1
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
2
|
Osbourne R, Thayer KM. Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606567. [PMID: 39149312 PMCID: PMC11326148 DOI: 10.1101/2024.08.05.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accumulation of senescent cells induces several aging phenotypes, and the p53 tumor suppressor protein regulates one of the two known cellular senescence pathways. p53's regulation of senescence is however not clear. For example, p53 deficiency in some mice has been shown to rescue premature aging while others display significant aging phenotype when p53-deficient. This study seeks to elucidate, structurally and mechanistically, p53's roles in longevity. Through a relative evolutionary scoring (RES) algorithm, we quantify the level of evolutionary change in the residues of p53 across organisms of varying average lifespans in six taxonomic orders. Secondly, we used PEPPI to assess the likelihood of interaction between p53-or p53-linked proteins-and known senescence-regulating proteins across organisms in the orders Primates and Perciformes. Our RES algorithm found variations in the alignments within and across orders, suggesting that mechanisms of p53-mediated regulation of longevity may vary. PEPPI results suggest that longer-lived species may have evolved to regulate induction and inhibition of cellular senescence better than their shorter-lived counterparts. With experimental verification, these predictions could help elucidate the mechanisms of p53-mediated cellular senescence, ultimately clarifying our understanding of p53's connection to aging in a multiple-species context.
Collapse
Affiliation(s)
- Romani Osbourne
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| | - Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
3
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
4
|
Lee H, Jung JH, Ko HM, Park H, Segall AM, Sheffmaker RL, Wang J, Frey WD, Pham N, Wang Y, Zhang Y, Jackson JG, Zeng SX, Lu H. RNA-binding motif protein 10 inactivates c-Myc by partnering with ribosomal proteins uL18 and uL5. Proc Natl Acad Sci U S A 2023; 120:e2308292120. [PMID: 38032932 DOI: 10.1073/pnas.2308292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
RNA-binding motif protein 10 (RBM10) is a frequently mutated tumor suppressor in lung adenocarcinoma (LUAD). Yet, it remains unknown whether cancer-derived mutant RBM10 compromises its tumor suppression function and, if so, the molecular insight of the underlying mechanisms. Here, we show that wild-type RBM10 suppresses lung cancer cell growth and proliferation by inactivating c-Myc that is essential for cancer cell survival. RBM10 directly binds to c-Myc and promotes c-Myc's ubiquitin-dependent degradation, while RBM10 knockdown leads to the induction of c-Myc level and activity. This negative action on c-Myc is further boosted by ribosomal proteins (RPs) uL18 (RPL5) and uL5 (RPL11) via their direct binding to RBM10. Cancer-derived mutant RBM10-I316F fails to bind to uL18 and uL5 and to inactivate c-Myc, thus incapable of suppressing tumorigenesis. Our findings uncover RBM10 as a pivotal c-Myc repressor by cooperating with uL18 and uL5 in lung cancer cells, as its failure to do so upon mutation favors tumorigenesis.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Ji Hoon Jung
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hyun Min Ko
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Allyson M Segall
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Neuroscience, Tulane University, New Orleans, LA 70118
| | - Roger L Sheffmaker
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Jieqiong Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Nathan Pham
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
5
|
Castillo Duque de Estrada NM, Thoms M, Flemming D, Hammaren HM, Buschauer R, Ameismeier M, Baßler J, Beck M, Beckmann R, Hurt E. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways. Nat Struct Mol Biol 2023; 30:1119-1131. [PMID: 37291423 PMCID: PMC10442235 DOI: 10.1038/s41594-023-01006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/26/2023] [Indexed: 06/10/2023]
Abstract
The 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors. This reveals how the nascent 5S rRNA associates with the initial nuclear import complex Syo1-uL18-uL5 and, upon further recruitment of the nucleolar factors Rpf2 and Rrs1, develops into the 5S RNP precursor that can assemble into the pre-ribosome. In addition, we elucidate the structure of another 5S RNP intermediate, carrying the human ubiquitin ligase Mdm2, which unravels how this enzyme can be sequestered from its target substrate p53. Our data provide molecular insight into how the 5S RNP can mediate between ribosome biogenesis and cell proliferation.
Collapse
Affiliation(s)
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henrik M Hammaren
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robert Buschauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Jochen Baßler
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
6
|
Chen J, Lei C, Zhang H, Huang X, Yang Y, Liu J, Jia Y, Shi H, Zhang Y, Zhang J, Du J. RPL11 promotes non-small cell lung cancer cell proliferation by regulating endoplasmic reticulum stress and cell autophagy. BMC Mol Cell Biol 2023; 24:7. [PMID: 36869281 PMCID: PMC9985270 DOI: 10.1186/s12860-023-00469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Abnormal biogenesis and ribosome free function of ribosomal proteins (RPs) is important for tumorgenesis and development. Ribosomal protein L11 (RPL11) is a component of ribosomal 60 S large subunit with different roles in different cancers. Here, we aimed to unravel the role of RPL11 in non-small cell lung cancer (NSCLC), especially those affecting cell proliferation. METHODS RPL11 expression in NCI-H1650, NCI-H1299, A549 and HCC827 and normal lung bronchial epithelial cells HBE was detected using western blotting. The function of RPL11 in NSCLC cells were determined by investigating cell viablity, colony formation and cell migration. Mechanism expoloration of RPL11 effect on NSCLC cells proliferation was explored using flow cytometry, and the effect on autophagy was investigated by the additon of autophagy inhibitor chloroquine (CQ) and endoplasmic reticulum stress (ERS) inhibitor tauroursodeoxycholic acid (TUDCA). RESULTS RPL11 was highly expressed in NSCLC cells. Extopic expression of RPL11 promoted NCI-H1299 and A549 cells proliferation, and migration, and promoted the transition from the G1 phase to the S phase of the cell cycle. Small RNA interference of RPL11 (siRNA) suppressed NCI-H1299 and A549 cells proliferation and migration and arrested the cell cycle in G0/G1 phase. Moreover, RPL11 promoted NSCLC cell proliferation by modulating autophagy and ERS. Expression levels of autophagy and ERS markers were induced by RPL11 overexpression and inhibited by siRPL11. CQ partially suppressed RPL11-induced A549 and NCI-H1299 proliferation: CQ addition reduced RPL11-induced cells viability and clone numbers and reversed the cell cycle process. ERS inhibitor (TUDCA) partially reversed RPL11-induced autophagy. CONCLUSION Taken together, RPL11 has a tumor-promoting role in NSCLC. It promotes the cell proliferation of NSCLC cells by regulating ERS and autophagy.
Collapse
Affiliation(s)
- Jie Chen
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Changda Lei
- Department of Gastroenterology, Ninth Hospital of Xi 'an, 710054, Xi'an, Shaanxi Province, China
| | - Huahua Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Xiaoyong Huang
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Yang Yang
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Junli Liu
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Yuna Jia
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Haiyan Shi
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China
| | - Yunqing Zhang
- Laboratory of Obstetrics and Gynecology, Affiliated Hospital of Yan'an University, 716000, Yan'an, Shaanxi Province, China.
| | - Jing Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China. .,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China.
| | - Juan Du
- Medical Research and Experimental Center, Medical College, Yan'an University, 716000, Yan'an, People's Republic of China. .,Yan'an Key Laboratory of Chronic Disease Prevention and Research, 716000, Yan'an, Shaanxi Province, China.
| |
Collapse
|
7
|
Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: From development to cancer. Semin Cell Dev Biol 2023; 136:64-74. [PMID: 35410715 PMCID: PMC9883801 DOI: 10.1016/j.semcdb.2022.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
The nucleolus is a large nuclear membraneless organelle responsible for ribosome biogenesis. Ribosomes are cytoplasmic macromolecular complexes comprising RNA and proteins that link amino acids together to form new proteins. The biogenesis of ribosomes is an intricate multistep process that involves the transcription of ribosomal DNA (rDNA), the processing of ribosomal RNA (rRNA), and the assembly of rRNA with ribosomal proteins to form active ribosomes. Nearly all steps necessary for ribosome production and maturation occur in the nucleolus. Nucleolar shape, size, and number are directly linked to ribosome biogenesis. Errors in the steps of ribosomal biogenesis are sensed by the nucleolus causing global alterations in nucleolar function and morphology. This phenomenon, known as nucleolar stress, can lead to molecular changes such as stabilization of p53, which in turn activates cell cycle arrest or apoptosis. In this review, we discuss recent work on the association of nucleolar stress with degenerative diseases and developmental defects. In addition, we highlight the importance of de novo nucleotide biosynthesis for the enhanced nucleolar activity of cancer cells and discuss targeting nucleotide biosynthesis as a strategy to activate nucleolar stress to specifically target cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
8
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
9
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
11
|
Nakamura K, Reid BM, Chen A, Chen Z, Goode EL, Permuth JB, Teer JK, Tyrer J, Yu X, Kanetsky PA, Pharoah PD, Gayther SA, Sellers TA, Lawrenson K, Karreth FA. Functional analysis of the 1p34.3 risk locus implicates GNL2 in high-grade serous ovarian cancer. Am J Hum Genet 2022; 109:116-135. [PMID: 34965383 DOI: 10.1016/j.ajhg.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
The high-grade serous ovarian cancer (HGSOC) risk locus at chromosome 1p34.3 resides within a frequently amplified genomic region signifying the presence of an oncogene. Here, we integrate in silico variant-to-function analysis with functional studies to characterize the oncogenic potential of candidate genes in the 1p34.3 locus. Fine mapping of genome-wide association statistics identified candidate causal SNPs local to H3K27ac-demarcated enhancer regions that exhibit allele-specific binding for CTCF in HGSOC and normal fallopian tube secretory epithelium cells (FTSECs). SNP risk associations colocalized with eQTL for six genes (DNALI1, GNL2, RSPO1, SNIP1, MEAF6, and LINC01137) that are more highly expressed in carriers of the risk allele, and three (DNALI1, GNL2, and RSPO1) were upregulated in HGSOC compared to normal ovarian surface epithelium cells and/or FTSECs. Increased expression of GNL2 and MEAF6 was associated with shorter survival in HGSOC with 1p34.3 amplifications. Despite its activation of β-catenin signaling, RSPO1 overexpression exerted no effects on proliferation or colony formation in our study of ovarian cancer and FTSECs. Instead, GNL2, MEAF6, and SNIP1 silencing impaired in vitro ovarian cancer cell growth. Additionally, GNL2 silencing diminished xenograft tumor formation, whereas overexpression stimulated proliferation and colony formation in FTSECs. GNL2 influences 60S ribosomal subunit maturation and global protein synthesis in ovarian cancer and FTSECs, providing a potential mechanism of how GNL2 upregulation might promote ovarian cancer development and mediate genetic susceptibility of HGSOC.
Collapse
|
12
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
13
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
14
|
Abstract
Senescence is a state of long-term cell cycle arrest that arises in cells that have incurred sublethal damage. While senescent cells no longer replicate, they remain metabolically active and further develop unique and stable phenotypes that are not present in proliferating cells. On one hand, senescent cells increase in size, maintain an active mTORC1 complex, and produce and secrete a substantial amount of inflammatory proteins as part of the senescence-associated secretory phenotype (SASP). On the other hand, these progrowth phenotypes contrast with the p53-mediated growth arrest typical of senescent cells that is associated with nucleolar stress and an inhibition of rRNA processing and ribosome biogenesis. In sum, translation in senescent cells paradoxically comprises both a global repression of translation triggered by DNA damage and a select increase in the translation of specific proteins, including SASP factors.
Collapse
|
15
|
The Undervalued Avenue to Reinstate Tumor Suppressor Functionality of the p53 Protein Family for Improved Cancer Therapy-Drug Repurposing. Cancers (Basel) 2020; 12:cancers12092717. [PMID: 32971841 PMCID: PMC7563196 DOI: 10.3390/cancers12092717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
p53 and p73 are critical tumor suppressors that are often inactivated in human cancers through various mechanisms. Owing to their high structural homology, the proteins have many joined functions and recognize the same set of genes involved in apoptosis and cell cycle regulation. p53 is known as the 'guardian of the genome' and together with p73 forms a barrier against cancer development and progression. The TP53 is mutated in more than 50% of all human cancers and the germline mutations in TP53 predispose to the early onset of multiple tumors in Li-Fraumeni syndrome (LFS), the inherited cancer predisposition. In cancers where TP53 gene is intact, p53 is degraded. Despite the ongoing efforts, the treatment of cancers remains challenging. This is due to late diagnoses, the toxicity of the current standard of care and marginal benefit of newly approved therapies. Presently, the endeavors focus on reactivating p53 exclusively, neglecting the potential of the restoration of p73 protein for cancer eradication. Taken that several small molecules reactivating p53 failed in clinical trials, there is a need to develop new treatments targeting p53 proteins in cancer. This review outlines the most advanced strategies to reactivate p53 and p73 and describes drug repurposing approaches for the efficient reinstatement of the p53 proteins for cancer therapy.
Collapse
|
16
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
17
|
Sakaguchi M, Kitaguchi D, Morinami S, Kurashiki Y, Hashida H, Miyata S, Yamaguchi M, Sakai M, Murata N, Tanaka S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem Biophys Res Commun 2020; 528:227-233. [PMID: 32475643 DOI: 10.1016/j.bbrc.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
We investigated the novel molecular mechanisms of the antitumor effect of berberine. In this study, two different human cell lines (breast cancer MCF7 cells and non-tumorigenic epithelial MCF12A cells) were treated with various concentrations of berberine. Treatment with 1 and 10 μM berberine inhibited proliferation with G0/G1 cell cycle arrest in both cell lines, and treatment with 100 μM berberine triggered a marked level of cell death in MCF7 cells but not in MCF12A cells. Berberine increased the level of p53 protein and of its target p21 both time- and dose-dependently in MCF7 cells. At any concentration of berberine, immediate uptake (within 15 min) followed by predominantly mitochondrial accumulation were observed by confocal microscopy in both cell lines. At high concentrations (10 or 100 μM), accumulation in the nucleolus became prominent after the transition to the nucleoplasm, especially remarkable in MCF7 cells. Therefore, we evaluated the possibility of berberine-induced nucleolar stress and observed the disappearance of ribosomal protein (RP)L5 from the nucleolus and accumulation of p53 protein in the nucleus after treatment with 10 or 100 μM berberine in MCF7 cells. We also detected the accumulation of RPL5 and RPL11 in the nucleoplasm fraction where they bind to Mdm2. Moreover, downregulation of RPL5 inhibited berberine-driven induction of p53 and p21 and cell death in MCF7 cells. Whereas, in MCF12A cells, down-regulation of RPL5 had little effect on the growth inhibitory effect of high concentration of berberine. These results indicated that cell growth inhibition and cell death induced by higher doses (>10 μM) of berberine in MCF7 cells were due to the upregulation of p53 under the nucleolar stress response caused by a significant accumulation of berberine in the nucleoli.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Daiki Kitaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiho Morinami
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuki Kurashiki
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Haruna Hashida
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Saki Miyata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Maki Yamaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyu Sakai
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Natsuko Murata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
18
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene 2020; 39:3443-3457. [PMID: 32108164 DOI: 10.1038/s41388-020-1231-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023]
Abstract
Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.
Collapse
|
20
|
The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death Differ 2019; 27:773-789. [PMID: 31285544 PMCID: PMC7205879 DOI: 10.1038/s41418-019-0387-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmacological inhibition of ribosome biogenesis is a promising avenue for cancer therapy. Herein, we report a novel activity of the FDA-approved antimalarial drug amodiaquine which inhibits rRNA transcription, a rate-limiting step for ribosome biogenesis, in a dose-dependent manner. Amodiaquine triggers degradation of the catalytic subunit of RNA polymerase I (Pol I), with ensuing RPL5/RPL11-dependent stabilization of p53. Pol I shutdown occurs in the absence of DNA damage and without the subsequent ATM-dependent inhibition of rRNA transcription. RNAseq analysis revealed mechanistic similarities of amodiaquine with BMH-21, the first-in-class Pol I inhibitor, and with chloroquine, the antimalarial analog of amodiaquine, with well-established autophagy-inhibitory activity. Interestingly, autophagy inhibition caused by amodiaquine is not involved in the inhibition of rRNA transcription, suggesting two independent anticancer mechanisms. In vitro, amodiaquine is more efficient than chloroquine in restraining the proliferation of human cell lines derived from colorectal carcinomas, a cancer type with predicted susceptibility to ribosome biogenesis stress. Taken together, our data reveal an unsuspected activity of a drug approved and used in the clinics for over 30 years, and provide rationale for repurposing amodiaquine in cancer therapy.
Collapse
|
21
|
Jeffery CJ. An enzyme in the test tube, and a transcription factor in the cell: Moonlighting proteins and cellular factors that affect their behavior. Protein Sci 2019; 28:1233-1238. [PMID: 31087733 PMCID: PMC6566513 DOI: 10.1002/pro.3645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
Abstract
In the cell, expression levels, allosteric modulators, post-translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.
Collapse
Affiliation(s)
- Constance J. Jeffery
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinois60607
| |
Collapse
|
22
|
NOL12 Repression Induces Nucleolar Stress-Driven Cellular Senescence and Is Associated with Normative Aging. Mol Cell Biol 2019; 39:MCB.00099-19. [PMID: 30988155 DOI: 10.1128/mcb.00099-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 02/07/2023] Open
Abstract
The nucleolus is a subnuclear compartment with key roles in rRNA synthesis and ribosome biogenesis, complex processes that require hundreds of proteins and factors. Alterations in nucleolar morphology and protein content have been linked to the control of cell proliferation and stress responses and, recently, further implicated in cell senescence and ageing. In this study, we report the functional role of NOL12 in the nucleolar homeostasis of human primary fibroblasts. NOL12 repression induces specific changes in nucleolar morphology, with increased nucleolar area but reduced nucleolar number, along with nucleolar accumulation and increased levels of fibrillarin and nucleolin. Moreover, NOL12 repression leads to stabilization and activation of p53 in an RPL11-dependent manner, which arrests cells at G2 phase and ultimately leads to senescence. Importantly, we found NOL12 repression in association with nucleolar stress-like responses in human fibroblasts from elderly donors, disclosing it as a biomarker in human chronological aging.
Collapse
|
23
|
Pignolo RJ, Samsonraj RM, Law SF, Wang H, Chandra A. Targeting Cell Senescence for the Treatment of Age-Related Bone Loss. Curr Osteoporos Rep 2019; 17:70-85. [PMID: 30806947 DOI: 10.1007/s11914-019-00504-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review cell senescence in the context of age-related bone loss by broadly discussing aging mechanisms in bone, currently known inducers and markers of senescence, the senescence-associated secretory phenotype (SASP), and the emerging roles of senescence in bone homeostasis and pathology. RECENT FINDINGS Cellular senescence is a state of irreversible cell cycle arrest induced by insults or stressors including telomere attrition, oxidative stress, DNA damage, oncogene activation, and other intrinsic or extrinsic triggers and there is mounting evidence for the role of senescence in aging bone. Cellular aging also instigates a SASP that exerts detrimental paracrine and likely systemic effects. With aging, multiple cell types in the bone microenvironment become senescent, with osteocytes and myeloid cells as primary contributors to the SASP. Targeting undesired senescent cells may be a favorable strategy to promote bone anabolic and anti-resorptive functions in aging bone, with the possibility of improving bone quality and function with normal aging and/or disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | - Susan F Law
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haitao Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Abhishek Chandra
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
Del Toro N, Fernandez-Ruiz A, Mignacca L, Kalegari P, Rowell MC, Igelmann S, Saint-Germain E, Benfdil M, Lopes-Paciencia S, Brakier-Gingras L, Bourdeau V, Ferbeyre G, Lessard F. Ribosomal protein RPL22/eL22 regulates the cell cycle by acting as an inhibitor of the CDK4-cyclin D complex. Cell Cycle 2019; 18:759-770. [PMID: 30874462 DOI: 10.1080/15384101.2019.1593708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.
Collapse
Affiliation(s)
- Neylen Del Toro
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Ana Fernandez-Ruiz
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.,b CRCHUM , Montréal , QC , Canada
| | - Lian Mignacca
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Paloma Kalegari
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.,b CRCHUM , Montréal , QC , Canada
| | - Marie-Camille Rowell
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.,b CRCHUM , Montréal , QC , Canada
| | - Sebastian Igelmann
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Emmanuelle Saint-Germain
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Mehdi Benfdil
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Stéphane Lopes-Paciencia
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.,b CRCHUM , Montréal , QC , Canada
| | - Léa Brakier-Gingras
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Véronique Bourdeau
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| | - Gerardo Ferbeyre
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.,b CRCHUM , Montréal , QC , Canada
| | - Frédéric Lessard
- a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada
| |
Collapse
|
25
|
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 2019; 47:1505-1522. [PMID: 30476192 PMCID: PMC6379667 DOI: 10.1093/nar/gky1190] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.
Collapse
Affiliation(s)
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
26
|
Dionne KL, Bergeron D, Landry-Voyer AM, Bachand F. The 40S ribosomal protein uS5 (RPS2) assembles into an extraribosomal complex with human ZNF277 that competes with the PRMT3-uS5 interaction. J Biol Chem 2018; 294:1944-1955. [PMID: 30530495 DOI: 10.1074/jbc.ra118.004928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ribosomal (r)-proteins are generally viewed as ubiquitous, constitutive proteins that simply function to maintain ribosome integrity. However, findings in the past decade have led to the idea that r-proteins have evolved specialized functions beyond the ribosome. For example, the 40S ribosomal protein uS5 (RPS2) is known to form an extraribosomal complex with the protein arginine methyltransferase PRMT3 that is conserved from fission yeast to humans. However, the full scope of uS5's extraribosomal functions, including whether uS5 interacts with any other proteins, is not known. In this study, we identify the conserved zinc finger protein 277 (ZNF277) as a new uS5-associated protein by using quantitative proteomics approaches in human cells. As previously shown for PRMT3, we found that ZNF277 uses a C2H2-type zinc finger domain to recognize uS5. Analysis of protein-protein interactions in living cells indicated that the ZNF277-uS5 complex is found in the cytoplasm and the nucleolus. Furthermore, we show that ZNF277 and PRMT3 compete for uS5 binding, because overexpression of PRMT3 inhibited the formation of the ZNF277-uS5 complex, whereas depletion of cellular ZNF277 resulted in increased levels of uS5-PRMT3. Notably, our results reveal that ZNF277 recognizes nascent uS5 in the course of mRNA translation, suggesting cotranslational assembly of the ZNF277-uS5 complex. Our findings thus unveil an intricate network of evolutionarily conserved protein-protein interactions involving extraribosomal uS5, suggesting a key role for uS5 beyond the ribosome.
Collapse
Affiliation(s)
- Kiersten L Dionne
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Danny Bergeron
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Anne-Marie Landry-Voyer
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François Bachand
- From the RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
27
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 2018; 20:789-799. [PMID: 29941930 DOI: 10.1038/s41556-018-0127-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.
Collapse
|
29
|
Zhang M, Zhang J, Yan W, Chen X. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget 2018; 7:78255-78268. [PMID: 27825141 PMCID: PMC5346636 DOI: 10.18632/oncotarget.13126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
30
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
31
|
The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv 2017; 1:1959-1976. [PMID: 29296843 DOI: 10.1182/bloodadvances.2017008078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome that exhibits an erythroid-specific phenotype. In at least 70% of cases, DBA is related to a haploinsufficient germ line mutation in a ribosomal protein (RP) gene. Additional cases have been associated with mutations in GATA1. We have previously established that the RPL11+/Mut phenotype is more severe than RPS19+/Mut phenotype because of delayed erythroid differentiation and increased apoptosis of RPL11+/Mut erythroid progenitors. The HSP70 protein is known to protect GATA1, the major erythroid transcription factor, from caspase-3 mediated cleavage during normal erythroid differentiation. Here, we show that HSP70 protein expression is dramatically decreased in RPL11+/Mut erythroid cells while being preserved in RPS19+/Mut cells. The decreased expression of HSP70 in RPL11+/Mut cells is related to an enhanced proteasomal degradation of polyubiquitinylated HSP70. Restoration of HSP70 expression level in RPL11+/Mut cells reduces p53 activation and rescues the erythroid defect in DBA. These results suggest that HSP70 plays a key role in determining the severity of the erythroid phenotype in RP-mutation-dependent DBA.
Collapse
|
32
|
Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget 2017; 8:90651-90661. [PMID: 29207594 PMCID: PMC5710875 DOI: 10.18632/oncotarget.21544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Several ribosomal proteins (RPs) in response to various ribosomal stressors have been shown to play a critical role in p53-dependent regulation of cell cycle arrest, apoptosis and tumor suppression. Here, we report ribosomal protein L22 (RPL22/eL22) as a novel p53 activator highly mutated (mostly deletion mutation) in various types of human cancers, but not essential for ribosomal biogenesis in normal cells. Ectopic expression of RPL22/eL22 suppressed the colony formation of cancer cells in a p53-dependent manner, whereas knockdown of RPL22/eL22 significantly compromised p53 activation by Actinomycin D, rescuing p53-induced G1/G0 cell cycle arrest. Interestingly, human tumors with RPL22/eL22 deletion appeared to sustain wild type p53. Mechanistically, RPL22/eL22 bound to MDM2 acidic domain and inhibited MDM2-mediated p53 ubiquitination and degradation, hence extending the half-life of p53. Ribosome-profiling analysis revealed that induction of ribosomal stress by Actinomycin D leads to the increase of ribosome-free RPL22/eL22 pool. Also, RPL22/eL22 formed a complex with MDM2/RPL5/uL18/RPL11/uL5 and synergized with RPL11/uL5 to activate p53. Furthermore, the N terminus of RPL22/eL22 bound to MDM2, while the C terminus interacted with RPL5/uL18/RPL11/uL5; both of these two fragments activated p53 by inhibiting MDM2. Our study indicates that RPL22/eL22 highly mutated in human cancers plays an anti-cancer role likely through regulation of the MDM2-p53 feedback loop, and also suggests that targeting the RPL22/eL22-MDM2-p53 pathway could be a potential strategy for future development of anti-cancer therapy.
Collapse
|
33
|
Assfalg R, Alupei MC, Wagner M, Koch S, Gonzalez OG, Schelling A, Scharffetter-Kochanek K, Iben S. Cellular sensitivity to UV-irradiation is mediated by RNA polymerase I transcription. PLoS One 2017. [PMID: 28636660 PMCID: PMC5479586 DOI: 10.1371/journal.pone.0179843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nucleolus has long been considered to be a pure ribosome factory. However, over the last two decades it became clear that the nucleolus is involved in numerous other functions besides ribosome biogenesis. Our experiments indicate that the activity of RNA polymerase I (Pol I) transcription monitors the integrity of the DNA and influences the response to nucleolar stress as well as the rate of survival. Cells with a repressed ribosomal DNA (rDNA) transcription activity showed an increased and prolonged p53 stabilisation after UVC-irradiation. Furthermore, p53 stabilisation after inhibition and especially after UVC-irradiation might be due to abrogation of the HDM2-p53 degradation pathway by ribosomal proteins (RPs). Apoptosis mediated by highly activated p53 is a typical hallmark of Cockayne syndrome cells and transcriptional abnormalities and the following activation of the RP-HDM2-p53 pathway would be a possible explanation.
Collapse
Affiliation(s)
- Robin Assfalg
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Marius Costel Alupei
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Sylvia Koch
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Omar Garcia Gonzalez
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Adrian Schelling
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
34
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|
35
|
The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18010210. [PMID: 28117679 PMCID: PMC5297839 DOI: 10.3390/ijms18010210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.
Collapse
|
36
|
López I, Tournillon AS, Nylander K, Fåhraeus R. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress. Cell Cycle 2016; 14:3373-8. [PMID: 26397130 PMCID: PMC4825612 DOI: 10.1080/15384101.2015.1090066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21CDKN1A and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21CDKN1A transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21CDKN1A and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.
Collapse
Affiliation(s)
- Ignacio López
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Anne-Sophie Tournillon
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Karin Nylander
- b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden
| | - Robin Fåhraeus
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France ,b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden.,c RECAMO; Masaryk Memorial Cancer Institute ; Brno , Czech Republic
| |
Collapse
|
37
|
Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends Cancer 2016; 2:191-204. [PMID: 28741571 DOI: 10.1016/j.trecan.2016.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Ribosomal biogenesis is tightly associated with cellular activities, such as growth, proliferation, and cell cycle progression. Perturbations in ribosomal biogenesis can initiate so-called nucleolar stress. The process through which ribosomal proteins (RPs) transduce nucleolar stress signals via MDM2 to p53 has been described as a crucial tumor-suppression mechanism. In this review we focus on recent progress pertaining to the function and mechanism of RPs in association with the MDM2-p53 tumor-suppression network, and the potential implications this surveillance network has for cancer development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
38
|
Khan IK, Kihara D. Genome-scale prediction of moonlighting proteins using diverse protein association information. ACTA ACUST UNITED AC 2016; 32:2281-8. [PMID: 27153604 DOI: 10.1093/bioinformatics/btw166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
MOTIVATION Moonlighting proteins (MPs) show multiple cellular functions within a single polypeptide chain. To understand the overall landscape of their functional diversity, it is important to establish a computational method that can identify MPs on a genome scale. Previously, we have systematically characterized MPs using functional and omics-scale information. In this work, we develop a computational prediction model for automatic identification of MPs using a diverse range of protein association information. RESULTS We incorporated a diverse range of protein association information to extract characteristic features of MPs, which range from gene ontology (GO), protein-protein interactions, gene expression, phylogenetic profiles, genetic interactions and network-based graph properties to protein structural properties, i.e. intrinsically disordered regions in the protein chain. Then, we used machine learning classifiers using the broad feature space for predicting MPs. Because many known MPs lack some proteomic features, we developed an imputation technique to fill such missing features. Results on the control dataset show that MPs can be predicted with over 98% accuracy when GO terms are available. Furthermore, using only the omics-based features the method can still identify MPs with over 75% accuracy. Last, we applied the method on three genomes: Saccharomyces cerevisiae, Caenorhabditis elegans and Homo sapiens, and found that about 2-10% of proteins in the genomes are potential MPs. AVAILABILITY AND IMPLEMENTATION Code available at http://kiharalab.org/MPprediction CONTACT dkihara@purdue.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Daisuke Kihara
- Department of Computer Science Department of Biological Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|
40
|
Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 2015; 589:3989-97. [DOI: 10.1016/j.febslet.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
41
|
Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D, Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep 2015; 13:712-722. [PMID: 26489471 DOI: 10.1016/j.celrep.2015.09.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation. These defects are also present in mice transplanted with inducible heterozygous Rpl11 bone marrow and, therefore, are intrinsic to the hematopoietic system. Additionally, heterozygous Rpl11 mice present increased susceptibility to radiation-induced lymphomagenesis. In this regard, total or partial deletion of Rpl11 compromises p53 activation upon ribosomal stress or DNA damage in fibroblasts. Moreover, fibroblasts and hematopoietic tissues from heterozygous Rpl11 mice present higher basal cMYC levels. We conclude that Rpl11-deficient mice recapitulate DBA disorder, including cancer predisposition.
Collapse
Affiliation(s)
- Lucia Morgado-Palacin
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gianluca Varetti
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Susana Llanos
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gonzalo Gómez-López
- Bioniformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.
| |
Collapse
|
42
|
Chi Q, Li F, Liu W, Xu Q, Hu J, Cheng Y, Jing X, Cheng L. Analysis of UB and L40 resistance related to deltamethrin in Drosophila kc cells. Gene 2015; 575:399-406. [PMID: 26361846 DOI: 10.1016/j.gene.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/05/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Pests have been subjected to heavy selection pressure, and the development of resistance to pyrethroid has been recorded. It is extremely valuable to identify the resistance genes that are relevant for pest control. In our previous studies, we reported that UBL40 is the deltamethrin resistance-associated gene. UBL40 is cleaved by specific endopeptidases to release UB and L40. Whether UB or L40 participates in deltamethrin resistance requires further study. In this study, quantitative real-time PCR was applied to reveal that UB and L40 were both overexpressed in Drosophila kc cells after deltamethrin stimulation. To investigate the roles of UB and L40 further, RNA interferences (RNAi) and cell transfections were utilized. UB and L40 knockdown both significantly reduced the level of resistance of RNAi-treated cells after 48 h, and the overexpressions of UB and L40 in Drosophila kc cells conferred a degree of protection against deltamethrin. These results represent the first evidence that UB and L40 both play roles in the regulation of deltamethrin resistance and that this study could help us to elucidate the resistance mechanisms and identify new target genes associated with resistance.
Collapse
Affiliation(s)
- Qingping Chi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Fengliang Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Wei Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qin Xu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, PR China
| | - Junli Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying Cheng
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Xuejian Jing
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
43
|
Zhang L, Jin J, Zhang L, Hu R, Gao L, Huo X, Liu D, Ma X, Wang C, Han J, Li L, Sun X, Cao L. Quantitative analysis of differential protein expression in cervical carcinoma cells after zeylenone treatment by stable isotope labeling with amino acids in cell culture. J Proteomics 2015; 126:279-87. [DOI: 10.1016/j.jprot.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/05/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
44
|
Bailly A, Perrin A, Bou Malhab LJ, Pion E, Larance M, Nagala M, Smith P, O'Donohue MF, Gleizes PE, Zomerdijk J, Lamond AI, Xirodimas DP. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway. Oncogene 2015; 35:415-26. [PMID: 25867069 DOI: 10.1038/onc.2015.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.
Collapse
Affiliation(s)
- A Bailly
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - A Perrin
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - L J Bou Malhab
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - E Pion
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - M Larance
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - M Nagala
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - P Smith
- Millennium Pharmaceuticals Inc., Cambridge, MA, USA
| | - M-F O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, UMR CNRS 5099, Bâtiment IBCG, Toulouse, France
| | - P-E Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, UMR CNRS 5099, Bâtiment IBCG, Toulouse, France
| | - J Zomerdijk
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - A I Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - D P Xirodimas
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| |
Collapse
|
45
|
Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nat Commun 2015; 6:6510. [PMID: 25849277 PMCID: PMC4396368 DOI: 10.1038/ncomms7510] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/02/2015] [Indexed: 11/23/2022] Open
Abstract
During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1–RpL5-N–RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1–RpL5–RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP. Biogenesis of the 80S ribosome involves more than 200 pre-ribosomal factors, which ensure the sequential assembly of ribosomal proteins and RNAs. Here the authors show that the nuclear transport adaptor Syo1 shields the 5S RNP-docking site on RpL11 before incorporation into the pre-60S through molecular mimicry.
Collapse
|
46
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Kim TH, Leslie P, Zhang Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 2015; 5:860-71. [PMID: 24658219 PMCID: PMC4011588 DOI: 10.18632/oncotarget.1784] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal proteins (RPs) have gained much attention for their extraribosomal functions particularly with respect to p53 regulation. To date, about fourteen RPs have shown to bind to MDM2 and regulate p53. Upon binding to MDM2, the RPs suppress MDM2 E3 ubiquitin ligase activity resulting in the stabilization and activation of p53. Of the RPs that bind to MDM2, RPL5 and RPL11 are the most studied and RPL11 appears to have the most significant role in p53 regulation. Considering that more than 17% of RP species have been shown to interact with MDM2, one of the questions remains unresolved is why so many RPs bind MDM2 and modulate p53. Genes encoding RPs are widely dispersed on different chromosomes in both mice and humans. As components of ribosome, RP expression is tightly regulated to meet the appropriate stoichiometric ratio between RPs and rRNAs. Once genomic instability (e.g. aneuploidy) occurs, transcriptional and translational changes due to change of DNA copy number can result in an imbalance in the expression of RPs including those that bind to MDM2. Such an imbalance in RP expression could lead to failure to assemble functional ribosomes resulting in ribosomal stress. We propose that RPs have evolved ability to regulate MDM2 in response to genomic instability as an additional layer of p53 regulation. Full understanding of the biological roles of RPs could potentially establish RPs as a novel class of therapeutic targets in human diseases such as cancer.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
48
|
Maehama T, Kawahara K, Nishio M, Suzuki A, Hanada K. Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein. J Biol Chem 2015; 289:20802-12. [PMID: 24923447 DOI: 10.1074/jbc.m114.571893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.
Collapse
|
49
|
Baillon L, Pierron F, Coudret R, Normendeau E, Caron A, Peluhet L, Labadie P, Budzinski H, Durrieu G, Sarraco J, Elie P, Couture P, Baudrimont M, Bernatchez L. Transcriptome profile analysis reveals specific signatures of pollutants in Atlantic eels. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:71-84. [PMID: 25258179 DOI: 10.1007/s10646-014-1356-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Identifying specific effects of contaminants in a multi-stress field context remain a challenge in ecotoxicology. In this context, "omics" technologies, by allowing the simultaneous measurement of numerous biological endpoints, could help unravel the in situ toxicity of contaminants. In this study, wild Atlantic eels were sampled in 8 sites presenting a broad contamination gradient in France and Canada. The global hepatic transcriptome of animals was determined by RNA-Seq. In parallel, the contamination level of fish to 8 metals and 25 organic pollutants was determined. Factor analysis for multiple testing was used to identify genes that are most likely to be related to a single factor. Among the variables analyzed, arsenic (As), cadmium (Cd), lindane (γ-HCH) and the hepato-somatic index (HSI) were found to be the main factors affecting eel's transcriptome. Genes associated with As exposure were involved in the mechanisms that have been described during As vasculotoxicity in mammals. Genes correlated with Cd were involved in cell cycle and energy metabolism. For γ-HCH, genes were involved in lipolysis and cell growth. Genes associated with HSI were involved in protein, lipid and iron metabolisms. Our study proposes specific gene signatures of pollutants and their impacts in fish exposed to multi-stress conditions.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33400, Talence, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Woods SJ, Hannan KM, Pearson RB, Hannan RD. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:821-9. [PMID: 25464032 DOI: 10.1016/j.bbagrm.2014.10.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent studies have highlighted the fundamental role that key oncogenes such as MYC, RAS and PI3K occupy in driving RNA Polymerase I transcription in the nucleolus. In addition to maintaining essential levels of protein synthesis, hyperactivated ribosome biogenesis and nucleolar function plays a central role in suppressing p53 activation in response to oncogenic stress. Consequently, disruption of ribosome biogenesis by agents such as the small molecule inhibitor of RNA Polymerase I transcription, CX-5461, has shown unexpected, potent, and selective effects in killing tumour cells via disruption of nucleolar function leading to activation of p53, independent of DNA damage. SCOPE OF REVIEW This review will explore the mechanism of DNA damage-independent activation of p53 via the nucleolar surveillance pathway and how this can be utilised to design novel cancer therapies. MAJOR CONCLUSION AND GENERAL SIGNIFICANCE Non-genotoxic targeting of nucleolar function may provide a new paradigm for treatment of a broad range of oncogene-driven malignancies with improved therapeutic windows. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Simone J Woods
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Katherine M Hannan
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Richard B Pearson
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Ross D Hannan
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia; School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia.
| |
Collapse
|