CC genotype in SNPs g.-1888 T>C. Furthermore, 3 haplotypes of the above eleven SNPs were calculated and they correlated with heart weight, stomach weight, wing weight, leg skin yellowness and shin skin yellowness before slaughter. Finally, the CD36 expression profile displayed the expression pattern of CD36 mRNA variation in different tissues.
Collapse
|
3
|
Variability of oral/taste sensitivity to fat: An investigation of attribution from detection threshold methods with repeated measurements. Food Res Int 2023; 165:112432. [PMID: 36869468 DOI: 10.1016/j.foodres.2022.112432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Accumulating psychophysical evidence suggests substantial individual variability in oral/taste sensitivity to non-esterified, long-chain fatty acids (NEFA), which is commonly referred to as fat taste or oleogustus. Recent studies have sought to determine its associations with human factors such as body mass index (BMI) and food preferences, as it has been claimed that excessive fat consumption is related to several health conditions, including obesity. Yet, the findings are controversial. On the other hand, it has been noted that considerable variability also occurs based on the methodology used to measure the fatty acid taste. Specifically, learning effects have been observed over repeated measurements of the detection threshold of NEFA, yet there has been no methodology available to take into account these learning effects. Accordingly, in the present study, a novel methodology using a descending-block dual reminder A-Not A (DR A-Not A) method with a warm-up has been proposed to measure the NEFA detection threshold based on the signal detection theory and considering NEFA taste learning effects over repeated sessions. Homogeneous subjects (young adult Korean females within the normal BMI range, non-vegetarians) were randomized to either the novel descending-block DR A-Not A method or ascending triangle method that is commonly used for fat perception studies. Pure oleic acid emulsions were used as fat taste stimuli to be discriminated from pure mineral water. Each subject completed 14 repeated visits. For the ascending triangle method, 14 thresholds were determined using a stopping rule, while for the novel method, 7 thresholds were determined each per two consecutive days, using a criterion of a lower limit of 50% confidence interval of d' = 0.5, considering the practical aspects of taste studies in food sensory science. Based on the group median results of the last two visits, the variability of the detection thresholds was reduced using the novel descending-block DR A-Not A method due to better learning effects over repeated sessions. This shows the potential of the descending-block DR A-Not A threshold method for further studies on oral/taste sensitivity to fat.
Collapse
|
4
|
Wooding SP, Ramirez VA. Worldwide diversity, association potential, and natural selection in the superimposed taste genes, CD36 and GNAT3. Chem Senses 2022; 47:6491270. [PMID: 34972209 DOI: 10.1093/chemse/bjab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD36 and GNAT3 mediate taste responses, with CD36 acting as a lipid detector and GNAT3 acting as the α subunit of gustducin, a G protein governing sweet, savory, and bitter transduction. Strikingly, the genes encoding CD36 and GNAT3 are genomically superimposed, with CD36 completely encompassing GNAT3. To characterize genetic variation across the CD36-GNAT3 region, its implications for phenotypic diversity, and its recent evolution, we analyzed from ~2,500 worldwide subjects sequenced by the 1000 Genomes Project (1000GP). CD36-GNAT3 harbored extensive diversity including 8,688 single-nucleotide polymorphisms (SNPs), 414 indels, and other complex variants. Sliding window analyses revealed that nucleotide diversity and population differentiation across CD36-GNAT3 were consistent with genome-wide trends in the 1000GP (π = 0.10%, P = 0.64; FST = 9.0%, P = 0.57). In addition, functional predictions using SIFT and PolyPhen-2 identified 60 variants likely to alter protein function, and they were in weak linkage disequilibrium (r2 < 0.17), suggesting their effects are largely independent. However, the frequencies of predicted functional variants were low (P¯ = 0.0013), indicating their contributions to phenotypic variance on population scales are limited. Tests using Tajima's D statistic revealed that pressures from natural selection have been relaxed across most of CD36-GNAT3 during its recent history (0.39 < P < 0.67). However, CD36 exons showed signs of local adaptation consistent with prior reports (P < 0.035). Thus, CD36 and GNAT3 harbor numerous variants predicted to affect taste sensitivity, but most are rare and phenotypic variance on a population level is likely mediated by a small number of sites.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, USA
| |
Collapse
|
5
|
de Jesus JDCR, Murari ASDP, Radloff K, de Moraes RCM, Figuerêdo RG, Pessoa AFM, Rosa-Neto JC, Matos-Neto EM, Alcântara PSM, Tokeshi F, Maximiano LF, Bin FC, Formiga FB, Otoch JP, Seelaender M. Activation of the Adipose Tissue NLRP3 Inflammasome Pathway in Cancer Cachexia. Front Immunol 2021; 12:729182. [PMID: 34630405 PMCID: PMC8495409 DOI: 10.3389/fimmu.2021.729182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cachexia is a paraneoplastic syndrome that accompanies and compromises cancer treatment, especially in advanced stages, affecting the metabolism and function of several organs. The adipose tissue is the first to respond to the presence of the tumor, contributing to the secretion of factors which drive the systemic inflammation, a hallmark of the syndrome. While inflammation is a defensive innate response, the control mechanisms have been reported to be disrupted in cachexia. On the other hand, little is known about the role of NLRP3 inflammasome in this scenario, a multiprotein complex involved in caspase-1 activation and the processing of the cytokines IL-1β and IL-18. Aim based on the evidence from our previous study with a rodent model of cachexia, we examined the activation of the NLRP3 inflammasome pathway in two adipose tissue depots obtained from patients with colorectal cancer and compared with that another inflammatory pathway, NF-κB. Results For CC we found opposite modulation in ScAT and PtAT for the gene expression of TLR4, Caspase-1 (cachectic group) and for NF-κB p50, NF-κB p65, IL-1β. CD36, expression was decreased in both depots while that of NLRP3 and IL-18 was higher in both tissues, as compared with controls and weight stable patients (WSC). Caspase-1 basal protein levels in the ScAT culture supernatant were higher in WSC and (weight stable patients) CC, when compared to controls. Basal ScAT explant culture medium IL-1β and IL-18 protein content in ScAT supernatant was decreased in the WSC and CC as compared to CTL explants. Conclusions The results demonstrate heterogeneous responses in the activation of genes of the NLRP3 inflammasome pathway in the adipose tissue of patients with cancer cachexia, rendering this pathway a potential target for therapy aiming at decreasing chronic inflammation in cancer.
Collapse
Affiliation(s)
- Joyce de Cassia Rosa de Jesus
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ariene Soares de Pinho Murari
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ruan Carlos Macêdo de Moraes
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Flavia Marçal Pessoa
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José César Rosa-Neto
- Immunometabolism Laboratory, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Emídio Marques Matos-Neto
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo S M Alcântara
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Flavio Tokeshi
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Linda Ferreira Maximiano
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Fang Chia Bin
- Department of Coloproctology, Santa Casa de São Paulo, São Paulo, Brazil
| | | | - José P Otoch
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Wang Y, Koch M, di Giuseppe R, Evans K, Borggrefe J, Nöthlings U, Handberg A, Jensen MK, Lieb W. Associations of plasma CD36 and body fat distribution. J Clin Endocrinol Metab 2019; 104:4016-4023. [PMID: 31034016 DOI: 10.1210/jc.2019-00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT CD36 is a class B scavenger-receptor involved in the uptake of fatty acids in liver and adipose tissue. It is unknown whether plasma CD36 levels are related to liver fat content or adipose tissue in the general population. METHODS We measured plasma CD36 from 575 participants of the community-based PopGen-cohort who underwent magnetic resonance imaging (MRI) to quantify visceral (VAT) and subcutaneous (SAT) adipose tissue and liver signal intensity (LSI), a proxy for liver fat content. Non-alcoholic fatty liver disease (NAFLD) was defined as LSI ≥3.0 in the absence of high alcohol intake. The relations between plasma CD36 and body mass index (BMI), VAT, SAT, LSI, and NAFLD were evaluated using multivariable-adjusted linear and logistic regression analysis. RESULTS Plasma CD36 concentrations were correlated with BMI (r=0.11; P=0.01), SAT (r=0.16; P<0.001), and VAT (r=0.15, P<0.001), but not with LSI (P=0.44). In multivariable-adjusted regression models, mean BMI values rose across CD36-quartiles (Q1: 27.8 kg/m2; Q4: 28.9 kg/m2; P-trend=0.013). Similarly, VAT (Q1: 4.13 dm3; Q4: 4.71 dm3; P-trend<0.001) and SAT (Q1: 7.61 dm3; Q4: 8.74 dm3; P-trend<0.001) rose across CD36 quartiles. Plasma CD36 concentrations were unrelated to LSI (P-trend=0.36), and NAFLD (P-trend=0.64). Participants with NAFLD and elevated alanine aminotransferase (ALT), a marker for liver damage, had higher CD36 compared to NAFLD participants with normal ALT. CONCLUSIONS Higher plasma concentrations of CD36 were associated with greater general and abdominal adiposity, but not with liver fat content or NAFLD in this community-based sample. However, plasma CD36 may reflect more severe liver damage in NAFLD.
Collapse
Affiliation(s)
- Yeli Wang
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kirsten Evans
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jan Borggrefe
- Department of Neuroradiology, University Hospital Cologne, Cologne, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| |
Collapse
|
7
|
Cluster of differentiation 36 gene polymorphism (rs1761667) is associated with dietary MUFA intake and hypertension in a Japanese population. Br J Nutr 2019; 121:1215-1222. [PMID: 30924431 DOI: 10.1017/s0007114519000679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cluster of differentiation 36 (CD36) is a membrane receptor expressed on a wide variety of human cells. CD36 polymorphisms are reportedly associated with oral fat perception, dietary intake and metabolic disorders. The present study examined associations of two CD36 polymorphisms (rs1761667 and rs1527483) and dietary fat intake, and metabolic phenotypes in a Japanese population. This cross-sectional study was conducted based on clinical information collected from health check-ups in Japan (n 495). Dietary nutrient intake was estimated from a validated short FFQ and adjusted for total energy intake using the residual method. Mean blood pressure was calculated from systolic blood pressure (SBP) and diastolic blood pressure (DBP). Hypertension was defined as SBP ≥ 130 mmHg and/or DBP ≥ 85 mmHg, or use of antihypertensive drugs. Genotyping was performed using PCR with confronting two-pair primers method. Mean age was 63·4 (sd 9·9) years. Individuals with the AA genotype showed higher total fat and MUFA intake (standardised β = 0·110 and 0·087, P = 0·01 and 0·05, respectively) compared with the GG and GA genotypes. For metabolic phenotypes, the AA genotype of rs1761667 had a lower blood pressure compared with the GG genotype (standardised β = -0·123, P = 0·02). Our results suggested that the AA genotype of rs1761667 in the CD36 gene was associated with higher intake of total fat and MUFA and lower risk of hypertension in a Japanese population.
Collapse
|
8
|
Bai X, Xu C, Wen D, Chen Y, Li H, Wang X, Zhou L, Huang M, Jin J. Polymorphisms of peroxisome proliferator-activated receptor γ (PPARγ) and cluster of differentiation 36 (CD36) associated with valproate-induced obesity in epileptic patients. Psychopharmacology (Berl) 2018; 235:2665-2673. [PMID: 29984389 DOI: 10.1007/s00213-018-4960-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE Valproate (VPA) is a choice for the treatment of primary generalized epilepsies and partial epilepsies. Unfortunately, weight gain or obesity is one of the most frequent adverse effects of VPA treatment. Genetic factors were shown to be involved in the effect. OBJECTIVE The aim of this study was to investigate the association of selected single nucleotide polymorphisms (SNPs) of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor γ (PPARγ) with VPA-induced weight gain and obesity in epileptic patients. METHODS A total of 225 Chinese Han epilepsy patients receiving VPA treatment were recruited in the study. Height and weight for the calculation of body mass index (BMI) were measured at the initiation of VPA therapy and in the follow-up examination. A BMI of 25 kg/m2 or higher was defined as obesity on the basis of the World Health Organization (WHO) criteria for Asian populations. Four SNPs in CD36 (rs1194197, rs7807607) and PPARγ (rs10865710, rs2920502) were genotyped using the Sequenom® MassArray iPlex platform. RESULTS About 19.6% of epileptic patients receiving VPA therapy were found to become obese. After covariate analysis of age, gender, sex, height, initial BMI, and VPA dosage, the CD36 rs1194197 C allele and rs7807607 T allele (OR, 0.31; 95%CI, 0.13-0.72; P = 0.009 and OR, 0.38; 95%CI; 0.18-0.83; P = 0.02, respectively) were identified as protective factors for VPA-induced obesity. The PPARγ rs10865710 C allele carriers were found to be less likely to suffer from VPA-induced obesity compared with GG genotype carriers (OR, 0.04; 95%CI, 0.01-0.12; P < 0.001). After a Bonferroni correction for multiple comparisons, the genotypic associations of CD36 rs1194197 and PPARγ rs10865710 and the allelic association of CD36 rs7807607 with obesity remained statistically significant. CONCLUSIONS Our data first indicated that CD36 and PPARγ polymorphisms may be associated with VPA-induced obesity and weight gain, suggesting that CD36 and PPARγ may have potential value in predicting VPA-induced obesity in Chinese Han epileptic patients.
Collapse
Affiliation(s)
- Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dingsheng Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yibei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hongliang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xueding Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Liemin Zhou
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function. Br J Nutr 2018; 120:64-73. [DOI: 10.1017/s0007114518001265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSignificant experimental evidence supports fat as a taste modality; however, the associated peripheral mechanisms are not well established. Several candidate taste receptors have been identified, but their expression pattern and potential functions in human fungiform papillae remain unknown. The aim of this study is to identify the fat taste candidate receptors and ion channels that were expressed in human fungiform taste buds and their association with oral sensory of fatty acids. For the expression analysis, quantitative RT-PCR (qRT-PCR) from RNA extracted from human fungiform papillae samples was used to determine the expression of candidate fatty acid receptors and ion channels. Western blotting analysis was used to confirm the presence of the proteins in fungiform papillae. Immunohistochemistry analysis was used to localise the expressed receptors or ion channels in the taste buds of fungiform papillae. The correlation study was analysed between the expression level of the expressed fat taste receptors or ion channels indicated by qRT-PCR and fat taste threshold, liking of fatty food and fat intake. As a result, qRT-PCR and western blotting indicated that mRNA and protein of CD36, FFAR4, FFAR2, GPR84 and delayed rectifying K+ channels are expressed in human fungiform taste buds. The expression level of CD36 was associated with the liking difference score (R −0·567, β=−0·04, P=0·04) between high-fat and low-fat food and FFAR2 was associated with total fat intake (ρ=−0·535, β=−0·01, P=0·003) and saturated fat intake (ρ=−0·641, β=−0·02, P=0·008).
Collapse
|
10
|
Abstract
The gastrointestinal tract represents the largest interface between the human body and the external environment. It must continuously monitor and discriminate between nutrients that need to be assimilated and harmful substances that need to be expelled. The different cells of the gut epithelium are therefore equipped with a subtle chemosensory system that communicates the sensory information to several effector systems involved in the regulation of appetite, immune responses, and gastrointestinal motility. Disturbances or adaptations in the communication of this sensory information may contribute to the development or maintenance of disease. This is a new emerging research field in which perception of taste can be considered as a novel key player participating in the regulation of gut function. Specific diets or agonists that target these chemosensory signaling pathways may be considered as new therapeutic targets to tune adequate physiological processes in the gut in health and disease.
Collapse
Affiliation(s)
- S Steensels
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
11
|
Blomquist C, Chorell E, Ryberg M, Mellberg C, Worrsjö E, Makoveichuk E, Larsson C, Lindahl B, Olivecrona G, Olsson T. Decreased lipogenesis-promoting factors in adipose tissue in postmenopausal women with overweight on a Paleolithic-type diet. Eur J Nutr 2017; 57:2877-2886. [PMID: 29075849 PMCID: PMC6267391 DOI: 10.1007/s00394-017-1558-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Abstract
Purpose We studied effects of diet-induced postmenopausal weight loss on gene expression and activity of proteins involved in lipogenesis and lipolysis in adipose tissue. Methods Fifty-eight postmenopausal women with overweight (BMI 32.5 ± 5.5) were randomized to eat an ad libitum Paleolithic-type diet (PD) aiming for a high intake of protein and unsaturated fatty acids or a prudent control diet (CD) for 24 months. Anthropometry, plasma adipokines, gene expression of proteins involved in fat metabolism in subcutaneous adipose tissue (SAT) and lipoprotein lipase (LPL) activity and mass in SAT were measured at baseline and after 6 months. LPL mass and activity were also measured after 24 months. Results The PD led to improved insulin sensitivity (P < 0.01) and decreased circulating triglycerides (P < 0.001), lipogenesis-related factors, including LPL mRNA (P < 0.05), mass (P < 0.01), and activity (P < 0.001); as well as gene expressions of CD36 (P < 0.05), fatty acid synthase, FAS (P < 0.001) and diglyceride acyltransferase 2, DGAT2 (P < 0.001). The LPL activity (P < 0.05) and gene expression of DGAT2 (P < 0.05) and FAS (P < 0.05) were significantly lowered in the PD group versus the CD group at 6 months and the LPL activity (P < 0.05) remained significantly lowered in the PD group compared to the CD group at 24 months. Conclusions Compared to the CD, the PD led to a more pronounced reduction of lipogenesis-promoting factors in SAT among postmenopausal women with overweight. This could have mediated the favorable metabolic effects of the PD on triglyceride levels and insulin sensitivity.
Collapse
Affiliation(s)
- Caroline Blomquist
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, By 6M, M31, SE-901 87, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, By 6M, M31, SE-901 87, Umeå, Sweden
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, By 6M, M31, SE-901 87, Umeå, Sweden
| | - Caroline Mellberg
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, By 6M, M31, SE-901 87, Umeå, Sweden
| | - Evelina Worrsjö
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Elena Makoveichuk
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Christel Larsson
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | | | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, By 6M, M31, SE-901 87, Umeå, Sweden
| |
Collapse
|
12
|
Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics 2017; 49:601-617. [PMID: 28916635 DOI: 10.1152/physiolgenomics.00065.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of gene mapping methods to uncover the genetic basis of hypertension in the inbred spontaneously hypertensive rat (SHR) began over 25 yr ago. This animal provides a useful model of genetic high blood pressure, and some of its features are described. In particular, it appears to be a polygenic model of disease, and polygenes participate in human hypertension genetic risk. The SHR hypertension alleles were fixed rapidly by selective breeding in just a few generations and so are presumably common genetic variants present in the outbred Wistar strain from which SHR was created. This review provides a background to the origins and genesis of this rat line. It considers its usefulness as a model organism for a common cardiovascular disease. The progress and obstacles facing mapping are considered in depth, as are the emergence and application of other genome-wide genetic discovery approaches that have been applied to investigate this model. Candidate genes, their identification, and the evidence to support their potential role in blood pressure elevation are considered. The review assesses the progress that has arisen from this work has been limited. Consideration is given to some of the factors that have impeded progress, and prospects for advancing understanding of the genetic basis of hypertension in this model are discussed.
Collapse
Affiliation(s)
- Peter A Doris
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
13
|
Reales G, Rovaris DL, Jacovas VC, Hünemeier T, Sandoval JR, Salazar-Granara A, Demarchi DA, Tarazona-Santos E, Felkl AB, Serafini MA, Salzano FM, Bisso-Machado R, Comas D, Paixão-Côrtes VR, Bortolini MC. A tale of agriculturalists and hunter-gatherers: Exploring the thrifty genotype hypothesis in native South Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:591-601. [PMID: 28464262 DOI: 10.1002/ajpa.23233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To determine genetic differences between agriculturalist and hunter-gatherer southern Native American populations for selected metabolism-related markers and to test whether Neel's thrifty genotype hypothesis (TGH) could explain the genetic patterns observed in these populations. MATERIALS AND METHODS 375 Native South American individuals from 17 populations were genotyped using six markers (APOE rs429358 and rs7412; APOA2 rs5082; CD36 rs3211883; TCF7L2 rs11196205; and IGF2BP2 rs11705701). Additionally, APOE genotypes from 39 individuals were obtained from the literature. AMOVA, main effects, and gene-gene interaction tests were performed. RESULTS We observed differences in allele distribution patterns between agriculturalists and hunter-gatherers for some markers. For instance, between-groups component of genetic variance (FCT ) for APOE rs429358 showed strong differences in allelic distributions between hunter-gatherers and agriculturalists (p = 0.00196). Gene-gene interaction analysis indicated that the APOE E4/CD36 TT and APOE E4/IGF2BP2 A carrier combinations occur at a higher frequency in hunter-gatherers, but this combination is not replicated in archaic (Neanderthal and Denisovan) and ancient (Anzick, Saqqaq, Ust-Ishim, Mal'ta) hunter-gatherer individuals. DISCUSSION A complex scenario explains the observed frequencies of the tested markers in hunter-gatherers. Different factors, such as pleotropic alleles, rainforest selective pressures, and population dynamics, may be collectively shaping the observed genetic patterns. We conclude that although TGH seems a plausible hypothesis to explain part of the data, other factors may be important in our tested populations.
Collapse
Affiliation(s)
- Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa C Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - José R Sandoval
- Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima, Peru
| | | | - Darío A Demarchi
- Instituto de Antropología de Córdoba, CONICET, Universidad Nacional de Córdoba, Argentina
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Aline B Felkl
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michele A Serafini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Bisso-Machado
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de La Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vanessa R Paixão-Côrtes
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Ong HH, Tan YN, Say YH. Fatty acid translocase gene CD36 rs1527483 variant influences oral fat perception in Malaysian subjects. Physiol Behav 2017; 168:128-137. [DOI: 10.1016/j.physbeh.2016.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
|
15
|
Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: Association with diet and obesity. Prog Lipid Res 2016; 63:41-9. [DOI: 10.1016/j.plipres.2016.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
|
16
|
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119:8-16. [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Li Kang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
Heinze JM, Preissl H, Fritsche A, Frank S. Controversies in fat perception. Physiol Behav 2015; 152:479-93. [PMID: 26340857 DOI: 10.1016/j.physbeh.2015.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
Nutritional fat is one of the most controversial topics in nutritional research, particularly against the background of obesity. Studies investigating fat taste perception have revealed several associations with sensory, genetic, and personal factors (e.g. BMI). However, neuronal activation patterns, which are known to be highly sensitive to different tastes as well as to BMI differences, have not yet been included in the scheme of fat taste perception. We will therefore provide a comprehensive survey of the sensory, genetic, and personal factors associated with fat taste perception and highlight the benefits of applying neuroimaging research. We will also give a critical overview of studies investigating sensory fat perception and the challenges resulting from multifaceted methodological approaches. In conclusion, we will discuss a multifactorial approach to fat perception to gain a better understanding of the underlying mechanisms that cause varying fat sensitivity which could be responsible for overeating. Such knowledge might be beneficial in new treatment strategies for obesity and overweight.
Collapse
Affiliation(s)
- Jaana M Heinze
- Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Hubert Preissl
- Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany.
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Sabine Frank
- Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Cvijanovic N, Feinle-Bisset C, Young RL, Little TJ. Oral and intestinal sweet and fat tasting: impact of receptor polymorphisms and dietary modulation for metabolic disease. Nutr Rev 2015; 73:318-334. [DOI: 10.1093/nutrit/nuu026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
19
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
20
|
Clifford AJ, Rincon G, Owens JE, Medrano JF, Moshfegh AJ, Baer DJ, Novotny JA. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults. Lipids Health Dis 2013; 12:66. [PMID: 23656756 PMCID: PMC3653731 DOI: 10.1186/1476-511x-12-66] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/02/2013] [Indexed: 11/12/2022] Open
Abstract
Background In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body weight. We used a linear regression model. Selected genes corresponded to folate metabolism, vitamins B-12, A, and E, and cholesterol pathways or lipid metabolism. Methods Extracted DNA from both the Sacramento and Beltsville populations was analyzed using an allele discrimination assay with a MALDI-TOF mass spectrometry platform. The adjusted phenotype, y, was HDL levels adjusted for gender and body weight only statistical analyses were performed using the genotype association and regression modules from the SNP Variation Suite v7. Results Statistically significant SNP (where P values were adjusted for false discovery rate) included: CETP (rs7499892 and rs5882); SLC46A1 (rs37514694; rs739439); SLC19A1 (rs3788199); CD36 (rs3211956); BCMO1 (rs6564851), APOA5 (rs662799), and ABCA1 (rs4149267). Many prior association trends of the SNP with HDL were replicated in our cross-validation study. Significantly, the association of SNP in folate transporters (SLC46A1 rs37514694 and rs739439; SLC19A1 rs3788199) with HDL was identified in our study. Conclusions Given recent literature on the role of niacin in the biogenesis of HDL, focus on status and metabolism of B-vitamins and metabolites of eccentric cleavage of β-carotene with lipid metabolism is exciting for future study.
Collapse
Affiliation(s)
- Andrew J Clifford
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tucker RM, Mattes RD. Are free fatty acids effective taste stimuli in humans? Presented at the symposium "The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond" held at the iNstitute of Food Technologists 2011 Annual Meeting, New Orleans, LA, June 12, 2011. J Food Sci 2012; 77:S148-51. [PMID: 22384969 DOI: 10.1111/j.1750-3841.2011.02518.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The popularity of low- and reduced-fat foods has increased as consumers seek to decrease their energy consumption. Fat replacers may be used in fat-reduced products to maintain their sensory properties. However, these ingredients have been largely formulated to replicate nongustatory properties of fats to foods and have only achieved moderate success. There is increasing evidence that fats also activate the taste system and uniquely evoke responses that may influence product acceptance. Work supporting a taste component of fat has prompted questions about whether fat constitutes an additional "primary" or "basic" taste quality. This review briefly summarizes this evidence, focusing on human studies, when possible. Effective stimuli, possible receptors, and physiological changes due to oral fat exposure are discussed. Some studies suggest that there are fatty acid tasters and nontasters and if verified could have implications for targeted product development.
Collapse
Affiliation(s)
- Robin M Tucker
- Dept. of Nutrition Science, Purdue Univ., 212 Stone Hall, 700 W. State St., West Lafayette, IN 47907-2059, USA
| | | |
Collapse
|
22
|
Keller KL, Liang LCH, Sakimura J, May D, van Belle C, Breen C, Driggin E, Tepper BJ, Lanzano PC, Deng L, Chung WK. Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity (Silver Spring) 2012; 20:1066-73. [PMID: 22240721 PMCID: PMC3743670 DOI: 10.1038/oby.2011.374] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animal studies show that CD36, a fatty acid translocase, is involved in fat detection and preference, but these findings have not been reported in humans. The objective of this study was to determine whether human genetic variation in 5 common CD36 polymorphisms is associated with oral fat perception of Italian salad dressings, self-reported acceptance of high-fat foods and obesity in African-American adults (n = 317). Ratings of perceived oiliness, fat content, and creaminess were assessed on a 170-mm visual analogue scale (VAS) in response to salad dressings that were 5%, 35%, and 55% fat-by-weight content. Acceptance of added fats and oils and high-fat foods was self-reported and anthropometric measures were taken in the laboratory. DNA was isolated from saliva and genotyped at 5 CD36 polymorphisms. Three polymorphisms, rs1761667, rs3840546, and rs1527483 were associated with the outcomes. Participants with the A/A genotype at rs1761667 reported greater perceived creaminess, regardless of the fat concentration of the salad dressings (P < 0.01) and higher mean acceptance of added fats and oils (P = 0.02) compared to those with other genotypes at this site. Individuals who had C/T or T/T genotypes at rs1527483 also perceived greater fat content in the salad dressings, independent of fat concentration (P = 0.03). BMI and waist circumference were higher in participants who were homozygous for a deletion (D/D) at rs3840546, compared to I/D or D/D individuals (P < 0.001), but only 2 D/D individuals were tested, so this finding needs replication. This is the first study to demonstrate an association between common variants in CD36 and fat ingestive behaviors in humans.
Collapse
Affiliation(s)
- Kathleen L Keller
- Department of Research Medicine, New York Obesity Research Center, St. Luke's Roosevelt Hospital, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zadeh-Vakili A, Faam B, Daneshpour MS, Hedayati M, Azizi F. Association of CD36 gene variants and metabolic syndrome in Iranians. Genet Test Mol Biomarkers 2011; 16:234-8. [PMID: 22047506 DOI: 10.1089/gtmb.2011.0195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS The CD36 gene encodes for a membrane receptor that facilitates fatty-acid uptake and utilization. Genetic variants of the CD36 gene have been associated with metabolic syndrome (MetS). We aimed to evaluate the association between the rs10499859A>G and rs13246513C>T polymorphisms and MetS components. METHODS For this case-control study, 140 MetS and 187 normal subjects were randomly selected from the Tehran Lipid and Glucose Study participants. Biochemical and anthropometrical variables were measured. Genotyping for both single nucleotide polymorphisms (SNPs) was performed by polymerase chain reaction-restriction fragment length polymorphism. RESULTS Case and control groups were not different in allele and genotype frequencies for these SNPs. However, the A and T alleles of these SNPs were significantly associated with elevated levels of high-density lipoprotein cholesterol (HDL-C) before age and sex adjustment (p=0.027 and 0.016, respectively). Association between the A allele and body mass index (BMI) was also significant after adjustment for MetS under the dominant model (p=0.009, β(2)=0.68). CONCLUSIONS Based on our results, these polymorphisms do affect HDL-C level and BMI (MetS components), although the effect may be slight and restricted specifically to an environment-genotype.
Collapse
Affiliation(s)
- Azita Zadeh-Vakili
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The review summarizes our current understanding of the function of the fatty acid translocase, CD36, in lipid metabolism with an emphasis on the influence of CD36 genetic variants and their potential contribution to obesity-related complications. RECENT FINDINGS Studies in rodents implicate CD36 in a number of metabolic pathways with relevance to obesity and its associated complications. These include pathways related to fat utilization such as taste perception, intake, intestinal processing, and storage in adipose tissue. Dysfunction in these pathways, coupled with the ability of CD36 to transduce intracellular signals that initiate inflammation in response to excess fat supply, promotes metabolic pathology. In the last few years, the relevance of discoveries in rodents to humans has been highlighted by genetic studies, which identified common CD36 variants that influence circulating lipid levels and cardiometabolic phenotypes. SUMMARY Recent genetic studies suggest that CD36 plays an important role in lipid metabolism in humans and may be involved in obesity-related complications. These findings may accelerate the translation of CD36 metabolic functions determined in rodents to humans. Importantly, these studies highlight the potential utility of assessing CD36 expression and common single-nucleotide polymorphism genotypes.
Collapse
|