1
|
Chen YE, Ge X, Woyshner K, McDermott M, Manousopoulou A, Ficarro SB, Marto JA, Li K, Wang LD, Li JJ. APIR: Aggregating Universal Proteomics Database Search Algorithms for Peptide Identification with FDR Control. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae042. [PMID: 39198030 DOI: 10.1093/gpbjnl/qzae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 09/01/2024]
Abstract
Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide-spectrum matches (PSMs), which convert mass spectra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified peptides and a control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to identify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard dataset showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.
Collapse
Affiliation(s)
- Yiling Elaine Chen
- Department of Statistics and Data Science, University of California, Los Angeles, CA 90095, USA
| | - Xinzhou Ge
- Department of Statistics and Data Science, University of California, Los Angeles, CA 90095, USA
| | - Kyla Woyshner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - MeiLu McDermott
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Kexin Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA 90095, USA
| | - Leo David Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Lee SJ, Kim KH, Lee DJ, Kim P, Park J, Kim SJ, Jung HS. MAST4 controls cell cycle in spermatogonial stem cells. Cell Prolif 2023; 56:e13390. [PMID: 36592615 PMCID: PMC10068930 DOI: 10.1111/cpr.13390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
Spermatogonial stem cell (SSC) self-renewal is regulated by reciprocal interactions between Sertoli cells and SSCs in the testis. In a previous study, microtubule-associated serine/threonine kinase 4 (MAST4) has been studied in Sertoli cells as a regulator of SSC self-renewal. The present study focused on the mechanism by which MAST4 in Sertoli cells transmits the signal and regulates SSCs, especially cell cycle regulation. The expression of PLZF, CDK2 and PLZF target genes was examined in WT and Mast4 KO testes by Immunohistochemistry, RT-qPCR and western blot. In addition, IdU and BrdU were injected into WT and Mast4 KO mice and cell cycle of SSCs was analysed. Finally, the testis tissues were cultured in vitro to examine the regulation of cell cycle by MAST4 pathway. Mast4 KO mice showed infertility with Sertoli cell-only syndrome and reduced sperm count. Furthermore, Mast4 deletion led to decreased PLZF expression and cell cycle progression in the testes. MAST4 also induced cyclin-dependent kinase 2 (CDK2) to phosphorylate PLZF and activated PLZF suppressed the transcriptional levels of genes related to cell cycle arrest, leading SSCs to remain stem cell state. MAST4 is essential for maintaining cell cycle in SSCs via the CDK2-PLZF interaction. These results demonstrate the pivotal role of MAST4 regulating cell cycle of SSCs and the significance of spermatogenesis.
Collapse
Affiliation(s)
- Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Pyunggang Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Jinah Park
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Seong-Jin Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea.,Division in Research Institute, Laboratory of Musculoskeletal Research, Medpacto Inc., Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
3
|
Hu H, Sun N, Du H, He Y, Pan K, Liu X, Lu X, Wei J, Liao M, Duan C. Mouse promyelocytic leukemia zinc finger protein (PLZF) regulates hepatic lipid and glucose homeostasis dependent on SIRT1. Front Pharmacol 2022; 13:1039726. [PMID: 36438786 PMCID: PMC9684722 DOI: 10.3389/fphar.2022.1039726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have demonstrated that promyelocytic leukemia zinc finger protein (PLZF) promotes the expression of gluconeogenic genes and hepatic glucose output, which leads to hyperglycemia. However, the role played by PLZF in regulating lipid metabolism is not known. In this study, we aimed to examine the function of PLZF in regulating hepatic lipid and glucose homeostasis and the underlying mechanisms. The expression of PLZF was determined in different mouse models with regard to non-alcoholic fatty liver disease (NAFLD). In the next step, adenoviruses that express PLZF (Ad-PLZF) or PLZF-specific shRNA (Ad-shPLZF) were utilized to alter PLZF expression in mouse livers and in primary hepatocytes. For the phenotype of the fatty liver, histologic and biochemical analyses of hepatic triglyceride (TG), serum TG and cholesterol levels were carried out. The underlying molecular mechanism for the regulation of lipid metabolism by PLZF was further explored using luciferase reporter gene assay and ChIP analysis. The results demonstrated that PLZF expression was upregulated in livers derived from ob/ob, db/db and diet-induced obesity (DIO) mice. Liver PLZF-overexpressing C57BL/6J mice showed fatty liver phenotype, liver inflammation, impaired glucose tolerance and insulin sensitivity. On the other hand, hepatic PLZF knockdown in db/db and DIO mice alleviated hepatic steatosis. Of note, we found that PLZF activates SREBP-1c gene transcription through binding directly to the promoter fragment of this gene, which would induce a repressor-to-activator conversion depending on its interaction with SIRT1 in the role played by PLZF in the transcription process through deacetylation. Thus, PLZF is identified as an essential regulator of hepatic lipid and glucose metabolism, where the modulation of its liver expression could open up a therapeutic path for treating NAFLD.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nannan Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kunyi Pan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiuli Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| | - Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| |
Collapse
|
4
|
The regulatory elements of PLZF gene are not conserved as reveled by molecular cloning and functional characterization of PLZF gene promoter of Clarias batrachus. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Gao X, Chen H, Liu J, Shen S, Wang Q, Clement TM, Deskin BJ, Chen C, Zhao D, Wang L, Guo L, Ma X, Zhang B, Xu Y, Li X, Li L. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports 2019; 13:559-571. [PMID: 31402338 PMCID: PMC6742627 DOI: 10.1016/j.stemcr.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Development of spermatogonia and spermatocytes are the critical steps of spermatogenesis, impacting on male fertility. Investigation of the related regulators benefits the understanding of male reproduction. The proteasome system has been reported to regulate spermatogenesis, but the mechanisms and key contributing factors in vivo are poorly explored. Here we found that ablation of REGγ, a proteasome activator, resulted in male subfertility. Analysis of the mouse testes after birth showed there was a decreased number of PLZF+ spermatogonia and spermatocytes. Molecular analysis found that REGγ loss significantly increased the abundance of p53 protein in the testis, and directly repressed PLZF transcription in cell lines. Of note, allelic p53 haplodeficiency partially rescued the defects in spermatogenesis observed in REGγ-deficient mice. In summary, our results identify REGγ-p53-PLZF to be a critical pathway that regulates spermatogenesis and establishes a new molecular link between the proteasome system and male reproduction. REGγ loss results in male subfertility REGγ loss results in a decrease of spermatocytes and PLZF+ spermatogonial cells p53 protein, increased in REGγ−/− mouse testes, represses PLZF expression Allelic p53 haplodeficiency partially rescues defects in REGγ−/− mouse spermatogenesis
Collapse
Affiliation(s)
- Xiao Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qingwei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tracy M Clement
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Brian J Deskin
- Epigenetic & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Caiyu Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dengpan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linjie Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xueqing Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaotao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
6
|
Clotaire DZJ, Wei Y, Yu X, Ousman T, Hua J. Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reprod Fertil Dev 2019; 31:1315-1320. [PMID: 31009592 DOI: 10.1071/rd18252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/16/2019] [Indexed: 01/12/2023] Open
Abstract
Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.
Collapse
Affiliation(s)
- Daguia Zambe John Clotaire
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, Bangui, 999111, Central Africa
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tamgue Ousman
- Department of Biochemistry, University of Douala, Douala, 999108, Cameroon
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Corresponding author
| |
Collapse
|
7
|
Xia Z, Xu G, Nie L, Liu L, Peng N, He Q, Zuo Q, Zhou Y, Cao Z, Liu S, Zhu Y. NAC1 Potentiates Cellular Antiviral Signaling by Bridging MAVS and TBK1. THE JOURNAL OF IMMUNOLOGY 2019; 203:1001-1011. [DOI: 10.4049/jimmunol.1801110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
|
8
|
van Velthoven CTJ, de Morree A, Egner IM, Brett JO, Rando TA. Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo. Cell Rep 2018; 21:1994-2004. [PMID: 29141228 DOI: 10.1016/j.celrep.2017.10.037] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/11/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023] Open
Abstract
Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche. Although these cells are still quiescent, biochemical changes certainly occur during the isolation process. Here, we analyze the transcriptome of MuSCs in vivo utilizing MuSC-specific labeling of RNA. Notably, labeling transcripts during the isolation procedure revealed very active transcription of specific subsets of genes. However, using the transcription inhibitor α-amanitin, we show that the ex vivo transcriptome remains largely reflective of the in vivo transcriptome. Together, these data provide perspective on the molecular regulation of the quiescent state at the transcriptional level, demonstrate the utility of these tools for probing transcriptional dynamics in vivo, and provide an invaluable resource for understanding stem cell state transitions.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antoine de Morree
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ingrid M Egner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biosciences, University of Oslo, Blindern, Oslo 0316, Norway
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res 2018; 66:S357-S365. [PMID: 28948820 DOI: 10.33549/physiolres.933730] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome is a prevalent, complex condition. The search for genetic determinants of the syndrome is currently undergoing a paradigm enhancement by adding systems genetics approaches to association studies. We summarize the current evidence on relations between an emergent new candidate, zinc finger and BTB domain containing 16 (ZBTB16) transcription factor and the major components constituting the metabolic syndrome. Information stemming from studies on experimental models with altered Zbtb16 expression clearly shows its effect on adipogenesis, cardiac hypertrophy and fibrosis, lipid levels and insulin sensitivity. Based on current evidence, we provide a network view of relations between ZBTB16 and hallmarks of metabolic syndrome in order to elucidate the potential functional links involving the ZBTB16 node. Many of the identified genes interconnecting ZBTB16 with all or most metabolic syndrome components are linked to immune function, inflammation or oxidative stress. In summary, ZBTB16 represents a promising pleiotropic candidate node for metabolic syndrome.
Collapse
Affiliation(s)
- O Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
10
|
Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. Structural prediction of the interaction of the tumor suppressor p27 KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. BMC Bioinformatics 2017; 18:15. [PMID: 28056778 PMCID: PMC5217639 DOI: 10.1186/s12859-016-1411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase 2 (CDK2) together with its cyclin E and A partners is a central regulator of cell growth and division. Deregulation of CDK2 activity is associated with diseases such as cancer. The analysis of substrates identified S/T-P-X-R/K/H as the CDK2 consensus sequence. The crystal structure of cyclin A/CDK2 with a short model peptide supports this sequence and identifies key interactions. However, CDKs use additional determinants to recognize substrates, including the RXL motif that is read by the cyclin subunits. We were interested to determine whether additional amino acids beyond the minimal consensus sequence of the well-studied substrate and tumor suppressor p27KIP1 were relevant for catalysis. RESULTS To address whether additional amino acids, close to the minimal consensus sequence, play a role in binding, we investigate the interaction of cyclin A/CDK2 with an in vivo cellular partner and CDK inhibitor p27KIP1. This protein is an intrinsically unfolded protein and, in particular, the C-terminal half of the protein has not been accessible to structural analysis. This part harbors the CDK2 phosphorylation site. We used bioinformatics tools, including MODELLER, iTASSER and HADDOCK, along with partial structural information to build a model of the C-terminal region of p27KIP1 with cyclin A/CDK2. This revealed novel interactions beyond the consensus sequence with a proline and a basic amino acid at the P + 1 and the P + 3 sites, respectively. We suggest that the lysine at P + 2 might regulate the reversible association of the second counter ion in the active site of CDK2. The arginine at P + 7 interacts with both cyclin A and CDK2 and is important for the catalytic turnover rate. CONCLUSION Our modeling identifies additional amino acids in p27KIP1 beyond the consensus sequence that contribute to the efficiency of substrate phosphorylation.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany. .,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.
| |
Collapse
|
11
|
Chaharbakhshi E, Jemc JC. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis 2016; 54:505-518. [DOI: 10.1002/dvg.22964] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Edwin Chaharbakhshi
- Department of Biology; Loyola University Chicago; Chicago IL
- Stritch School of Medicine; Loyola University Chicago; Maywood IL
| | | |
Collapse
|
12
|
Maeda T. Regulation of hematopoietic development by ZBTB transcription factors. Int J Hematol 2016; 104:310-23. [PMID: 27250345 DOI: 10.1007/s12185-016-2035-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
Hematopoietic development is governed by the coordinated expression of lineage- and differentiation stage-specific genes. Transcription factors play major roles in this process and their perturbation may underlie hematologic and immunologic disorders. Nearly 1900 transcription factors are encoded in the human genome: of these, 49 BTB (for broad-complex, tram-track and bric à brac)-zinc finger transcription factors referred to as ZBTB or POK proteins have been identified. ZBTB proteins, including BCL6, PLZF, ThPOK and LRF, exhibit a broad spectrum of functions in normal and malignant hematopoiesis. This review summarizes developmental and molecular functions of ZBTB proteins relevant to hematology.
Collapse
Affiliation(s)
- Takahiro Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Aleksejeva E, Houel A, Briolat V, Levraud JP, Langevin C, Boudinot P. Zebrafish Plzf transcription factors enhance early type I IFN response induced by two non-enveloped RNA viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:48-56. [PMID: 26719025 DOI: 10.1016/j.dci.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The BTB-POZ transcription factor Promyelocytic Leukemia Zinc Finger (PLZF, or ZBTB16) has been recently identified as a major factor regulating the induction of a subset of Interferon stimulated genes in human and mouse. We show that the two co-orthologues of PLZF found in zebrafish show distinct expression patterns, especially in larvae. Although zbtb16a/plzfa and zbtb16b/plzfb are not modulated by IFN produced during viral infection, their over-expression increases the level of the early type I IFN response, at a critical phase in the race between the virus and the host response. The effect of Plzfb on IFN induction was also detectable after cell infection by different non-enveloped RNA viruses, but not after infection by the rhabdovirus SVCV. Our findings indicate that plzf implication in the regulation of type I IFN responses is conserved across vertebrates, but at multiple levels of the pathway and through different mechanisms.
Collapse
Affiliation(s)
- E Aleksejeva
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - A Houel
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - V Briolat
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS, URA 2578, F-75015 Paris, France
| | - J-P Levraud
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS, URA 2578, F-75015 Paris, France
| | - C Langevin
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - P Boudinot
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France.
| |
Collapse
|
14
|
Kommagani R, Szwarc MM, Vasquez YM, Peavey MC, Mazur EC, Gibbons WE, Lanz RB, DeMayo FJ, Lydon JP. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization. PLoS Genet 2016; 12:e1005937. [PMID: 27035670 PMCID: PMC4817989 DOI: 10.1371/journal.pgen.1005937] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/24/2016] [Indexed: 11/17/2022] Open
Abstract
Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights into the molecular mechanisms by which progesterone drives hESC decidualization, our findings provide a new conceptual framework that could lead to new avenues for diagnosis and/or treatment of adverse reproductive outcomes associated with a dysfunctional uterus.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yasmin M. Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary C. Peavey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erik C. Mazur
- Houston Fertility Specialists, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rainer B. Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 2016; 34:277-87. [DOI: 10.1002/stem.2270] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/21/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Tong Ming Liu
- Cancer Stem Cell Biology, Genome Institute of Singapore; Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery; National University of Singapore; Singapore
- NUS Tissue Engineering Program (NUSTEP); National University of Singapore; Singapore
| | - Bing Lim
- Cancer Stem Cell Biology, Genome Institute of Singapore; Singapore
| | - Ng Shyh-Chang
- Stem Cell and Regenerative Biology; Genome Institute of Singapore; Singapore
| |
Collapse
|
16
|
Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, Najafov A, Liu M, Li Y, Han X, Xiao J, Jin Z, Peng T, Gao Y, Cai Y, Qi C, Zhang Q, Sun A, Lipinski M, Zhu H, Xiong Y, Pandolfi PP, Li H, Yu Q, Yuan J. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. eLife 2015; 4:e06734. [PMID: 25821988 PMCID: PMC4421748 DOI: 10.7554/elife.06734] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
Autophagy is an important intracellular catabolic mechanism involved in the removal of misfolded proteins. Atg14L, the mammalian ortholog of Atg14 in yeast and a critical regulator of autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. However, it is not clear how Atg14L is regulated. In this study, we demonstrate that ubiquitination and degradation of Atg14L is controlled by ZBTB16-Cullin3-Roc1 E3 ubiquitin ligase complex. Furthermore, we show that a wide range of G-protein-coupled receptor (GPCR) ligands and agonists regulate the levels of Atg14L through ZBTB16. In addition, we show that the activation of autophagy by pharmacological inhibition of GPCR reduces the accumulation of misfolded proteins and protects against behavior dysfunction in a mouse model of Huntington's disease. Our study demonstrates a common molecular mechanism by which the activation of GPCRs leads to the suppression of autophagy and a pharmacological strategy to activate autophagy in the CNS for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kangyun Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hongguang Xia
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jiefei Geng
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Min Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yanxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoran Han
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Juan Xiao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Jin
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Peng
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunting Qi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anyang Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Marta Lipinski
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - He Li
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y, Yang Y, Lee HG, Hong J, Yoon DY. Interleukin-32α modulates promyelocytic leukemia zinc finger gene activity by inhibiting protein kinase Cɛ-dependent sumoylation. Int J Biochem Cell Biol 2014; 55:136-43. [DOI: 10.1016/j.biocel.2014.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
18
|
Liao HF, Chen WSC, Chen YH, Kao TH, Tseng YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, Hata K, Cheng WTK, Tsai MH, Sasaki H, Ho HN, Wu SC, Huang YH, Yen P, Lin SP. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 2014; 141:2402-13. [PMID: 24850856 DOI: 10.1242/dev.105130] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of adult stem cells to reside in a quiescent state is crucial for preventing premature exhaustion of the stem cell pool. However, the intrinsic epigenetic factors that regulate spermatogonial stem cell quiescence are largely unknown. Here, we investigate in mice how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1(+) spermatogonial stem/progenitor cells (SPCs) constituted a DNMT3L-expressing population in postnatal testes. DNMT3L influenced the stability of promyelocytic leukemia zinc finger (PLZF), potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Reduced PLZF in Dnmt3l KO THY1(+) cells released its antagonist, Sal-like protein 4A (SALL4A), which is associated with overactivated ERK and AKT signaling cascades. Furthermore, DNMT3L was required to suppress the cell proliferation-promoting factor SALL4B in THY1(+) SPCs and to prevent premature stem cell exhaustion. Our results indicate that DNMT3L is required to delicately balance the cycling and quiescence of SPCs. These findings reveal a novel role for DNMT3L in modulating postnatal SPC cell fate decisions.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wendy S C Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chiao Chiu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Lung Lee
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Qian-Jia Lin
- Department of Biochemistry, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo 157-8535, Japan
| | - Winston T K Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hiroyuki Sasaki
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Pauline Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan Center for Systems Biology, National Taiwan University, Taipei 106, Taiwan Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
19
|
Choi WI, Kim MY, Jeon BN, Koh DI, Yun CO, Li Y, Lee CE, Oh J, Kim K, Hur MW. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) gene repression. J Biol Chem 2014; 289:18625-40. [PMID: 24821727 DOI: 10.1074/jbc.m113.538751] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promyelocytic leukemia zinc finger (PLZF) is a transcription repressor that was initially isolated as a fusion protein with retinoic acid receptor α. PLZF is aberrantly overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. PLZF causes cellular transformation of NIH3T3 cells and increases cell proliferation in several cell types. PLZF also increases tumor growth in the mouse xenograft tumor model. PLZF may stimulate cell proliferation by controlling expression of the genes of the p53 pathway (ARF, TP53, and CDKN1A). We found that PLZF can directly repress transcription of CDKN1A encoding p21, a negative regulator of cell cycle progression. PLZF binds to the proximal Sp1-binding GC-box 5/6 and the distal p53-responsive elements of the CDKN1A promoter to repress transcription. Interestingly, PLZF interacts with Sp1 or p53 and competes with Sp1 or p53. PLZF interacts with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylates Ac-H3 and Ac-H4 histones at the CDKN1A promoter, which indicated the involvement of the corepressor·HDACs complex in transcription repression by PLZF. Also, PLZF represses transcription of TP53 and also decreases p53 protein stability by ubiquitination. PLZF may act as a potential proto-oncoprotein in various cell types.
Collapse
Affiliation(s)
- Won-Il Choi
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752
| | - Min-Young Kim
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752
| | - Bu-Nam Jeon
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752
| | - Dong-In Koh
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752
| | - Chae-Ok Yun
- the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, and
| | - Yan Li
- the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, and
| | - Choong-Eun Lee
- the Department of Biological Science, Sungkyunkwan University, 300 Cheon-Cheon Dong, Suwon 440-746, Korea
| | - Jiyoung Oh
- the Department of Biological Science, Sungkyunkwan University, 300 Cheon-Cheon Dong, Suwon 440-746, Korea
| | - Kunhong Kim
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752
| | - Man-Wook Hur
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul 120-752,
| |
Collapse
|
20
|
Lin DY, Huang CC, Hsieh YT, Lin HC, Pao PC, Tsou JH, Lai CY, Hung LY, Wang JM, Chang WC, Lee YC. Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf). J Biomed Sci 2013; 20:98. [PMID: 24359566 PMCID: PMC3878200 DOI: 10.1186/1423-0127-20-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023] Open
Abstract
Background Zinc finger protein 179 (Znf179), also known as ring finger protein 112 (Rnf112), is a member of the RING finger protein family and plays an important role in neuronal differentiation. To investigate novel mechanisms of Znf179 regulation and function, we performed a yeast two-hybrid screen to identify Znf179-interacting proteins. Results Using a yeast two-hybrid screen, we have identified promyelocytic leukemia zinc finger (Plzf) as a specific interacting protein of Znf179. Further analysis showed that the region containing the first two zinc fingers of Plzf is critical for its interaction with Znf179. Although the transcriptional regulatory activity of Plzf was not affected by Znf179 in the Gal4-dependent transcription assay system, the cellular localization of Znf179 was changed from cytoplasm to nucleus when Plzf was co-expressed. We also found that Znf179 interacted with Plzf and regulated Plzf protein expression. Conclusions Our results showed that Znf179 interacted with Plzf, resulting in its translocation from cytoplasm to the nucleus and increase of Plzf protein abundance. Although the precise nature and role of the Znf179-Plzf interaction remain to be elucidated, both of these two genes are involved in the regulation of neurogenesis. Our finding provides further research direction for studying the molecular functions of Znf179.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi-Chao Lee
- Ph,D, Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
21
|
Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability. PLoS One 2013; 8:e66510. [PMID: 23776681 PMCID: PMC3680417 DOI: 10.1371/journal.pone.0066510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/10/2013] [Indexed: 11/26/2022] Open
Abstract
The EVI1 (ecotropic viral integration site 1) gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML) is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA) derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196) in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D), which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.
Collapse
|
22
|
Jones C, St-Jean S, Fréchette I, Bergeron D, Rivard N, Boudreau F. Identification of a novel promyelocytic leukemia zinc-finger isoform required for colorectal cancer cell growth and survival. Int J Cancer 2013; 133:58-66. [PMID: 23280881 DOI: 10.1002/ijc.28008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/28/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
Abstract
Promyelocytic leukemia zinc-finger (PLZF) is a transcriptional repressor that regulates proliferation, differentiation and apoptosis among various cellular origins. PLZF expression is upregulated in colorectal cancer cell lines but its putative functional role in this context is unknown. Here, we report the identification of a novel p65 PLZF isoform that results from the usage of an evolutionarily conserved alternative translational initiation site. This isoform is devoid of the classical BTB/POZ domain required for nuclear localization and transcriptional repression. Depletion of p65 PLZF expression in colorectal cancer cell lines results in reduction of cell growth, loss of cell anchorage and increase in cell apoptosis. Overall, these results indicate that p65 PLZF is crucial to maintain colorectal cancer cell adhesion as well as survival and must occur independently of the traditionally viewed transcriptional role of PLZF in the course of these biological processes.
Collapse
Affiliation(s)
- Christine Jones
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 2012; 10:284-98. [PMID: 22385656 DOI: 10.1016/j.stem.2012.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/05/2011] [Accepted: 02/07/2012] [Indexed: 12/23/2022]
Abstract
Transcription factors required for formation of embryonic tissues often maintain their expression in adult stem cell populations, but whether their function remains equivalent is not clear. Here we demonstrate critical and distinct roles for Sall4 in development of embryonic germ cells and differentiation of postnatal spermatogonial progenitor cells (SPCs). In differentiating SPCs, Sall4 levels transiently increase and Sall4 physically interacts with Plzf, a transcription factor exclusively required for adult stem cell maintenance. Mechanistically, Sall4 sequesters Plzf to noncognate chromatin domains to induce expression of Kit, a target of Plzf-mediated repression required for differentiation. Plzf in turn antagonizes Sall4 function by displacing Sall4 from cognate chromatin to induce Sall1 expression. Taken together, these data suggest that transcription factors required for embryonic tissue development postnatally take on distinct roles through interaction with opposing factors, which hence define properties of the adult stem cell compartment.
Collapse
Affiliation(s)
- Robin M Hobbs
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Suliman BA, Xu D, Williams BRG. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol 2012; 2:74. [PMID: 22822476 PMCID: PMC3398472 DOI: 10.3389/fonc.2012.00074] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/27/2012] [Indexed: 01/06/2023] Open
Abstract
The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.
Collapse
Affiliation(s)
- Bandar Ali Suliman
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University Melbourne, VIC, Australia
| | | | | |
Collapse
|
25
|
Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation. PLoS One 2012; 7:e38928. [PMID: 22745689 PMCID: PMC3382166 DOI: 10.1371/journal.pone.0038928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.
Collapse
|
26
|
Beaulieu AM, Sant'Angelo DB. The BTB-ZF family of transcription factors: key regulators of lineage commitment and effector function development in the immune system. THE JOURNAL OF IMMUNOLOGY 2011; 187:2841-7. [PMID: 21900183 DOI: 10.4049/jimmunol.1004006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Successful immunity depends upon the activity of multiple cell types. Commitment of pluripotent precursor cells to specific lineages, such as T or B cells, is obviously fundamental to this process. However, it is also becoming clear that continued differentiation and specialization of lymphoid cells is equally important for immune system integrity. Several members of the BTB-ZF family have emerged as critical factors that control development of specific lineages and also of specific effector subsets within these lineages. For example, BTB-ZF genes have been shown to control T cell versus B cell commitment and CD4 versus CD8 lineage commitment. Others, such as PLZF for NKT cells and Bcl-6 for T follicular helper cells, are necessary for the acquisition of effector functions. In this review, we summarize current findings concerning the BTB-ZF family members with a reported role in the immune system.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
27
|
Bureau C, Hanoun N, Torrisani J, Vinel JP, Buscail L, Cordelier P. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Curr Genomics 2011; 10:353-60. [PMID: 20119532 PMCID: PMC2729999 DOI: 10.2174/138920209788921010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/22/2022] Open
Abstract
Krüppel-like factor (KLF) family members share a three C2H2 zinc finger DNA binding domain, and are involved in cell proliferation and differentiation control in normal as in pathological situations. Studies over the past several years support a significant role for this family of transcription factors in carcinogenesis. KLFs can both activate and repress genes that participate in cell-cycle regulation. Among them, many up-regulated genes are inhibitors of proliferation, whereas genes that promote cell proliferation are repressed. However, several studies do present KLFs as positive regulator of cell proliferation. KLFs can be deregulated in multiple cancers either by loss of heterozygosity (LOH), somatic mutation or transcriptional silencing by promoter hypermethylation. Accordingly, KLF expression was shown to mediate growth inhibition when ectopically expressed in multiple cancer-derived cell lines through the inhibition of a number of key oncogenic signaling pathways, and to revert the tumorogenic phenotype in vivo. Taken together, these observations suggest that KLFs act as tumor suppressor. However, in some occasion, KLFs could act as tumor promoters, depending on “cellular context”. Thus, this review will discuss the roles and the functions of KLF family members in carcinogenesis, with a special focus on cancers from epithelial origin.
Collapse
Affiliation(s)
- Christophe Bureau
- Institut National de la Santé et de la Recherche Médicale Unité 858-I2MR, Institut de Médecine Moléculaire de Rangueil, Département Cancers Epithéliaux, Angiogénèse et Signalisation, 31432 Toulouse Cedex 4 France
| | | | | | | | | | | |
Collapse
|
28
|
Seidel K, Kirsch S, Lucht K, Zaade D, Reinemund J, Schmitz J, Klare S, Li Y, Schefe JH, Schmerbach K, Goldin-Lang P, Zollmann FS, Thöne-Reineke C, Unger T, Funke-Kaiser H. The promyelocytic leukemia zinc finger (PLZF) protein exerts neuroprotective effects in neuronal cells and is dysregulated in experimental stroke. Brain Pathol 2011; 21:31-43. [PMID: 20731660 DOI: 10.1111/j.1750-3639.2010.00427.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Stroke is one of the major medical burdens in industrialized countries. Animal experiments indicate that blockade of the angiotensin AT1 receptor (AT1R) improves neurological outcome after cerebral ischemia. These protective effects are partially mediated by the angiotensin AT2 receptor (AT2R). The transcription factor promyelocytic leukemia zinc finger (PLZF) was identified as a direct adapter protein of the AT2R. Furthermore, our group was able to demonstrate that PLZF also directly binds and mediates the effects of the human (pro)renin receptor [(P)RR] which is involved in brain development. Therefore, we hypothesized that PLZF is involved in neuroprotection. Here we show that PLZF and its receptors (P)RR and AT2R exhibited an ubiquitous expression pattern in different brain regions. Furthermore, stable PLZF overexpression in human neuronal cells was able to mediate neuroprotection in a glutamate toxicity model in vitro. Consistently, PLZF mRNA and protein were downregulated on the ipsilateral side in a stroke model in vivo, whereas the neurodetrimental PLZF target genes cyclin A2 and BID were upregulated under this condition. Further analyses indicated that the neuroprotective AT2R is upregulated upon stable PLZF overexpression in cultured neuronal cells. Finally, reporter gene assays demonstrated the functionality of (P)RR promoter polymorphisms regarding basal and PLZF-induced activity.
Collapse
Affiliation(s)
- Kerstin Seidel
- Center for Cardiovascular Research (CCR)/ Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hobbs RM, Seandel M, Falciatori I, Rafii S, Pandolfi PP. Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 2010; 142:468-79. [PMID: 20691905 DOI: 10.1016/j.cell.2010.06.041] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/01/2010] [Accepted: 05/28/2010] [Indexed: 12/25/2022]
Abstract
Hyperactivity of mTORC1, a key mediator of cell growth, leads to stem cell depletion, although the underlying mechanisms are poorly defined. Using spermatogonial progenitor cells (SPCs) as a model system, we show that mTORC1 impairs stem cell maintenance by a negative feedback from mTORC1 to receptors required to transduce niche-derived signals. We find that SPCs lacking Plzf, a transcription factor essential for SPC maintenance, have enhanced mTORC1 activity. Aberrant mTORC1 activation in Plzf(-/-) SPCs inhibits their response to GDNF, a growth factor critical for SPC self-renewal, via negative feedback at the level of the GDNF receptor. Plzf opposes mTORC1 activity by inducing expression of the mTORC1 inhibitor Redd1. Thus, we identify the mTORC1-Plzf functional interaction as a critical rheostat for maintenance of the spermatogonial pool and propose a model whereby negative feedback from mTORC1 to the GDNF receptor balances SPC growth with self-renewal.
Collapse
Affiliation(s)
- Robin M Hobbs
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
30
|
Wasim M, Carlet M, Mansha M, Greil R, Ploner C, Trockenbacher A, Rainer J, Kofler R. PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic leukemia, interferes with glucocorticoid-induced apoptosis. J Steroid Biochem Mol Biol 2010; 120:218-27. [PMID: 20435142 PMCID: PMC2892747 DOI: 10.1016/j.jsbmb.2010.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/29/2010] [Accepted: 04/21/2010] [Indexed: 02/03/2023]
Abstract
Glucocorticoids (GCs) cause cell cycle arrest and apoptosis in lymphoid cells which is exploited to treat lymphoid malignancies. The mechanisms of these anti-leukemic GC effects are, however, poorly understood. We previously defined a list of GC-regulated genes by expression profiling in children with acute lymphoblastic leukemia (ALL) during systemic GC monotherapy and in experimental systems of GC-induced apoptosis. PLZF/ZBTB16, a transcriptional repressor, was one of the most promising candidates derived from this screen. To investigate its role in the anti-leukemic GC effects, we performed overexpression and knock-down experiments in CCRF-CEM childhood ALL cells. Transgenic PLZF/ZBTB16 alone had no detectable effect on cell proliferation or survival, but reduced sensitivity to GC-induced apoptosis but not apoptosis induced by antibodies against Fas/CD95 or 3 different chemotherapeutics. Knock-down of ZBTB16 entailed a small, but significant, increase in cell death induction by GC. Affymetrix Exon array-based whole genome expression profiling revealed that PLZF/ZBTB16 induction did not significantly alter the expression profile, however, it interfered with the regulation of numerous GC response genes, including BCL2L11/Bim, which has previously been shown to be responsible for cell death induction in CCRF-CEM cells. Thus, the protective effect of PLZF/ZBTB16 can be attributed to interference with transcriptional regulation by GC.
Collapse
Affiliation(s)
- Muhammad Wasim
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Michela Carlet
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Muhammad Mansha
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Richard Greil
- III. Medical University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christian Ploner
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Alexander Trockenbacher
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Johannes Rainer
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Reinhard Kofler
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
- Corresponding author at: Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria. Tel.: +43 512 9003 70360; fax: +43 512 9003 73960.
| |
Collapse
|
31
|
Kovalovsky D, Alonzo ES, Uche OU, Eidson M, Nichols KE, Sant'Angelo DB. PLZF induces the spontaneous acquisition of memory/effector functions in T cells independently of NKT cell-related signals. THE JOURNAL OF IMMUNOLOGY 2010; 184:6746-55. [PMID: 20495068 DOI: 10.4049/jimmunol.1000776] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The broad complex, tramtrack, bric-a-brac-zinc finger (BTB-ZF) transcription factor promyelocytic leukemia zinc finger (PLZF) is required for development of the characteristic innate/effector functions of NKT cells. In this study, we report the characterization and functional analysis of transgenic mouse T cells with forced expression of PLZF. PLZF expression was sufficient to provide some memory/effector functions to T cells without the need for Ag stimulation or proliferation. The acquisition of this phenotype did not require the proliferation typically associated with T cell activation. Furthermore, PLZF transgenic cells maintained a diverse TCR repertoire, indicating that there was no preferential expansion of specific clones. Functionally, PLZF transgenic CD4 and CD8 lymphocytes were similar to wild type memory cells, in that they had similar requirements for costimulation and exhibited a similar pattern of cytokine secretion, with the notable exception that transgenic T cells produced significantly increased levels of IL-17. Whereas transgene-mediated PLZF expression was not sufficient to rescue NKT cell development in Fyn- or signaling lymphocytic activation-associated protein (SAP)-deficient mice, the acquisition of memory/effector functions induced by PLZF in conventional T cells was independent of Fyn and SAP. These data show that PLZF is sufficient to promote T cell effector functions and that PLZF acts independently of SAP- and Fyn-mediated signaling pathways.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Immunology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
In this issue of Immunity, Xu et al. (2009) find that the transcription factor PLZF activates interferon-stimulated genes and facilitates natural killer cell functions. Interferon-induced PLZF phosphorylation and histone deacetylase 1 recruitment probably mediates the repressor-to-activator conversion.
Collapse
|