1
|
Xiang G, Li Q, Lian D, Su C, Li X, Deng S, Xie L. FOXO1-mediated autophagy regulation by miR-223 in sepsis-induced immunosuppression. Front Pharmacol 2024; 15:1469286. [PMID: 39439897 PMCID: PMC11493625 DOI: 10.3389/fphar.2024.1469286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Immunosuppression is the main cause of the high mortality rate in patients with sepsis. The decrease in the number and dysfunction of CD4+ T lymphocytes is crucial to the immunosuppressed state of sepsis, in turn affecting the development and prognosis of sepsis. Autophagy has been shown to play an important role in the immune imbalance exhibited during sepsis. Methods In this study, we modulate the expression of miR-223 in CD4+ T lymphocytes, via the transfection of a mimic or an inhibitor of miR-223 to establish cell models of miR-223 overexpression and knockdown, respectively. Levels of autophagy were monitored using a double-labeled lentivirus (mRFP-GFP-LC3) and electron microscopy, and western blot analysis was used to estimate the levels of autophagy-related proteins and FOXO1 in the two cell models after co-treatment with lipopolysaccharide (LPS) and siRNA against FOXO1. Results We found that when the expression of miR-223 increased, FOXO1 expression decreased and autophagy decreased; whereas, when FOXO1 expression was inhibited, autophagy decreased significantly in different cell models after LPS induction. Conclusion Thus, this study proved that miR-223 participate in the regulation of LPS-induced autophagy via the regulation of FOXO1 expression in CD4+ T lymphocytes which shed a new light for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guoan Xiang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Qi Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Di Lian
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Su
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Xin Li
- Department of Emergency, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| |
Collapse
|
2
|
Vasudevan MT, Rangaraj K, Ramesh R, Muthusami S, Govindasamy C, Khan MI, Arulselvan P, Muruganantham B. Inhibitory effects of Gracilaria edulis and Gracilaria salicornia against the MGMT and VEGFA biomarkers involved in the onset and advancement of glioblastoma using in silico and in vitro approaches. Biotechnol Appl Biochem 2024. [PMID: 39168850 DOI: 10.1002/bab.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma (GBM), an aggressive primary brain tumor originating from glial cells, poses significant treatment challenges due to its rapid growth and invasiveness. The exact mechanisms of GBM's brain damage remain unclear. This study examines primary molecular markers commonly assessed in GBM patients, including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor receptor A (PDGFRA), O6-methylguanine DNA methyltransferase (MGMT), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA) using computational approaches. The study revealed significant differences (p ≤ 0.05) in PDGFRA, EGFR, and VEGFA expression rates, which are particularly interesting. Additionally, MGMT and VEGFA showed higher hazard ratios. Expression levels of MGMT and VEGFA were visualized in immune and malignant cells using single-cell RNA datasets GSE103224 and GSE148842. From a total of 48 compounds in Gracilaria edulis and 86 in Gracilaria salicornia, we identified 15 compounds capable of crossing the blood-brain barrier. Notably, 2-tridecanone (binding affinity [BA] = -4.2 kcal/mol; root mean square deviation [RMSD] = 1.479 Å) and decanoic acid, ethyl ester (BA = -4.2 kcal/mol; RMSD = 1.702 Å) from G. edulis interacted with MGMT via hydrogen bonds. The compound alpha-terpineol interacted with MGMT (BA = -5.7 kcal/mol; RMSD = 0.501 Å) and VEGFA (BA = -4.7 kcal/mol; RMSD = 2.483 Å). Ethanolic and methanolic extracts from G. edulis and G. salicornia demonstrated mild anti-cell proliferation properties in the GBM LN-229 cell line, suggesting potential therapeutic benefits. This study highlights the significance of molecular markers and natural compounds in understanding and potentially treating GBM.
Collapse
Affiliation(s)
- Miji Thandaserry Vasudevan
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kaviyaprabha Rangaraj
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ragupathi Ramesh
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ibrar Khan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Bharathi Muruganantham
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small Molecule RNA Degraders. Angew Chem Int Ed Engl 2024:e202412925. [PMID: 39162084 DOI: 10.1002/anie.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Tomoaki Maehara
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Benjamin A Craig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
4
|
Hu Y, Yi L, Yang Y, Wu Z, Kong M, Kang Z, Yang Z. Acetylation of FOXO1 activates Bim expression involved in CVB3 induced cardiomyocyte apoptosis. Apoptosis 2024; 29:1271-1287. [PMID: 38127284 PMCID: PMC11263423 DOI: 10.1007/s10495-023-01924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Lu Yi
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yeyi Yang
- Department of Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhixiang Wu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Min Kong
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhijuan Kang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
5
|
Sha X, Zou X, Liu S, Guan C, Shi W, Gao J, Zhong X, Jiang X. Forkhead box O1 in metabolic dysfunction-associated fatty liver disease: molecular mechanisms and drug research. Front Nutr 2024; 11:1426780. [PMID: 39021599 PMCID: PMC11253077 DOI: 10.3389/fnut.2024.1426780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zhong
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Chauhan M, Martinak PE, Hollenberg BM, Goodman AG. Drosophila melanogaster Toll-9 elicits antiviral immunity against Drosophila C virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599730. [PMID: 38948804 PMCID: PMC11212974 DOI: 10.1101/2024.06.19.599730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Toll pathway plays a pivotal role in innate immune responses against pathogens. The evolutionary conserved pathogen recognition receptors (PRRs), including Toll like receptors (TLRs), play a crucial role in recognition of pathogen associated molecular patterns (PAMPs). The Drosophila genome encodes nine Toll receptors that are orthologous to mammalian TLRs. While mammalian TLRs directly recognize PAMPs, most Drosophila Tolls recognize the proteolytically cleaved ligand Spätzle to activate downstream signaling cascades. In this study, we demonstrated that Toll-9 is crucial for antiviral immunity against Drosophila C virus (DCV), a natural pathogen of Drosophila . A transposable element insertion in the Toll-9 gene renders the flies more susceptible to DCV. The stable expression of Toll-9 in S2 cells confers resistance against DCV infection by upregulation of the RNAi pathway. Toll-9 promotes the dephosphorylation of AKT, resulting in the induction of antiviral RNAi genes to inhibit DCV replication. Toll-9 localizes to the endosome where it binds dsRNA, suggesting its role to detect viral dsRNA. Toll-9 also induces apoptosis during DCV infection, contributing to its antiviral role. Together, this work identifies the role of Toll-9 in antiviral immunity against DCV infection through its ability to bind dsRNA and induce AKT-mediated RNAi antiviral immunity. IMPORTANCE Insects rely on innate immunity and RNA interference (RNAi) to combat viral infections. Our study underscores the pivotal role of Drosophila Toll-9 in antiviral immunity, aligning with findings in Bombyx mori , where Toll-9 activation upregulates the RNAi component Dicer2 . We demonstrate that Drosophila Toll-9 functions as a pattern recognition receptor (PRR) for double-stranded RNA (dsRNA) during Drosophila C virus (DCV) infection, akin to mammalian TLRs. Toll-9 activation leads to the upregulation of key RNAi components, Dicer2 and Argonaute2 , and dephosphorylation of AKT triggers apoptosis via induction of proapoptotic genes Hid and Reaper . This study also reveals that Toll-9 localizes in endosomal compartments where it interacts with dsRNA. These insights enhance our understanding of Drosophila innate immune mechanisms, reflecting the evolutionary conservation of immune responses across diverse species and providing impetus for further research into the conserved roles of TLRs across the animal kingdom.
Collapse
|
7
|
Lee HW, Karki R, Han JH. Inhibition of the RPS6KA1/FoxO1 signaling axis by hydroxycitric acid attenuates HFD-induced obesity through MCE suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155551. [PMID: 38569293 DOI: 10.1016/j.phymed.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Hyung-Won Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea; Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
8
|
Li J, Wang C, Xu X, Chen J, Guo H. An extensive analysis of the prognostic and immune role of FOXO1 in various types of cancer. Braz J Med Biol Res 2024; 57:e13378. [PMID: 38716982 PMCID: PMC11085032 DOI: 10.1590/1414-431x2024e13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024] Open
Abstract
Forkhead Box O1 (FOXO1) has been reported to play important roles in many tumors. However, FOXO1 has not been studied in pan-cancer. The purpose of this study was to reveal the roles of FOXO1 in pan-cancer (33 cancers in this study). Through multiple public platforms, a pan-cancer analysis of FOXO1 was conducted to obtained FOXO1 expression profiles in various tumors to explore the relationship between FOXO1 expression and prognosis of these tumors and to disclose the potential mechanism of FOXO1 in these tumors. FOXO1 was associated with the prognosis of multiple tumors, especially LGG (low grade glioma), OV (ovarian carcinoma), and KIRC (kidney renal clear cell carcinoma). FOXO1 might play the role of an oncogenic gene in LGG and OV, while playing the role of a cancer suppressor gene in KIRC. FOXO1 expression had a significant correlation with the infiltration of some immune cells in LGG, OV, and KIRC. By combining FOXO1 expression and immune cell infiltration, we found that FOXO1 might influence the overall survival of LGG through the infiltration of myeloid dendritic cells or CD4+ T cells. Functional enrichment analysis and gene set enrichment analysis showed that FOXO1 might play roles in tumors through immunoregulatory interactions between a lymphoid and a non-lymphoid cell, TGF-beta signaling pathway, and transcriptional misregulation in cancer. FOXO1 was associated with the prognosis of multiple tumors, especially LGG, OV, and KIRC. In these tumors, FOXO1 might play its role via the regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
10
|
van Dijk AD, Hoff FW, Qiu Y, Hubner SE, Go RL, Ruvolo VR, Leonti AR, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, de Bont ESJM, Horton TM, Kornblau SM. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers (Basel) 2024; 16:1448. [PMID: 38672531 PMCID: PMC11048007 DOI: 10.3390/cancers16081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Fieke W. Hoff
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Yihua Qiu
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Stefan E. Hubner
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Robin L. Go
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Vivian R. Ruvolo
- Department of Molecular Therapy and Hematology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA
| | - Richard Aplenc
- Division of Pediatric Oncology and Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward A. Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA 91016, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Kornblau
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| |
Collapse
|
11
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Pokhrel RH, Acharya S, Mishra S, Gu Y, Manzoor U, Kim JK, Park Y, Chang JH. AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer. Biomol Ther (Seoul) 2024; 32:171-182. [PMID: 38346909 PMCID: PMC10902700 DOI: 10.4062/biomolther.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Malatesta P, Kyriakidis K, Hada M, Ikeda H, Takahashi A, Saganti PB, Georgakilas AG, Michalopoulos I. Differential Gene Expression in Human Fibroblasts Simultaneously Exposed to Ionizing Radiation and Simulated Microgravity. Biomolecules 2024; 14:88. [PMID: 38254688 PMCID: PMC10812944 DOI: 10.3390/biom14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
During future space missions, astronauts will be exposed to cosmic radiation and microgravity (μG), which are known to be health risk factors. To examine the differentially expressed genes (DEG) and their prevalent biological processes and pathways as a response to these two risk factors simultaneously, 1BR-hTERT human fibroblast cells were cultured under 1 gravity (1G) or simulated μG for 48 h in total and collected at 0 (sham irradiated), 3 or 24 h after 1 Gy of X-ray or Carbon-ion (C-ion) irradiation. A three-dimensional clinostat was used for the simulation of μG and the simultaneous radiation exposure of the samples. The RNA-seq method was used to produce lists of differentially expressed genes between different environmental conditions. Over-representation analyses were performed and the enriched biological pathways and targeting transcription factors were identified. Comparing sham-irradiated cells under simulated μG and 1G conditions, terms related to response to oxygen levels and muscle contraction were identified. After irradiation with X-rays or C-ions under 1G, identified DEGs were found to be involved in DNA damage repair, signal transduction by p53 class mediator, cell cycle arrest and apoptosis pathways. The same enriched pathways emerged when cells were irradiated under simulated μG condition. Nevertheless, the combined effect attenuated the transcriptional response to irradiation which may pose a subtle risk in space flights.
Collapse
Affiliation(s)
- Polina Malatesta
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Konstantinos Kyriakidis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- UC Santa Cruz Genomics Institute, Santa Cruz, CA 95060, USA
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Hiroko Ikeda
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Premkumar B. Saganti
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
| |
Collapse
|
14
|
Chen Z, Guo Q, Huang S, Li L, Wu F, Liu Z, Li Z, Chen T, Song G, Xu S, Chen J, Hou Y. Overcoming adaptive resistance in AML by synergistically targeting FOXO3A-GNG7-mTOR axis with FOXO3A inhibitor Gardenoside and rapamycin. Genes Dis 2024; 11:397-412. [PMID: 37588187 PMCID: PMC10425752 DOI: 10.1016/j.gendis.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Therapeutic targeting FOXO3A (a forkhead transcription factor) represents a promising strategy to suppress acute myeloid leukemia (AML). However, the effective inhibitors that target FOXO3A are lacking and the adaptive response signaling weakens the cytotoxic effect of FOXO3A depletion on AML cells. Here, we show that FOXO3A deficiency induces a compensatory response involved in the reactive activation of mTOR that leads to signaling rebound and adaptive resistance. Mitochondrial metabolism acts downstream of mTOR to provoke activation of JNK/c-JUN via reactive oxygen species (ROS). At the molecular level, FOXO3A directly binds to the promoter of G protein gamma subunit 7 (GNG7) and preserves its expression, while GNG7 interacts with mTOR and restricts phosphorylated activation of mTOR. Consequently, combinatorial inhibition of FOXO3A and mTOR show a synergistic cytotoxic effect on AML cells and prolongs survival in a mouse model of AML. Through a structure-based virtual screening, we report one potent small-molecule FOXO3A inhibitor (Gardenoside) that exhibits a strong effect of anti-FOXO3A DNA binding. Gardenoside synergizes with rapamycin to substantially reduce tumor burden and extend survival in AML patient-derived xenograft model. These results demonstrate that mTOR can mediate adaptive resistance to FOXO3A inhibition and validate a combinatorial approach for treating AML.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qian Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shichen Huang
- Chongqing Foreign Language School, Chongqing 400039, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feng Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Tao Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Yiang GT, Su WL, Zheng CM, Liao MT, Cheng TH, Lu CL, Lu KC. The influence of uremic toxins on low bone turnover disease in chronic kidney disease. Tzu Chi Med J 2024; 36:38-45. [PMID: 38406573 PMCID: PMC10887346 DOI: 10.4103/tcmj.tcmj_212_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 02/27/2024] Open
Abstract
Uremic toxins play a crucial role in the development of low bone turnover disease in chronic kidney disease (CKD) through the induction of oxidative stress. This oxidative stress disrupts the delicate balance between bone formation and resorption, resulting in a decline in both bone quantity and quality. Reactive oxygen species (ROS) activate nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, promoting osteoclastogenesis. Conversely, ROS hinder osteoblast differentiation by facilitating the binding of Forkhead box O proteins (FoxOs) to β-catenin, triggering apoptosis through FoxOs-activating kinase phosphorylation. This results in increased osteoblastic receptor activator of nuclear factor kappa-B ligand (RANKL) expression and decreased nuclear factor erythroid 2-related factor 2 levels, compromising antioxidant defenses against oxidative damage. As CKD progresses, the accumulation of protein-bound uremic toxins such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS) intensifies oxidative stress, primarily affecting osteoblasts. IS and PCS directly inhibit osteoblast viability, induce apoptosis, decrease alkaline phosphatase activity, and impair collagen 1 and osteonectin, impeding bone formation. They also reduce cyclic adenosine 3',5'-monophosphate (cAMP) production and lower parathyroid hormone (PTH) receptor expression in osteoblasts, resulting in PTH hyporesponsiveness. In summary, excessive production of ROS by uremic toxins not only reduces the number and function of osteoblasts but also induces PTH hyporesponsiveness, contributing to the initiation and progression of low bone turnover disease in CKD.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Wen-Lin Su
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tong-Hong Cheng
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chien-Lin Lu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
16
|
Ahmed SA, Mendonca P, Messeha SS, Oriaku ET, Soliman KFA. The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules 2023; 29:61. [PMID: 38202644 PMCID: PMC10779870 DOI: 10.3390/molecules29010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ebenezer T. Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| |
Collapse
|
17
|
Brennan L, Disatham J, Menko AS, Kantorow M. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation. Dev Biol 2023; 504:25-37. [PMID: 37722500 PMCID: PMC10843493 DOI: 10.1016/j.ydbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
18
|
El-Sheikh MM, Aziz MM, Abdelrahman SSM, Mohmad MAEH. The protective effect of crocin against testicular toxicity induced by ionizing radiation via AKT/FOXO pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2981-2992. [PMID: 37615252 DOI: 10.1002/tox.23932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Crocin, a pharmacologically active component of Crocus sativus L. (saffron), has been informed to be beneficial in the treatment of stress-related oxidative impairment. In the present study, we examined the protective role of crocin against testicular damage induced by radiation (acute and fractionated) and the alteration of the AKT/FOXO signaling pathway. Male Wister albino rats were exposed to acute dose of 6 Gy and a fractionated dose of gamma radiation (2 Gy every 2 days up to 6 Gy total doses). Rats were pretreated intraperitoneally with crocin in a dose of 50 mg/kg for seven consecutive days prior to exposure to irradiation at a level of 6 Gy and during the fractionated irradiation of rats. Control groups were run concurrently. Ionizing radiation caused changes in the level of oxidative stress biomarkers manifested as elevation of thiobarbituric acid reactive substance, total nitrate/nitrite and reactive oxygen species (ROS) associated with a decrease in catalase as well as in the level of inflammatory parameters (decrease in expression of Nrf2 which was related to a significant increase in expression of NF-κB p65). Irradiation produced cellular damage characterized by an increase in serum lactate dehydrogenase. These findings were aligned with increased expression of the forkhead box O-1 (FOXO-1) and activation of protein kinase B (AKT) pathway. Irradiation of rats led to reduction in serum testosterone level and testicular weights. Pretreatment with the indicated dose of crocin shielded against the changes in all the evaluated parameters. Administration of crocin can be introduced as a novel preclinical approach for regulation of testicular damage induced by radiation; via controlling the ongoing oxidative stress and inflammatory reaction as well as activation FOXO/AKT signaling pathway.
Collapse
Affiliation(s)
- Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Maha M Aziz
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sahar S M Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Marwa Abd El Hameed Mohmad
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Zehtabcheh S, Yousefi AM, Momeny M, Bashash D. C-Myc inhibition intensified the anti-leukemic properties of Imatinib in chronic myeloid leukemia cells. Mol Biol Rep 2023; 50:10157-10167. [PMID: 37924446 DOI: 10.1007/s11033-023-08832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhu L, Guo G, Jin Y, Hu A, Liu Y. IKBKE regulates angiogenesis by modulating VEGF expression and secretion in glioblastoma. Tissue Cell 2023; 84:102180. [PMID: 37573607 DOI: 10.1016/j.tice.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE As a noncanonical inflammatory kinase, IKBKE is frequently overexpressed and activated and has been identified as an oncogenic protein in glioblastoma. However, the potential function and underlying mechanism of IKBKE contributing to tumor angiogenesis remain elusive. METHODS First, we analyzed the correlation between IKBKE and VEGF expression in glioma samples by immunohistochemistry (IHC). Second, HUVEC-related assays and Western blot were used to detect the regulatory effect of IKBKE on angiogenesis by modulating VEGF expression. Third, IKBKE depletion could alleviate the influence of VEGF expression on IHC of intracranial glioma model. RESULTS We demonstrate that depletion of IKBKE markedly inhibits tumor growth and angiogenesis in glioblastoma. Mechanistically, IKBKE induces VEGF expression and secretion by regulating AKT/FOXO3a in glioblastoma. CONCLUSIONS This study reveals that IKBKE is a novel oncogenic molecule that induces angiogenesis through the promotion of VEGF expression and highlights the potential of targeting IKBKE for glioblastoma therapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Jin
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Yang Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
21
|
Liu X, Ma Z, Wang Y, Jia H, Wang Z, Zhang L. Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers. Front Microbiol 2023; 14:1244004. [PMID: 37795292 PMCID: PMC10547010 DOI: 10.3389/fmicb.2023.1244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them. Methods Thus, at 28 days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42 days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment. Results and discussion The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Wang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| | - Lihuan Zhang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
22
|
Shan J, Chang LY, Li DJ, Wang XQ. Rab27b promotes endometriosis by enhancing invasiveness of ESCs and promoting angiogenesis. Am J Reprod Immunol 2023; 90:e13762. [PMID: 37641372 DOI: 10.1111/aji.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Endometriosis (EMS) is an estrogen-dependent disease which is characterized with estrogen-dependent growth of ectopic endometrium and increased local estrogen production. EMS performs tumor-like biological functions such as invasiveness and angiogenesis. Rab27b is a member of the Rab family of GTPases, which is strongly associated with the growth, invasion and metastasis of a variety of tumors. However, little is known about the function of Rab27b in EMS. In this study, we intended to investigate the impact of Rab27b and its downstream molecule in the development of EMS. METHOD OF STUDY Normal endometrium and endometriotic lesions were collected to investigate the expression levels of Rab27b. Then, ESCs were transfected with Rab27b siRNA. We analyzed the influence of Rab27b on the proliferation and invasive activity of ESCs. Conditioned media harvested from Rab27b siRNA-treated ESCs were used to treat HUVECs. HUVEC Tube formation and ELISA were performed to explored the interactions between ESCs and HUVEC. In addition, ESCs were treated with different concentrations of estrogen. Based on biological database predictions, we explored possible mechanisms through which estrogen regulates the expression of Rab27b. RESULTS The expressions of Rab27b were significantly higher in endometriotic lesions than that in normal endometrium. Rab27b can promote the cell proliferation, migration and invasion of ESCs. The elevated expression of Rab27b, on the one hand, promotes the secretion of MMP9 and increases the invasiveness of ESCs. On the other hand, Rab27b may play a key role in the communication between ESC and endothelial cells, by simulating VEGF secretion and neovascularization. Besides, estrogen upregulated phosphorylated FOXO1 levels in ectopic ESCs, resulting in the promotion of Rab27b expression levels. CONCLUSION Rab27b plays a key role in the development of EMS, which may provide new insights into the pathogenesis of EMS. Our findings may also contribute to the development of therapeutic interventions for EMS.
Collapse
Affiliation(s)
- Jing Shan
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Gynecology of Traditional Chinese Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Yu Chang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
| | - Xiao-Qiu Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| |
Collapse
|
23
|
Chen Y, Pan Q, Liao W, Ai W, Yang S, Guo S. Transcription Factor Forkhead Box O1 Mediates Transforming Growth Factor-β1-Induced Apoptosis in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1143-1155. [PMID: 37263346 PMCID: PMC10477955 DOI: 10.1016/j.ajpath.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Dysregulation of hepatocyte apoptosis is associated with several types of chronic liver diseases. Transforming growth factor-β1 (TGF-β1) is a well-known pro-apoptotic factor in the liver, which constitutes a receptor complex composed of TGF-β receptor I and II, along with transcription factor Smad proteins. As a member of the forkhead box O (Foxo) class of transcription factors, Foxo1 is a predominant regulator of hepatic glucose production and apoptosis. This study investigated the potential relationship between TGF-β1 signaling and Foxo1 in control of apoptosis in hepatocytes. TGF-β1 induced hepatocyte apoptosis in a Foxo1-dependent manner in hepatocytes isolated from both wild-type and liver-specific Foxo1 knockout mice. TGF-β1 activated protein kinase A through TGF-β receptor I-Smad3, followed by phosphorylation of Foxo1 at Ser273 in promotion of apoptosis in hepatocytes. Moreover, Smad3 overexpression in the liver of mice promoted the levels of phosphorylated Foxo1-S273, total Foxo1, and a Foxo1-target pro-apoptotic gene Bim, which eventually resulted in hepatocyte apoptosis. The study further demonstrated a crucial role of Foxo1-S273 phosphorylation in the pro-apoptotic effect of TGF-β1 by using hepatocytes isolated from Foxo1-S273A/A knock-in mice, in which the phosphorylation of Foxo1-S273 was disrupted. Taken together, this study established a novel role of TGF-β1→protein kinase A→Foxo1 signaling cascades in control of hepatocyte survival.
Collapse
Affiliation(s)
- Yunmei Chen
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Wang Liao
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Weiqi Ai
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Sijun Yang
- Institute of Animal Model for Human Disease, Wuhan University, Wuhan, China
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
24
|
Patnana PK, Liu L, Frank D, Nimmagadda SC, Behrens M, Ahmed H, Xie X, Liebmann M, Wei L, Gerdemann A, Thivakaran A, Humpf HU, Klotz L, Dugas M, Varghese J, Trajkovic-Arsic M, Siveke JT, Hanenberg H, Opalka B, Dührsen U, Reinhardt HC, Guenther U, von Bubnoff N, Khandanpour C. Dose-dependent expression of GFI1 alters metabolism in the haematopoietic progenitors and MLL::AF9-induced leukaemic cells. Br J Haematol 2023; 202:1033-1048. [PMID: 37423893 DOI: 10.1111/bjh.18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.
Collapse
Affiliation(s)
- Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | | | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Helmut Hanenberg
- Clinic for Pediatrics III, University Hospital Essen, Essen, Germany
- Pediatric Oncology, Hematology & Immunology, Heinrich Heine University, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Guenther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Harris DD, Sabe SA, Sabra M, Xu CM, Malhotra A, Broadwin M, Banerjee D, Abid MR, Sellke FW. Intramyocardial injection of hypoxia-conditioned extracellular vesicles modulates apoptotic signaling in chronically ischemic myocardium. JTCVS OPEN 2023; 15:220-228. [PMID: 37808040 PMCID: PMC10556811 DOI: 10.1016/j.xjon.2023.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 10/10/2023]
Abstract
Objective Limited treatments exist for nonoperative chronic coronary artery disease. Previously, our laboratory has investigated extracellular vesicle (EV) therapy as a potential treatment for chronic coronary artery disease using a swine model and demonstrated improved cardiac function in swine treated with intramyocardial EV injection. Here, we seek to investigate the potential cardiac benefits of EVs by using hypoxia-conditioned EVs (HEV). Specifically, this study aims to investigate the effect of HEV on apoptosis in chronically ischemic myocardium in swine. Methods Fourteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, swine underwent redo left thoracotomy with injection of either saline (control, n = 7) or HEVs (n = 7). After 5 weeks, swine were euthanized for tissue collection. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to quantify apoptosis. Immunoblotting was used for protein quantification. Results Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a decrease in apoptosis in the HEV group compared with the control (P = .049). The HEV group exhibited a significant increase in the anti-apoptotic signaling molecule phospho-BAD (P = .005), a significant decrease in B-cell lymphoma 2 (P = .006) and an increase in the phospho-B-cell lymphoma to B-cell lymphoma 2 ratio (P < .001). Furthermore, the HEV group exhibited increased levels of prosurvival signaling markers including phosphoinositide 3-kinase, phosphor-extracellular signal-regulated kinase 1/2, phospho-forkhead box protein O1, and phospho-protein kinase B to protein kinase B ratio (all P < .05). Conclusions In chronic myocardial ischemia, treatment with HEV results in a decrease in overall apoptosis, possibly through the activation of both pro-survival and anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Dwight D. Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Cynthia M. Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Akshay Malhotra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| |
Collapse
|
26
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
27
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 257.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
28
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
29
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Chen C, Hernandez JC, Uthaya Kumar DB, Machida T, Tahara SM, El‐Khoueiry A, Li M, Punj V, Swaminathan SK, Kirtane A, Chen Y, Panyam J, Machida K. Profiling of Circulating Tumor Cells for Screening of Selective Inhibitors of Tumor-Initiating Stem-Like Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206812. [PMID: 36949364 PMCID: PMC10190641 DOI: 10.1002/advs.202206812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
A critical barrier to effective cancer therapy is the improvement of drug selectivity, toxicity, and reduced recurrence of tumors expanded from tumor-initiating stem-like cells (TICs). The aim is to identify circulating tumor cell (CTC)-biomarkers and to identify an effective combination of TIC-specific, repurposed federal drug administration (FDA)-approved drugs. Three different types of high-throughput screens targeting the TIC population are employed: these include a CD133 (+) cell viability screen, a NANOG expression screen, and a drug combination screen. When combined in a refined secondary screening approach that targets Nanog expression with the same FDA-approved drug library, histone deacetylase (HDAC) inhibitor(s) combined with all-trans retinoic acid (ATRA) demonstrate the highest efficacy for inhibition of TIC growth in vitro and in vivo. Addition of immune checkpoint inhibitor further decreases recurrence and extends PDX mouse survival. RNA-seq analysis of TICs reveals that combined drug treatment reduces many Toll-like receptors (TLR) and stemness genes through repression of the lncRNA MIR22HG. This downregulation induces PTEN and TET2, leading to loss of the self-renewal property of TICs. Thus, CTC biomarker analysis would predict the prognosis and therapy response to this drug combination. In general, biomarker-guided stratification of HCC patients and TIC-targeted therapy should eradicate TICs to extend HCC patient survival.
Collapse
Affiliation(s)
- Chia‐Lin Chen
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Present address:
Department of Life Sciences & Institute of Genome SciencesNational Yang Ming Chiao Tung University110TaipeiTaiwan
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- California State UniversityChannel IslandsCamarilloCAUSA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Tatsuya Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Anthony El‐Khoueiry
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaKeck School of MedicineLos AngelesCA90033USA
| | - Meng Li
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Vasu Punj
- Department of MedicineUniversity of Southern California Keck School of Medicine and Norris Comprehensive Cancer CenterLos AngelesCA90089USA
| | | | - Ameya Kirtane
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Yibu Chen
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Jayanth Panyam
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Southern California Research Center for ALPD and CirrhosisLos AngelesCA90033USA
| |
Collapse
|
32
|
Daks A, Shuvalov O, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Methyltransferase Set7/9 as a Multifaceted Regulator of ROS Response. Int J Biol Sci 2023; 19:2304-2318. [PMID: 37215983 PMCID: PMC10197882 DOI: 10.7150/ijbs.83158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Reactive oxygen species (ROS) induce multiple signaling cascades in the cell and hence play an important role in the regulation of the cell's fate. ROS can cause irreversible damage to DNA and proteins resulting in cell death. Therefore, finely tuned regulatory mechanisms exist in evolutionarily diverse organisms that are aimed at the neutralization of ROS and its consequences with respect to cellular damage. The SET domain-containing lysine methyltransferase Set7/9 (KMT7, SETD7, SET7, SET9) post-translationally modifies several histones and non-histone proteins via monomethylation of the target lysines in a sequence-specific manner. In cellulo, the Set7/9-directed covalent modification of its substrates affects gene expression, cell cycle, energy metabolism, apoptosis, ROS, and DNA damage response. However, the in vivo role of Set7/9 remains enigmatic. In this review, we summarize the currently available information regarding the role of methyltransferase Set7/9 in the regulation of ROS-inducible molecular cascades in response to oxidative stress. We also highlight the in vivo importance of Set7/9 in ROS-related diseases.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Nickolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan
| |
Collapse
|
33
|
Zhang T, Zhang M, Sun Y, Li L, Cheng P, Li X, Wang N, Chen S, Xu W. Identification and Functional Analysis of foxo Genes in Chinese Tongue Sole ( Cynoglossus semilaevis). Int J Mol Sci 2023; 24:ijms24087625. [PMID: 37108789 PMCID: PMC10142177 DOI: 10.3390/ijms24087625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a traditional, precious fish in China. Due to the large growth difference between males and females, the investigation of their sex determination and differentiation mechanisms receives a great deal of attention. Forkhead Box O (FoxO) plays versatile roles in the regulation of sex differentiation and reproduction. Our recent transcriptomic analysis has shown that foxo genes may participate in the male differentiation and spermatogenesis of Chinese tongue sole. In this study, six Csfoxo members (Csfoxo1a, Csfoxo3a, Csfoxo3b, Csfoxo4, Csfoxo6-like, and Csfoxo1a-like) were identified. Phylogenetic analysis indicated that these six members were clustered into four groups corresponding to their denomination. The expression patterns of the gonads at different developmental stages were further analyzed. All members showed high levels of expression in the early stages (before 6 months post-hatching), and this expression was male-biased. In addition, promoter analysis found that the addition of C/EBPα and c-Jun transcription factors enhanced the transcriptional activities of Csfoxo1a, Csfoxo3a, Csfoxo3b, and Csfoxo4. The siRNA-mediated knockdown of the Csfoxo1a, Csfoxo3a, and Csfoxo3b genes in the testicular cell line of Chinese tongue sole affected the expression of genes related to sex differentiation and spermatogenesis. These results have broadened the understanding of foxo's function and provide valuable data for studying the male differentiation of tongue sole.
Collapse
Affiliation(s)
- Tingting Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- School of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengqian Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuxuan Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Peng Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xihong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
34
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
35
|
Zuo M, Tong R, He X, Liu Y, Liu J, Liu S, Liu Y, Cao J, Ma L. FOXO signaling pathway participates in oxidative stress-induced histone deacetylation. Free Radic Res 2023; 57:47-60. [PMID: 36927283 DOI: 10.1080/10715762.2023.2190862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
High concentrations of antioxidants can exert pro-oxidative effects, elevate the level of intracellular reactive oxygen species (ROS), and cause oxidative stress in cells. We previously found that high concentrations of curcumin, a natural polyphenol antioxidant, elevated ROS levels and upregulated the expression of histone deacetylase 1 (HDAC1) in human gastric cancer cells (hGCCs); however, its potential mechanisms and subsequent functions have not been elucidated. In the present study, we treated hGCCs with high concentrations of curcumin, detected several indicators of oxidative stress, and investigated the mechanism of curcumin-treatment-mediated HDAC1 upregulation and its effect on histone acetylation. The results showed that curcumin treatment caused oxidative stress in hGCCs and upregulated HDAC1/2 expression via the forkhead box O (FOXO) signaling pathway, ultimately leading to the deacetylation of histones in hGCCs. Moreover, HDAC1/2 mediates the deacetylation of FOXOs and promotes their transcription activities, implying a positive feedback loop between FOXOs and HDAC1/2. These findings present a mechanism by which oxidative stress induces histone deacetylation in hGCCs.
Collapse
Affiliation(s)
- Mengna Zuo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ruiying Tong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiaoying He
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yang Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiwei Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Shujun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
36
|
Yu XH, Xu XM, Zhang SX. Low-dose dexamethasone promotes osteoblast viability by activating autophagy via the SGK1/FOXO3a signaling pathway. Cell Biol Int 2023; 47:669-678. [PMID: 36453461 PMCID: PMC10108317 DOI: 10.1002/cbin.11971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Autophagy contributes to bone homeostasis and development under physiological conditions. Although previous studies have demonstrated the induction of the autophagy machinery by endogenous glucocorticoids (GCs), the precise mechanisms involved have not yet been clarified. The current study aimed to explore the effect of a low dose of GC (10-8 M dexamethasone, Dex) on autophagy in mouse embryonic osteoblastic precursor cells (MC3T3-E1 cells) and the potential mechanisms. The results showed that 10-8 M Dex induced significant time-dependent increases in the expression and activation of serum- and glucocorticoid-induced kinase-1 (SGK1) in MC3T3-E1 cells and that these effects were accompanied by increased cell viability and decreased apoptosis. The autophagy inhibitor 3-MA significantly inhibited Dex-mediated promotion of viability. Moreover, Dex increased LC3II and Beclin-1 levels and decreased SQSTM/p62 levels in a time-dependent manner, and these effects were attenuated by pretreatment with 3-MA. Transfection of Dex-treated MC3T3-E1 cells with shRNA-SGK1 resulted in a significant reduction in cell viability and an increase in apoptosis. 3-MA further exacerbated these effects of SGK1 inhibition. Knocking down SGK1 before Dex exposure significantly reduced the phosphorylated forkhead box O3a (p-FOXO3a)/FOXO3 ratio, suppressed LC3II and Beclin-1 levels, and increased SQSTM/p62 levels in MC3T3-E1 cells, and these effects were amplified by 3-MA. In conclusion, the results revealed that low-dose GC treatment increased osteoblast viability by activating autophagy via the SGK1/FOXO3a pathway.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- Dental Disease Prevention and Control Institute of Minhang District, Shanghai, China
| | - Xiao-Ming Xu
- Dental Disease Prevention and Control Institute of Minhang District, Shanghai, China
| | - Sheng-Xiang Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Shiau JP, Chuang YT, Yen CY, Chang FR, Yang KH, Hou MF, Tang JY, Chang HW. Modulation of AKT Pathway-Targeting miRNAs for Cancer Cell Treatment with Natural Products. Int J Mol Sci 2023; 24:ijms24043688. [PMID: 36835100 PMCID: PMC9961959 DOI: 10.3390/ijms24043688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
38
|
Maiese A, Manetti AC, Santoro P, Del Duca F, De Matteis A, Turillazzi E, Frati P, Fineschi V. FOXO3 Depletion as a Marker of Compression-Induced Apoptosis in the Ligature Mark: An Immunohistochemical Study. Int J Mol Sci 2023; 24:ijms24021396. [PMID: 36674912 PMCID: PMC9866130 DOI: 10.3390/ijms24021396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
One of the most challenging issues in forensic pathology is lesion vitality demonstration, particularly in cases of hanging. Over the past few years, immunohistochemistry has been applied to this field with promising results. In particular, protein and transcription factors involved in the apoptotic process have been studied as vitality markers for the ligature mark. This study represents an implementation of our previous studies on ligature mark vitality demonstration. In this study, we evaluated the FOXO3 expression in post-mortem cervical skin samples through an immunohistochemical analysis. To evaluate FOXO3 expression, anti-FOXO3 antibodies (GTX100277) were used. The study group comprised 21 cases, 8 women and 13 men, whereas the control group consisted of 13 cases of subjects who died due to other causes. Decomposition and no clear circumstantial data were exclusion criteria. We found that FOXO3 is decreased in hanging cases compared with normal skin in other causes of death (p-value < 0.05). No differences were seen concerning the type of hanging material (hard or soft), type of hanging (complete or incomplete), and position of the knot. Our results suggest that FOXO3 depletion could be a valid immunohistochemical marker of ligature mark vitality.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
- Correspondence:
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
| | - Paola Santoro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| |
Collapse
|
39
|
The molecular mechanism of miR-96-5p in the pathogenesis and treatment of polycystic ovary syndrome. Transl Res 2022; 256:1-13. [PMID: 36586536 DOI: 10.1016/j.trsl.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Polycystic ovary syndrome (PCOS), characterized by the androgen excess and arrest of antral follicles, is a common endocrine disorder among women lacking specific diagnostic biomarkers and therapeutic targets. Herein, we studied the molecular mechanism of miR-96-5p in the process of PCOS and its potential applications in PCOS. Clinically, we found that miR-96-5p significantly decreased in serum, follicular fluid and primary human granulosa cells (hGCs) of PCOS patients (n = 70) vs non-PCOS women (n = 60), as well as in the ovaries of 3-types of induced PCOS-like mice. Furthermore, we demonstrated that the elevated circulating miR-96-5p levels were significantly correlated with the PCOS disordered endocrine clinical features, and the area under the curve of receiver operating characteristic was 0.8344, with 75.71% specificity and 80% sensitivity. Mechanically, we identified miR-96-5p as an androgen-regulated miRNA that directly targets the forkhead transcription factor FOXO1. Inhibition of miR-96-5p decreased estrogen synthesis, while decreasing the cell proliferation index of KGN via regulating the expression of FOXO1 and its downstream genes. Inversely, inhibition of FOXO1 abrogated the effect of miR-96-5p on estrogen synthesis and proliferation index. Of note, ovarian intra-bursal injection of miR-96-5p agomir rescued the phenotypes of dehydroepiandrosterone-induced PCOS like mice. In conclusion, our results clarified a vital role of miR-96-5p in the pathogenesis of PCOS and might serve as a novel diagnostic biomarker and therapeutic target for PCOS.
Collapse
|
40
|
Kar A, Kumari K, Mishra SK, Subudhi U. Self-assembled DNA nanostructure containing oncogenic miRNA-mediated cell proliferation by downregulation of FOXO1 expression. BMC Cancer 2022; 22:1332. [PMID: 36539739 PMCID: PMC9764560 DOI: 10.1186/s12885-022-10423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
FOXO1 transcription factor not only limits the cell cycle progression but also promotes cell death as a tumor suppressor protein. Though the expression of FOXO1 is largely examined in breast cancer, the regulation of FOXO1 by miRNA is yet to be explored. In the current study, self-assembled branched DNA (bDNA) nanostructures containing oncogenic miRNAs were designed and transfected to the MCF7 cell line to decipher the FOXO1 expression. bDNA containing oncogenic miRNAs 27a, 96, and 182 synergistically downregulate the expression of FOXO1 in MCF7 cells. The down-regulation is evident both in mRNA and protein levels suggesting that bDNA having miRNA sequences can selectively bind to mRNA and inhibit translation. Secondly, the downstream gene expression of p21 and p27 was also significantly downregulated in presence of miR-bDNA nanostructures. The cell proliferation activity was progressively increased in presence of miR-bDNA nanostructures which confirms the reduced tumor suppression activity of FOXO1 and the downstream gene expression. This finding can be explored to design novel bDNA structures which can downregulate the tumor suppressor proteins in normal cells and induce cell proliferation activity to identify early-phase markers of cancer.
Collapse
Affiliation(s)
- Avishek Kar
- grid.418808.d0000 0004 1792 1607DNA Nanotechnology and Application Laboratory, CSIR-Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh 201002 Ghaziabad, India
| | - Kanchan Kumari
- grid.418808.d0000 0004 1792 1607DNA Nanotechnology and Application Laboratory, CSIR-Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India ,grid.12650.300000 0001 1034 3451Department of Molecular Biology, Umea University, Umea, Sweden
| | - Sandip K. Mishra
- grid.418782.00000 0004 0504 0781Cancer Biology Laboratory, Institute of Life Sciences, 751023 Bhubaneswar, India
| | - Umakanta Subudhi
- grid.418808.d0000 0004 1792 1607DNA Nanotechnology and Application Laboratory, CSIR-Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh 201002 Ghaziabad, India
| |
Collapse
|
41
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
42
|
Morelli MB, Nabissi M, Amantini C, Maggi F, Ricci-Vitiani L, Pallini R, Santoni G. TRPML2 Mucolipin Channels Drive the Response of Glioma Stem Cells to Temozolomide and Affect the Overall Survival in Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms232315356. [PMID: 36499683 PMCID: PMC9738251 DOI: 10.3390/ijms232315356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan-Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), 00168 Rome, Italy
- Institute of Neurosurgery, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| |
Collapse
|
43
|
Jagosky MH, Anderson CJ, Symanowski JT, Steuerwald NM, Farhangfar CJ, Baldrige EA, Benbow JH, Livingston MB, Patt JC, Ahrens WA, Kneisl JS, Kim ES. Genomic alterations and clinical outcomes in patients with dedifferentiated liposarcoma. Cancer Med 2022; 12:7029-7038. [PMID: 36464833 PMCID: PMC10067084 DOI: 10.1002/cam4.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with unresectable dedifferentiated liposarcoma (DDLPS) have poor overall outcomes. Few genomic alterations have been identified with limited therapeutic options. EXPERIMENTAL DESIGN Patients treated at Levine Cancer Institute with DDLPS were identified. Next generation sequencing (NGS), immunohistochemistry (IHC), and fluorescence in situ hybridization (FISH) testing were performed on tumor tissue collected at diagnosis or recurrence/progression. Confirmation of genomic alterations was performed by orthologous methods and correlated with clinical outcomes. Univariate Cox regression was used to identify genomic alterations associated with clinical outcomes. RESULTS Thirty-eight DDLPS patients with adequate tissue for genomic profiling and clinical data were identified. Patient characteristics included: median age at diagnosis (66 years), race (84.2% Caucasian), and median follow-up time for the entire cohort was 12.1 years with a range from approximately 3.5 months to 14.1 years. Genes involved in cell cycle regulation, including MDM2 (74%) CDK4 (65%), and CDKN2A (23%), were amplified along with WNT/Notch pathway markers: HMGA2, LGR5, MCL1, and CALR (19%-29%). While common gene mutations were identified, PDE4DIP and FOXO3 were also mutated in 47% and 34% of patients, respectively, neither of which have been previously reported. FOXO3 was associated with improved overall survival (OS) (HR 0.37; p = 0.043) along with MAML2 (HR 0.30; p = 0.040). Mutations that portended worse prognosis included RECQL4 (disease-specific survival HR 4.67; p = 0.007), MN1 (OS HR = 3.38; p = 0.013), NOTCH1 (OS HR 2.28, p = 0.086), and CNTRL (OS HR 2.42; p = 0.090). CONCLUSIONS This is one of the largest retrospective reports analyzing genomic aberrations in relation to clinical outcomes for patients with DDLPS. Our results suggest therapies targeting abnormalities should be explored and confirmation of prognostic markers is needed. Dedifferentiated liposarcoma is one of the most common subtypes of soft tissue sarcoma yet little is known of its molecular aberrations and possible impact on outcomes. The work presented here is an evaluation of genetic abnormalities among a population of patients with dedifferentiated liposarcoma and how they corresponded with survival and risk of metastases. There were notable gene mutations and amplifications commonly found, some of which had interesting prognostic implications.
Collapse
Affiliation(s)
- Megan H. Jagosky
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | - Colin J. Anderson
- Department of Orthopedic Oncology, Musculoskeletal Institute, Atrium Health Charlotte North Carolina USA
| | - James T. Symanowski
- Department of Biostatistics, Levine Cancer Institute, Carolinas Medical Center Atrium Health Charlotte North Carolina USA
| | - Nury M. Steuerwald
- The Molecular Biology and Genomics Laboratory, Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | - Carol J. Farhangfar
- LCI Translational Research, Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | - Emily A. Baldrige
- LCI Research Support, Clinical Trials Office, Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | | | - Michael B. Livingston
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | - Joshua C. Patt
- Department of Orthopedic Oncology, Musculoskeletal Institute, Atrium Health Charlotte North Carolina USA
| | - Will A. Ahrens
- Department of Pathology Levine Cancer Institute, Carolinas Medical Center, Atrium Health Charlotte North Carolina USA
| | - Jeffrey S. Kneisl
- Department of Orthopedic Oncology, Musculoskeletal Institute, Atrium Health Charlotte North Carolina USA
| | - Edward S. Kim
- City of Hope Comprehensive Cancer Center Duarte California USA
| |
Collapse
|
44
|
Zhang J, Pei J, Durham J, Bos T, Cong Q. Computed cancer interactome explains the effects of somatic mutations in cancers. Protein Sci 2022; 31:e4479. [PMID: 36261849 PMCID: PMC9667826 DOI: 10.1002/pro.4479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) are involved in almost all essential cellular processes. Perturbation of PPI networks plays critical roles in tumorigenesis, cancer progression, and metastasis. While numerous high-throughput experiments have produced a vast amount of data for PPIs, these data sets suffer from high false positive rates and exhibit a high degree of discrepancy. Coevolution of amino acid positions between protein pairs has proven to be useful in identifying interacting proteins and providing structural details of the interaction interfaces with the help of deep learning methods like AlphaFold (AF). In this study, we applied AF to investigate the cancer protein-protein interactome. We predicted 1,798 PPIs for cancer driver proteins involved in diverse cellular processes such as transcription regulation, signal transduction, DNA repair, and cell cycle. We modeled the spatial structures for the predicted binary protein complexes, 1,087 of which lacked previous 3D structure information. Our predictions offer novel structural insight into many cancer-related processes such as the MAP kinase cascade and Fanconi anemia pathway. We further investigated the cancer mutation landscape by mapping somatic missense mutations (SMMs) in cancer to the predicted PPI interfaces and performing enrichment and depletion analyses. Interfaces enriched or depleted with SMMs exhibit different preferences for functional categories. Interfaces enriched in mutations tend to function in pathways that are deregulated in cancers and they may help explain the molecular mechanisms of cancers in patients; interfaces lacking mutations appear to be essential for the survival of cancer cells and thus may be future targets for PPI modulating drugs.
Collapse
Affiliation(s)
- Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jesse Durham
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tasia Bos
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
45
|
Lee CM, Lee J, Kang MA, Kim HT, Lee J, Park K, Yang YH, Jang KY, Park SH. Linifanib induces apoptosis in human ovarian cancer cells via activation of FOXO3 and reactive oxygen species. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Ladke VS, Kumbhar GM, Joshi K, Kheur S. Systemic explanation of Glycyrrhiza glabra's analyzed compounds and anti-cancer mechanism based on network pharmacology in oral cancer. J Oral Biosci 2022; 64:452-460. [PMID: 36113760 DOI: 10.1016/j.job.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Several studies suggest that Glycyrrhiza glabra (GG) extract could be a useful supplemental source for various cancer treatments. However, very few studies on oral cancer (OC) have been conducted. The present study was aimed at exploring the bioactive compounds (bioactives) along with the mode of action of GG against OC using network pharmacology. METHODS Liquid chromatography-mass spectrometry/mass spectrometry was used to identify and analyze compounds from GG. Public databases were used to identify genes associated with the selected bioactives and OC. With the help of Cytoscape software, the association between bioactive and common genes was built, visualized, and investigated. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to investigate protein-protein interactions for intergenic interactions. Finally, the pathway enrichment analysis of common genes was done using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. RESULTS Overall, 378 bioactives were identified in GG. Using public databases, an entire 254 bioactive-related genes and 734 OC-related genes were recognized, with 48 common genes. Cytoscape analysis showed wortmannin as the key bioactive and androgen receptor as the hub gene. The DAVID results revealed that the significant mechanism of action of GG against OC may be to induce apoptosis of cancer cells by deactivating the PI3K-AKT signaling pathway. CONCLUSION The key active components and mechanisms of action of GG against OC were investigated. The present study provides scientific suggestions to support the clinical outcome of GG for OC along with a research foundation for additional elaboration on the important bioactives and mechanisms of GG against OC.
Collapse
Affiliation(s)
- Vaibhav S Ladke
- Interdisciplinary School of Health Sciences, SPPU, India; Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| | - Gauri M Kumbhar
- Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, India.
| | - Supriya Kheur
- Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| |
Collapse
|
47
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
48
|
Jeon DY, Jeong SY, Lee JW, Kim J, Kim JH, Chu HS, Jeong WJ, Lee BJ, Ahn B, Kim J, Choi SH, Park JW. FOXO1 Is a Key Mediator of Glucocorticoid-Induced Expression of Tristetraprolin in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232213673. [PMID: 36430156 PMCID: PMC9693238 DOI: 10.3390/ijms232213673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The mRNA destabilizing factor tristetraprolin (TTP) functions as a tumor suppressor by down-regulating cancer-associated genes. TTP expression is significantly reduced in various cancers, which contributes to cancer processes. Enforced expression of TTP impairs tumorigenesis and abolishes maintenance of the malignant state, emphasizing the need to identify a TTP inducer in cancer cells. To search for novel candidate agents for inducing TTP in cancer cells, we screened a library containing 1019 natural compounds using MCF-7 breast cancer cells transfected with a reporter vector containing the TTP promoter upstream of the luciferase gene. We identified one molecule, of which the enantiomers are betamethasone 21-phosphate (BTM-21-P) and dexamethasone 21-phosphate (BTM-21-P), as a potent inducer of TTP in cancer cells. We confirmed that BTM-21-P, DXM-21-P, and dexamethasone (DXM) induced the expression of TTP in MDA-MB-231 cells in a glucocorticoid receptor (GR)-dependent manner. To identify potential pathways linking BTM-21-P and DXM-21-P to TTP induction, we performed an RNA sequencing-based transcriptome analysis of MDA-MB-231 cells at 3 h after treatment with these compounds. A heat map analysis of FPKM expression showed a similar expression pattern between cells treated with the two compounds. The KEGG pathway analysis results revealed that the upregulated DEGs were strongly associated with several pathways, including the Hippo signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, NF-κB signaling pathway, and p53 signaling pathway. Inhibition of the FOXO pathway using a FOXO1 inhibitor blocked the effects of BTM-21-P and DXM-21-P on the induction of TTP in MDA-MB-231 cells. We found that DXM enhanced the binding of FOXO1 to the TTP promoter in a GR-dependent manner. In conclusion, we identified a natural compound of which the enantiomers are DXM-21-P and BTM-21-P as a potent inducer of TTP in breast cancer cells. We also present new insights into the role of FOXO1 in the DXM-21-P- and BTM-21-P-induced expression of TTP in cancer cells.
Collapse
Affiliation(s)
- Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - So Yeon Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Ju Won Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Won Jin Jeong
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Seong Hee Choi
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| |
Collapse
|
49
|
Wang C, Su K, Lin H, Cen B, Zheng S, Xu X. Identification and Verification of a Novel MAGI2-AS3/miRNA-374-5p/FOXO1 Network Associated with HBV-Related HCC. Cells 2022; 11:3466. [PMID: 36359865 PMCID: PMC9654666 DOI: 10.3390/cells11213466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a very common neoplasm worldwide, and competitive endogenous RNA (ceRNA) plays an important role in the development of HCC. The purpose of this study is to investigate the molecular mechanisms of ceRNAs in HCC. METHODS This study detects potential ceRNAs from HCC through whole genome analysis of lncRNA, miRNA and mRNA expression. We then performed high-throughput sequencing of tissues from five hepatitis B related HCC patients to screen ceRNAs and those screened ceRNAs expressions were verified on tissues from an independent group of six patients. Finally, the function of ceRNAs of interest was illustrated in vitro. RESULT Functional and pathway analysis of The Cancer Genome Atlas revealed ceRNA networks. The high-throughput sequencing identified 985 upregulated and 1612 downregulated lncRNAs and 887 upregulated and 1116 downregulated mRNAs in HCC patients. Differentially expressed genes were parallel to cancer-associated processes, comprising 18 upregulated and 35 downregulated significantly enriched pathways including alcoholism and viral carcinogenesis. Among them, a potential ceRNA network was detected and verified in six HCC patients. CeRNAs of the lncRNA MAGI2-AS3/miR-374-5p/FOXO1 pathway were significantly dysregulated in HCC, and validation in vitro showed that FOXO1 is positively regulated by MAGI2-AS3 through the induction of miR-374a/b-5p in HCC cells. In addition, the overexpression of FOXO1 is associated with proliferation, migration, and invasion of HCC cells and increases apoptosis of HCC cells. MiR-374a/b-5p caused an opposite effect by directly suppressing FOXO1 in HCC cells. CONCLUSION CeRNA networks were found in HCC and aberrantly expressed ceRNAs of lncRNA MAGI2-AS3/miR-374-5p/FOXO1 plays a crucial role in HCC, assisting in diagnosis and providing a method for treatment.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanchao Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Beini Cen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
50
|
Cha HS, Lee HK, Park SH, Nam MJ. Acetylshikonin induces apoptosis of human osteosarcoma U2OS cells by triggering ROS-dependent multiple signal pathways. Toxicol In Vitro 2022; 86:105521. [DOI: 10.1016/j.tiv.2022.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|