1
|
Kagawa T, Mineda A, Nakagawa T, Shinohara A, Arakaki R, Inui H, Noguchi H, Yoshida A, Kinouchi R, Yamamoto Y, Yoshida K, Kaji T, Nishimura M, Iwasa T. New treatment strategies for uterine sarcoma using secreted frizzled‑related proteins. Exp Ther Med 2024; 27:231. [PMID: 38628655 PMCID: PMC11019650 DOI: 10.3892/etm.2024.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
Secreted frizzled-related proteins (SFRPs) are involved in the development of various types of cancer and function by suppressing the Wnt signaling pathway. To elucidate the clinical implications of SFRPs in uterine sarcoma, SFRP expression levels and their effects on uterine leiomyosarcoma cells were examined. Immunostaining for SFRP4 was performed on uterine smooth muscle, uterine fibroid and uterine leiomyosarcoma tissues. Additionally, the effects of SFRP4 administration on cell viability, migration and adhesion were evaluated in uterine leiomyosarcoma SKN cells using the WST-1 assay (Roche Diagnostics) and the CytoSelect™ 24-well Cell Migration Assay Kit and the CytoSelect™ 48-well Cell Adhesion Assay Kit. The expression levels of SFRP4 in uterine leiomyosarcoma tissues were lower than those in normal smooth muscle and uterine fibroid tissues. In addition, SFRP4 suppressed the viability and migration, and increased the adhesion ability of uterine leiomyosarcoma cells compared with in the control group. In conclusion, SFRP4 may suppress the viability and migration, and enhance the adhesion of sarcoma cells. These results suggested that SFRP4 could be considered as a novel therapeutic target for uterine sarcoma.
Collapse
Affiliation(s)
- Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomotaka Nakagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayaka Shinohara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroaki Inui
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Marella S, Sharma A, Ganesan V, Ferrer-Torres D, Krempski JW, Idelman G, Clark S, Nasiri Z, Vanoni S, Zeng C, Dlugosz AA, Zhou H, Wang S, Doyle AD, Wright BL, Spence JR, Chehade M, Hogan SP. IL-13-induced STAT3-dependent signaling networks regulate esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2023; 152:1550-1568. [PMID: 37652141 PMCID: PMC11102758 DOI: 10.1016/j.jaci.2023.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.
Collapse
Affiliation(s)
- Sahiti Marella
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - James W Krempski
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Gila Idelman
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Sydney Clark
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Zena Nasiri
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Mich
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Haibin Zhou
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Alfred D Doyle
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Jason R Spence
- Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simon P Hogan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
3
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Short peptide domains of the Wnt inhibitor sFRP4 target ovarian cancer stem cells by neutralizing the Wnt β-catenin pathway, disrupting the interaction between β-catenin and CD24 and suppressing autophagy. Life Sci 2023; 316:121384. [PMID: 36646377 DOI: 10.1016/j.lfs.2023.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
AIMS One of the hallmarks of cancer stem cells (CSC) is hyperactive Wnt β-catenin signaling due to the decreased presence of Wnt antagonists such as secreted frizzled related protein 4 (SFRP4). Cysteine-rich domain (CRD) and netrin-like domain (NLD) are the two functional domains of SFRP4 having anti-tumor properties. In this study, we have explored the effectiveness of short micropeptides SC-301 (from CRD) and SC-401 (from NLD) on CSC properties, EMT, apoptosis and autophagy in ovarian CSCs enriched from PA-1 and SKOV-3 cell lines. MAIN METHODS Gene expression analysis, Western blot and immunocytochemistry were performed on ovarian CSCs to evaluate the inhibitory potential of micropeptides to various CSC associated oncogenic properties. Co-immunoprecipitation was performed to detect the binding of CD24 to β-catenin protein complex. CYTO-ID Autophagy Detection Kit 2.0 was used to monitor autophagic flux in peptide treated CSCs. KEY FINDINGS It is clearly seen that the micropeptides derived from both the domains inhibit Wnt pathway, initiate apoptosis, inhibit migration and chemosensitize CSCs. Specifically, CD24, a defining marker of ovarian CSC was suppressed by peptide treatment. Notably, interaction between CD24 and β-catenin was disrupted upon peptide treatment. SFRP4 peptide treatment also suppressed the autophagic process which is crucial for CSC survival. SIGNIFICANCE The study demonstrated that although both peptides have inhibitory effects, SC-401 was emphatically more effective in targeting CSC properties and down regulating the Wnt β-catenin machinery.
Collapse
|
5
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
6
|
Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. BIOLOGY 2022; 11:biology11040585. [PMID: 35453784 PMCID: PMC9027240 DOI: 10.3390/biology11040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and its incidence is steadily increasing. The development of HCC is a complex, multi-step process that is accompanied by alterations in multiple signaling cascades. Recent years have seen advancement in understanding molecular signaling pathways that play central roles in hepatocarcinogenesis. Aberrant activation of YAP/TAZ, Hedgehog, or Wnt/β-catenin signaling is frequently found in a subset of HCC patients. Targeting the signaling pathway via small molecule inhibitors could be a promising therapeutic option for the subset of patients. In this review, we will introduce the signaling pathways, discuss their roles in the development of HCC, and propose a therapeutic approach targeting the signaling pathways in the context of HCC. Abstract Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. To date, receptor tyrosine kinases (RTKs) are the most favored molecular targets for the treatment of HCC, followed by immune checkpoint regulators such as PD-1, PD-L1, and CTLA-4. With less than desirable clinical outcomes from RTK inhibitors as well as immune checkpoint inhibitors (ICI) so far, novel molecular target therapies have been proposed for HCC. In this review, we will introduce diverse molecular signaling pathways that are aberrantly activated in HCC, focusing on YAP/TAZ, Hedgehog, and Wnt/β-catenin signaling pathways, and discuss potential therapeutic strategies targeting the signaling pathways in HCC.
Collapse
|
7
|
Yousefi F, Najafi H, Behmanesh M, Soltani BM. OCC-1D regulates Wnt signaling pathway: potential role of long noncoding RNA in colorectal cancer. Mol Biol Rep 2022; 49:3377-3387. [DOI: 10.1007/s11033-021-07110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 10/18/2022]
|
8
|
Chen WJ, Sung WW, Yu CY, Luan YZ, Chang YC, Chen SL, Lee TH. PNU-74654 Suppresses TNFR1/IKB Alpha/p65 Signaling and Induces Cell Death in Testicular Cancer. Curr Issues Mol Biol 2022; 44:222-232. [PMID: 35723395 PMCID: PMC8928937 DOI: 10.3390/cimb44010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 11/16/2022] Open
Abstract
Testicular cancer (TC) is a rare malignancy worldwide and is the most common malignancy in males aged 15–44 years. The Wnt/β-catenin signaling pathway mediates numerous essential cellular functions and has potentially important effects on tumorigenesis and cancer progression. The search for drugs to inhibit this pathway has identified a small molecule, PNU-74654, as an inhibitor of the β-catenin/TCF4 interaction. We evaluated the therapeutic role of PNU-74654 in two TC cell lines, NCCIT and NTERA2, by measuring cell viability, cell cycle transition and cell death. Potential pathways were evaluated by protein arrays and Western blots. PNU-74654 decreased cell viability and induced apoptosis of TC cells, with significant increases in the sub G1, Hoechst-stained, Annexin V-PI-positive rates. PNU-74654 treatment of both TC cell lines inhibited the TNFR1/IKB alpha/p65 pathway and the execution phase of apoptosis. Our findings demonstrate that PNU-74654 can induce apoptosis in TC cells through mechanisms involving the execution phase of apoptosis and inhibition of TNFR1/IKB alpha/p65 signaling. Therefore, small molecules such as PNU-74654 may identify potential new treatment strategies for TC.
Collapse
Affiliation(s)
- Wen-Jung Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Sung-Lang Chen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-L.C.); (T.-H.L.)
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-L.C.); (T.-H.L.)
| |
Collapse
|
9
|
Juvvuna PK, Mondal T, Di Marco M, Kosalai ST, Kanduri M, Kanduri C. NBAT1/CASC15-003/USP36 control MYCN expression and its downstream pathway genes in neuroblastoma. Neurooncol Adv 2021; 3:vdab056. [PMID: 34056606 PMCID: PMC8156975 DOI: 10.1093/noajnl/vdab056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background MYCN has been an attractive therapeutic target in neuroblastoma considering the widespread amplification of the MYCN locus in neuroblastoma, and its established role in neuroblastoma development and progression. Thus, understanding neuroblastoma-specific control of MYCN expression at the transcriptional and post-transcriptional level would lead to identification of novel MYCN-dependent oncogenic pathways and potential therapeutic strategies. Methods By performing loss- and gain-of-function experiments of the neuroblastoma hotspot locus 6p22.3 derived lncRNAs CASC15-003 and NBAT1, together with coimmunoprecipitation and immunoblotting of MYCN, we have shown that both lncRNAs post-translationally control the expression of MYCN through regulating a deubiquitinase enzyme USP36. USP36 oncogenic properties were investigated using cancer cell lines and in vivo models. RNA-seq analysis of loss-of-function experiments of CASC15-003/NBAT1/MYCN/USP36 and JQ1-treated neuroblastoma cells uncovered MYCN-dependent oncogenic pathways. Results We show that NBAT1/CASC15-003 control the stability of MYCN protein through their common interacting protein partner USP36. USP36 harbors oncogenic properties and its higher expression in neuroblastoma patients correlates with poor prognosis, and its downregulation significantly reduces tumor growth in neuroblastoma cell lines and xenograft models. Unbiased integration of RNA-seq data from CASC15-003, NBAT1, USP36, and MYCN knockdowns and neuroblastoma cells treated with MYCN inhibitor JQ1, identified genes that are jointly regulated by the NBAT1/CASC15-003/USP36/MYCN pathway. Functional experiments on one of the target genes, COL18A1, revealed its role in the NBAT1/CASC15-003-dependent cell adhesion feature in neuroblastoma cells. Conclusion Our data show post-translational regulation of MYCN by NBAT1/CASC15-003/USP36, which represents a new regulatory layer in the complex multilayered gene regulatory network that controls MYCN expression.
Collapse
Affiliation(s)
- Prasanna Kumar Juvvuna
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Tanmoy Mondal
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mirco Di Marco
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
11
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci 2020; 22:ijms22010130. [PMID: 33374459 PMCID: PMC7794761 DOI: 10.3390/ijms22010130] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.
Collapse
|
13
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Mafakher L, Rismani E, Rahimi H, Enayatkhani M, Azadmanesh K, Teimoori-Toolabi L. Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. J Biomol Struct Dyn 2020; 40:2169-2188. [DOI: 10.1080/07391102.2020.1835718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Enayatkhani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
16
|
Cheng H, Cao X, Min X, Zhang X, Kong Q, Mao Q, Li R, Xue B, Fang L, Liu L, Ding Z. Heat-Shock protein A12A is a novel PCNA-binding protein and promotes hepatocellular carcinoma growth. FEBS J 2020; 287:5464-5477. [PMID: 32128976 DOI: 10.1111/febs.15276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. Proliferating cell nuclear antigen (PCNA) plays a pivotal role in cancer development and progression. However, the long-term dismal prognosis of HCC mandates more investigation to identify novel regulators in HCC pathogenesis. Heat-shock protein A12A (HSPA12A) encodes a novel member of the HSP70 family. Here, we report that HCC cells showed increased HSPA12A expression, and overexpression of HSPA12A promoted HCC growth and angiogenesis in mice. Gain- and loss-of-functional studies demonstrated that the proliferation of HCC HepG2 cells, as well as β-catenin expression and nuclear translocation, was promoted by HSPA12A overexpression, but in turn suppressed by HSPA12A knockdown. HSPA12A did not impact PCNA expression; however, mass spectrometry and co-immunoprecipitation immunoblotting analysis revealed that HSPA12A directly binds to PCNA and promotes its trimerization, which is an essential functional conformation of PCNA for carcinogenesis. Importantly, PCNA inhibition by PCNA-I1 reversed the HSPA12A-mediated HepG2 cell differentiation. These findings indicate that HSPA12A is a novel regulator of HCC cell proliferation and tumor growth through binding to PCNA for its trimerization. HSPA12A inhibition might represent a viable strategy for the management of HCC in humans.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Rongrong Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, China
| | - Lei Fang
- Medical School, Nanjing University, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
17
|
Musso O. Comment on: “Wnt Binding Affinity Prediction for Putative Frizzled-Type Cysteine-Rich Domains”. Int J Mol Sci 2019; 20:ijms20194884. [PMID: 31581624 PMCID: PMC6801662 DOI: 10.3390/ijms20194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Orlando Musso
- INSERM, Univ Rennes, INRA, Institut NuMeCAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France.
| |
Collapse
|
18
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
19
|
The N-terminal domain of unknown function (DUF959) in collagen XVIII is intrinsically disordered and highly O-glycosylated. Biochem J 2018; 475:3577-3593. [PMID: 30327321 DOI: 10.1042/bcj20180405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
Collagen XVIII (ColXVIII) is a non-fibrillar collagen and proteoglycan that exists in three isoforms: short, medium and long. The medium and long isoforms contain a unique N-terminal domain of unknown function, DUF959, and our sequence-based secondary structure predictions indicated that DUF959 could be an intrinsically disordered domain. Recombinant DUF959 produced in mammalian cells consisted of ∼50% glycans and had a molecular mass of 63 kDa. Circular dichroism spectroscopy confirmed the disordered character of DUF959, and static light scattering indicated a monomeric state for glycosylated DUF959 in solution. Small-angle X-ray scattering showed DUF959 to be a highly extended, flexible molecule with a maximum dimension of ∼23 nm. Glycosidase treatment demonstrated considerable amounts of O-glycosylation, and expression of DUF959 in HEK293 SimpleCells capable of synthesizing only truncated O-glycans confirmed the presence of N-acetylgalactosamine-type O-glycans. The DUF959 sequence is characterized by numerous Ser and Thr residues, and this accounts for the finding that half of the recombinant protein consists of glycans. Thus, the medium and long ColXVIII isoforms contain at their extreme N-terminus a disordered, elongated and highly O-glycosylated mucin-like domain that is not found in other collagens, and we suggest naming it the Mucin-like domain in ColXVIII (MUCL-C18). As intrinsically disordered regions and their post-translational modifications are often involved in protein interactions, our findings may point towards a role of the flexible mucin-like domain of ColXVIII as an interaction hub affecting cell signaling. Moreover, the MUCL-C18 may also serve as a lubricant at cell-extracellular matrix interfaces.
Collapse
|
20
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
21
|
Cho SH, Kuo IY, Lu PJF, Tzeng HT, Lai WW, Su WC, Wang YC. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis 2018; 9:868. [PMID: 30158579 PMCID: PMC6115395 DOI: 10.1038/s41419-018-0915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that dysregulated Rab small GTPase-mediated vesicle trafficking pathways are associated with cancer progression. However, whether any of the Rabs plays a suppressor role in cancer stemness is least explored. Rab37 has been postulated as a tumor suppressive small GTPase for trafficking anti-tumor cargos. Here, we report a previously uncharacterized mechanism by which Rab37 mediates exocytosis of secreted frizzled-related protein-1 (SFRP1), an extracellular antagonist of Wnt, to suppress Wnt signaling and cancer stemness in vitro and in vivo. Reconstitution experiments indicate that SFRP1 secretion is crucial for Rab37-mediated cancer stemness suppression and treatment with SRPP1 recombinant protein reduces xenograft tumor initiation ability. Clinical results confirm that concordantly low Rab37, low SFRP1, and high Oct4 stemness protein expression profile can be used as a biomarker to predict poor prognosis in lung cancer patients. Our findings reveal that Rab37-mediated SFRP1 secretion suppresses cancer stemness, and dysregulated Rab37-SFRP1 pathway confers cancer stemness via the activation of Wnt signaling. Rab37-SFRP1-Wnt axis could be a potential therapeutic target for attenuating lung cancer stemness.
Collapse
Affiliation(s)
- Shu-Huei Cho
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Pei-Jung Frank Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan.
| |
Collapse
|
22
|
Miao N, Bian S, Lee T, Mubarak T, Huang S, Wen Z, Hussain G, Sun T. Opposite Roles of Wnt7a and Sfrp1 in Modulating Proper Development of Neural Progenitors in the Mouse Cerebral Cortex. Front Mol Neurosci 2018; 11:247. [PMID: 30065628 PMCID: PMC6056652 DOI: 10.3389/fnmol.2018.00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
The Wingless (Wnt)-mediated signals are involved in many important aspects of development of the mammalian cerebral cortex. How Wnts interact with their modulators in cortical development is still unclear. Here, we show that Wnt7a and secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a in mice causes microcephaly due to reduced NP population and neurogenesis, and Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play opposite roles to ensure proper NP progeny in the developing cortex.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Shiying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zhihong Wen
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
23
|
Inoue M, Uchida Y, Edagawa M, Hirata M, Mitamura J, Miyamoto D, Taketani K, Sekine S, Kawauchi J, Kitajima S. The stress response gene ATF3 is a direct target of the Wnt/β-catenin pathway and inhibits the invasion and migration of HCT116 human colorectal cancer cells. PLoS One 2018; 13:e0194160. [PMID: 29966001 PMCID: PMC6028230 DOI: 10.1371/journal.pone.0194160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling is implicated in tumorigenesis and the progression of human colorectal cancers, and mutations in the components of the Wnt/β-catenin signaling pathway are observed in the majority of patients. Therefore, extensive studies on the Wnt signaling pathway and its target genes are crucial to understand the molecular events of tumorigenesis and develop an efficacious therapy. In this study, we showed that the stress response gene ATF3 is transcriptionally activated by the binding of β-catenin and TCF4 to the redundant TCF4 site at the proximal promoter region of the ATF3 gene, indicating that ATF3 is a direct target of the Wnt/β-catenin pathway. The loss of function or overexpression studies showed that ATF3 inhibited the migration or invasion of HCT116 cells. The expression of some MMP and TIMP genes and the ratio of MMP2/9 to TIMP3/4 mRNAs was differentially regulated by ATF3. Therefore, though ATF3 is activated downstream of the Wnt/β-catenin pathway, it acts as a negative regulator of the migration and invasion of HCT116 human colon cancer cells exhibiting aberrant Wnt/β-catenin activity. ATF3 is a candidate biomarker and target for human colorectal cancer treatment and prevention.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Uchida
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Edagawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Manabu Hirata
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Mitamura
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiki Miyamoto
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Taketani
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Mebarki S, Désert R, Sulpice L, Sicard M, Desille M, Canal F, Dubois-Pot Schneider H, Bergeat D, Turlin B, Bellaud P, Lavergne E, Le Guével R, Corlu A, Perret C, Coulouarn C, Clément B, Musso O. De novo HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas. Oncotarget 2018; 7:39026-39043. [PMID: 27191501 PMCID: PMC5129911 DOI: 10.18632/oncotarget.9346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/27/2022] Open
Abstract
About 20% hepatocellular carcinomas (HCCs) display wild-type β-catenin, enhanced Wnt signaling, hepatocyte dedifferentiation and bad outcome, suggesting a specific impact of Wnt signals on HCC stem/progenitor cells. To study Wnt-specific molecular pathways, cell fates and clinical outcome, we fine-tuned Wnt/β-catenin signaling in liver progenitor cells, using the prototypical Wnt ligand Wnt3a. Cell biology assays and transcriptomic profiling were performed in HepaRG hepatic progenitors exposed to Wnt3a after β-catenin knockdown or Wnt inhibition with FZD8_CRD. Gene expression network, molecular pathology and survival analyses were performed on HCCs and matching non-tumor livers from 70 patients by real-time PCR and tissue micro-array-based immunohistochemistry. Wnt3a reprogrammed liver progenitors to replicating fibrogenic myofibroblast-like cells displaying stem and invasive features. Invasion was inhibited by 30 nM FZD7 and FZD8 CRDs. Translation of these data to human HCCs revealed two tight gene networks associating cell surface Wnt signaling, stem/progenitor markers and mesenchymal commitment. Both networks were linked by Hyaluronan And Proteoglycan Link Protein 1 (HAPLN1), that appeared de novo in aggressive HCCs expressing cytoplasmic β-catenin and stem cell markers. HAPLN1 was independently associated with bad overall and disease-free outcome. In vitro, HAPLN1 was expressed de novo in EPCAM¯/NCAM+ mesoderm-committed progenitors, upon spontaneous epithelial-mesenchymal transition and de-differentiation of hepatocyte-like cells to liver progenitors. In these cells, HAPLN1 knockdown downregulated key markers of mesenchymal cells, such as Snail, LGR5, collagen IV and α-SMA. In conclusion, HAPLN1 reflects a signaling network leading to stemness, mesenchymal commitment and HCC progression.
Collapse
Affiliation(s)
- Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Frédéric Canal
- Inserm, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Pascale Bellaud
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, Rennes, France
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Rémy Le Guével
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Anne Corlu
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Christine Perret
- Inserm, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Coulouarn
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| |
Collapse
|
25
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Lee NK, Zhang Y, Su Y, Bidlingmaier S, Sherbenou DW, Ha KD, Liu B. Cell-type specific potent Wnt signaling blockade by bispecific antibody. Sci Rep 2018; 8:766. [PMID: 29335534 PMCID: PMC5768681 DOI: 10.1038/s41598-017-17539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cell signaling pathways are often shared between normal and diseased cells. How to achieve cell type-specific, potent inhibition of signaling pathways is a major challenge with implications for therapeutic development. Using the Wnt/β-catenin signaling pathway as a model system, we report here a novel and generally applicable method to achieve cell type-selective signaling blockade. We constructed a bispecific antibody targeting the Wnt co-receptor LRP6 (the effector antigen) and a cell type-associated antigen (the guide antigen) that provides the targeting specificity. We found that the bispecific antibody inhibits Wnt-induced reporter activities with over one hundred-fold enhancement in potency, and in a cell type-selective manner. Potency enhancement is dependent on the expression level of the guide antigen on the target cell surface and the apparent affinity of the anti-guide antibody. Both internalizing and non-internalizing guide antigens can be used, with internalizing bispecific antibody being able to block signaling by all ligands binding to the target receptor due to its removal from the cell surface. It is thus feasible to develop bispecific-based therapeutic strategies that potently and selectively inhibit signaling pathways in a cell type-selective manner, creating opportunity for therapeutic targeting.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Yafeng Zhang
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Daniel W Sherbenou
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Kevin D Ha
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA.
| |
Collapse
|
27
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
28
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
29
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
30
|
Zimmerli D, Hausmann G, Cantù C, Basler K. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol 2017; 174:4600-4610. [PMID: 28521071 DOI: 10.1111/bph.13864] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Mutations in components of the Wnt pathways are a frequent cause of many human diseases, particularly cancer. Despite the fact that a causative link between aberrant Wnt signalling and many types of human cancers was established more than a decade ago, no Wnt signalling inhibitors have made it into the clinic so far. One reason for this is that no pathway-specific kinase is known. Additionally, targeting the protein-protein interactions needed to transduce the signal has not met with success so far. Complicating the search for and use of inhibitors is the complexity of the cascades triggered by the Wnts and their paramount biological importance. Wnt/β-catenin signalling is involved in virtually all aspects of embryonic development and in the control of the homeostasis of adult tissues. Encouragingly, however, in recent years, first successes with Wnt-pathway inhibitors have been reported in mouse models of disease. In this review, we summarize possible roads to follow during the quest to pharmacologically modulate the Wnt signalling pathway in cancer. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Zhang Z, Wang X, Zhang L, Shi Y, Wang J, Yan H. Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep 2017; 16:1007-1013. [PMID: 29067442 DOI: 10.3892/mmr.2017.6718] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Preeclampsia (PE) is one of the most common types of hypertensive disease and occurs in 3‑4% of pregnancies. There are a number of theories on the pathogenesis of PE. Abnormal differentiation of the placenta may lead to failure of trophoblast migration, shallow placenta implantation and placental ischemia/hypoxia, followed by the subsequent occurrence of PE. The Wnt/β-catenin pathway is a canonical Wnt‑signaling pathway that regulates several biological processes, including proliferation, migration, invasion and apoptosis. Abnormal activation of the Wnt/β‑catenin signaling pathway may serve an important role in the pathogenesis of various human diseases, particularly in human cancer. Recent studies have demonstrated that the dysregulation of the Wnt/β‑catenin signaling pathway may contribute to PE. The present review aims to summarize the articles on Wnt/β‑catenin signaling pathway in the trophoblast and abnormal activation in PE. Wnt/β-catenin signaling may serve a significant role in the pathogenesis of PE and may be a prospective therapeutic target for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaofang Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinming Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huan Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
32
|
Dong X, Liao W, Zhang L, Tu X, Hu J, Chen T, Dai X, Xiong Y, Liang W, Ding C, Liu R, Dai J, Wang O, Lu L, Lu X. RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Lett 2017; 402:153-165. [PMID: 28600110 DOI: 10.1016/j.canlet.2017.05.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
R-spondins play critical roles in development, stem cell survival, and tumorigenicity by modulating Wnt/β-catenin signaling; however, the role of R-spondins in noncanonical Wnt signaling regulation remains largely unknown. We demonstrate here that R-spondin 2 (RSPO2) has an inhibitory effect on colorectal cancer (CRC) cell migration, invasion, and metastasis. Reduced RSPO2 expression was associated with tumor metastasis and poor survival in CRC patients. The metastasis-suppressive activity of RSPO2 was independent of the Wnt/β-catenin signaling pathway but dependent on the Fzd7-mediated noncanonical Wnt signaling pathway. The physical interaction of RSPO2 and Fzd7 increased the degradation of cell surface Fzd7 via ZNRF3-mediated ubiquitination, which led to the suppression of the downstream PKC/ERK signaling cascade. In late-stage metastatic cancer, Wnt5a promoted CRC cell migration by preventing degradation of Fzd7, and RSPO2 antagonized Wnt5a-driven noncanonical Wnt signaling activation and tumor cell migration by blocking the binding of Wnt5a to the Fzd7 receptor. Our study reveals a novel RSPO2/Wnt5a-competing noncanonical Wnt signaling mechanism that regulates cellular migration and invasion, and our data suggest that secreted RSPO2 protein could serve as a potential therapy for Wnt5a/Fzd7-driven aggressive CRC tumors.
Collapse
Affiliation(s)
- Xiaoming Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Tu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang, 317000, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ouchen Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
33
|
Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med (Maywood) 2017; 242:1185-1197. [PMID: 28474989 DOI: 10.1177/1535370217708198] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.
Collapse
Affiliation(s)
- Maocai Yan
- 1 School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Guanqun Li
- 2 Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | - Jing An
- 3 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Ren K, Zhang W, Wu G, Ren J, Lu H, Li Z, Han X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed Pharmacother 2016; 84:1748-1759. [DOI: 10.1016/j.biopha.2016.10.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
|
35
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
36
|
Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget 2016; 6:37257-68. [PMID: 26484565 PMCID: PMC4741928 DOI: 10.18632/oncotarget.6133] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Wnt2 is implicated in various human cancers. However, it remains unknown how Wnt2 is upregulated in human cancer and contributes to tumorigenesis. Here we found that Wnt2 is highly expressed in colorectal cancer (CRC) cells. In addition to co-expression of Wnt2 with Wnt/β-catenin target genes in CRC, knockdown or knockout of Wnt2 significantly downregulates Wnt/β-catenin target gene expression in CRC cells. Importantly, depletion or ablation of endogenous Wnt2 inhibits CRC cell proliferation. Similarly, neutralizing secreted Wnt2 reduces Wnt target gene expression and suppresses CRC cell proliferation. Conversely, Wnt2 increases cell proliferation of intestinal epithelial cells. Intriguingly, WNT2 expression is transcriptionally silenced by EZH2-mediated H3K27me3 histone modification in non-CRC cells, However, WNT2 expression is de-repressed by the loss of PRC2's promoter occupancy in CRC cells. Our results reveal the unexpected roles of Wnt2 in complementing Wnt/β-catenin signaling for CRC cell proliferation.
Collapse
|
37
|
Désert R, Mebarki S, Desille M, Sicard M, Lavergne E, Renaud S, Bergeat D, Sulpice L, Perret C, Turlin B, Clément B, Musso O. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol 2016; 81:195-207. [PMID: 27545991 DOI: 10.1016/j.biocel.2016.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses.
Collapse
Affiliation(s)
- Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Stéphanie Renaud
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Christine Perret
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| |
Collapse
|
38
|
Watson JD, Prokopec SD, Smith AB, Okey AB, Pohjanvirta R, Boutros PC. 2,3,7,8 Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity. Arch Toxicol 2016; 91:325-338. [PMID: 27136898 PMCID: PMC5225275 DOI: 10.1007/s00204-016-1720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is an aromatic, long-lived environmental contaminant. While the pathogenesis of TCDD-induced toxicity is poorly understood, it has been shown that the aryl hydrocarbon receptor (AHR) is required. However, the specific transcriptomic changes that lead to toxic outcomes have not yet been identified. We previously identified a panel of 33 genes that respond to TCDD treatment in two TCDD-sensitive rodent species. To identify genes involved in the onset of hepatic toxicity, we explored 25 of these in-depth using liver from two rat strains: the TCDD-resistant Han/Wistar (H/W) and the TCDD-sensitive Long–Evans (L–E). Time course and dose–response analyses of mRNA abundance following TCDD insult indicate that eight genes are similarly regulated in livers of both strains of rat, suggesting that they are not central to the severe L–E-specific TCDD-induced toxicities. The remaining 17 genes exhibited various divergent mRNA abundances between L–E and H/W strains after TCDD treatment. Several genes displayed a biphasic response where the initial response to TCDD treatment was followed by a secondary response, usually of larger magnitude in L–E liver. This secondary response was most often an exaggeration of the original TCDD-induced response. Only cytochrome b5 type A (microsomal) (Cyb5a) had equivalent TCDD sensitivity to the prototypic AHR-responsive cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1), while six genes were less sensitive. Four genes showed an early inter-strain difference that was sustained throughout most of the time course (atypical chemokine receptor 3 (Ackr3), collagen, type XVIII, alpha 1 (Col18a1), Cyb5a and glutamate dehydrogenase 1 (Glud1)), and of those genes examined in this study, are most likely to represent genes involved in the pathogenesis of TCDD-induced hepatotoxicity in L–E rats.
Collapse
Affiliation(s)
- John D Watson
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Stephenie D Prokopec
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Ashley B Smith
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Allan B Okey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland.,Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C Boutros
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
39
|
Belmonte M, Hoofd C, Weng AP, Giambra V. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia? ACTA ACUST UNITED AC 2016; 23:34-41. [PMID: 26966402 DOI: 10.3747/co.23.2806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called "cancer stem cells" or, in the case of hematopoietic malignancies, "leukemia stem cells" (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more "differentiated" progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell-directed therapies and lsc-targeted agents are also discussed.
Collapse
Affiliation(s)
- M Belmonte
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - C Hoofd
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - A P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| | - V Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC
| |
Collapse
|
40
|
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. J Transl Med 2016; 96:116-36. [PMID: 26618721 PMCID: PMC4731283 DOI: 10.1038/labinvest.2015.144] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying the development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin-mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the 'destruction complex', consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of cross-talk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway.
Collapse
Affiliation(s)
- Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xin Wang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Department of Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Zhongliang Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guoxin Nan
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fugui Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Maryam K. Mohammed
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| |
Collapse
|
41
|
Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer. Cancer Cell 2015; 28:815-829. [PMID: 26678341 DOI: 10.1016/j.ccell.2015.11.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/11/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Hierarchical organization of tissues relies on stem cells, which either self-renew or produce committed progenitors predestined for lineage differentiation. Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is downregulated, and its re-expression induces loss of the cancer stem cell phenotype, preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represent tangible means to treat colon cancer by eliminating cancer stem cells.
Collapse
Affiliation(s)
- Paloma Ordóñez-Morán
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Caroline Dafflon
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Masamichi Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland.
| |
Collapse
|
42
|
Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). Int J Oncol 2015; 48:437-49. [PMID: 26648421 DOI: 10.3892/ijo.2015.3280] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
Abstract
There is no radical cure for all cancer types. The most frequently used therapies are surgical treatment, radiotherapy and chemotherapy. However, recrudescence, radiation resistance and chemotherapy resistance are the most challenging issues in clinical practice. To address these issues, they should be further studied at the molecular level, and the signaling pathways involved represent a promising avenue for this research. In the present review, we mainly discuss the components and mechanisms of activation of the Notch and Wnt signaling pathways, and we summarize the recent research efforts on these two pathways in different cancers. We also evaluate the ideal drugs that could target these two signaling pathways for cancer therapy, summarize alterations in the Notch and Wnt signaling pathways in cancer, and discuss potential signaling inhibitors as effective drugs for cancer therapy.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jian-Wei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
43
|
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309:C511-21. [PMID: 26289750 PMCID: PMC4609654 DOI: 10.1152/ajpcell.00117.2015] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.
Collapse
Affiliation(s)
| | - Pedro Antas
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Vivian S W Li
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
44
|
Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling. Int J Mol Sci 2015; 16:18564-79. [PMID: 26266404 PMCID: PMC4581260 DOI: 10.3390/ijms160818564] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 07/12/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022] Open
Abstract
Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p < 0.001), the clinical stage (p < 0.001), and presence of metastasis and recurrence (p < 0.001). VM-positive colon cancer samples showed increased Wnt3a expression (p < 0.001) and β-catenin nuclear expression (p < 0.001) compared with the VM-negative samples. In vitro, over-regulated Wnt3a expression in HT29 colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.
Collapse
|
45
|
Zhang JS, Zhang SJ, Li Q, Liu YH, He N, Zhang J, Zhou PH, Li M, Guan T, Liu JR. Tocotrienol-rich fraction (TRF) suppresses the growth of human colon cancer xenografts in Balb/C nude mice by the Wnt pathway. PLoS One 2015; 10:e0122175. [PMID: 25807493 PMCID: PMC4373919 DOI: 10.1371/journal.pone.0122175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/07/2015] [Indexed: 01/27/2023] Open
Abstract
Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways.
Collapse
Affiliation(s)
- Jing-Shu Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
- College of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
- * E-mail: (JSZ); (JRL)
| | - Shu-Jing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
- College of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qian Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
- College of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ying-Hua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Ning He
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Peng-Hui Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
- College of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Min Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Tong Guan
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jia-Ren Liu
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSZ); (JRL)
| |
Collapse
|
46
|
Yang Y, Sun W, Wang R, Lei C, Zhou R, Tang Z, Li K. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol 2015; 16:4. [PMID: 25888412 PMCID: PMC4359577 DOI: 10.1186/s12867-015-0035-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. Methods To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. Results The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Conclusions Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Wei Sun
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Ruiqi Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| |
Collapse
|
47
|
Xiao C, Wang L, Zhu L, Zhang C, Zhou J. Secreted frizzled‑related protein 2 is epigenetically silenced and functions as a tumor suppressor in oral squamous cell carcinoma. Mol Med Rep 2014; 10:2293-8. [PMID: 25189527 PMCID: PMC4214353 DOI: 10.3892/mmr.2014.2542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022] Open
Abstract
The role of epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) and its functions in the development of oral squamous cell carcinoma (OSCC) remain to be elucidated. The present study demonstrated that SFRP2 mRNA was detected in 97.96% of tumor-adjacent normal tissues, while its expression was only detected in 16.33% of the tumor samples. In addition, the loss of SFRP2 expression was associated with hypermethylation of its promoter. As expected, the overexpression of SFRP2 in OSCC cell lines (Tca8113) suppressed cell proliferation and arrested the cell cycle in the G1 phase. Overexpression of SFRP2 also effectively repressed tumor growth in xenograft animals. Mechanistic investigations revealed that SFRP2 inhibited the development of OSCC in vitro and in vivo through an increase in the expression levels of glycogen synthase kinase-3β and a decrease in the expression level of cyclin D1, a direct read-out gene of active Wnt signaling. In addition, an increase in the expression of β-catenin was observed in the Tca8113/SFRP2 cells and in the animal models overexpressing SFRP2. Therefore, the results of the present study provide insight into the role of SFRP2 as a functional tumor suppressor in the development of OSCC through inhibition of the Wnt signaling pathway. Further studies on the precise mechanisms underlying the inhibition of Wnt signaling by SFRP2 and its association with β-catenin are required.
Collapse
Affiliation(s)
- Can Xiao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lili Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lifang Zhu
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chenping Zhang
- Department of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jianhua Zhou
- Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
48
|
Herr F, Horndasch M, Howe D, Baal N, Goyal P, Fischer S, Zygmunt M, Preissner KT. Human placenta-derived Wnt-5a induces the expression of ICAM-1 and VCAM-1 in CD133(+)CD34(+)-hematopoietic progenitor cells. Reprod Biol 2014; 14:262-75. [PMID: 25454492 DOI: 10.1016/j.repbio.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
Abstract
Angiogenesis and vascular development are essential for fetal development and growth, whereby early pregnancy loss and other pregnancy-related pathologies have been linked to aberrant vascular development. As Wnt signalling has been suggested to play a role in the vascularization of chorionic villi, we investigated the expression of Wnt family members in trophoblasts and stromal cells isolated from chorionic villi of early placenta and the influence of Wnt signalling on CD133(+)CD34(+)-hematopoietic progenitor (CD133(+)CD34(+)) cells. Wnt-5a was expressed in human placental stromal cells and to a lesser extent in human trophoblast cells. rWnt-5a impeded migration and induced adhesion of CD133(+)CD34(+) cells, in accordance with the expression of adhesion proteins, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). rWnt-5a-related regulation of the ICAM-1 and VCAM-1 expression were dependent on the release of Ca2+ and the activation of transcription factor - nuclear factor of activated T-cells (NF-AT). We propose that Wnt-5a is required during early placenta development to mediate adhesion and homing of CD133(+)CD34(+) cells.
Collapse
Affiliation(s)
- Friederike Herr
- Department of Obstetrics and Gynecology, Ernst-Moritz-Arndt-University, D-17475 Greifswald, Germany
| | - Manuela Horndasch
- Department of Obstetrics & Gynecology, Justus-Liebig-University, D-35385 Giessen, Germany
| | - Désirée Howe
- Department of Obstetrics & Gynecology, Justus-Liebig-University, D-35385 Giessen, Germany; Department of Anesthesiology, Justus-Liebig-University, D-35385 Giessen, Germany
| | - Nelli Baal
- Department of Obstetrics & Gynecology, Justus-Liebig-University, D-35385 Giessen, Germany; Institute for Clinical Immunology & Transfusion Medicine, Justus-Liebig-University, D-35385 Giessen, Germany
| | - Pankaj Goyal
- Department of Obstetrics and Gynecology, Ernst-Moritz-Arndt-University, D-17475 Greifswald, Germany; Department of Biotechnology, School of Life Sciences, Central University of Rajasthan NH-8, Bandar Sindri, Distt. Ajmer, Rajasthan 305801, India
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, Ernst-Moritz-Arndt-University, D-17475 Greifswald, Germany
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany.
| |
Collapse
|
49
|
Londoño-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A, Lobuglio AF, Li Y, Buchsbaum DJ. Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther 2014; 13:800-11. [PMID: 24552774 DOI: 10.1158/1535-7163.mct-13-0555] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Basal-like breast cancers (BLBC) are poorly differentiated and display aggressive clinical behavior. These tumors become resistant to cytotoxic agents, and tumor relapse has been attributed to the presence of cancer stem cells (CSC). One of the pathways involved in CSC regulation is the Wnt/β-catenin signaling pathway. LRP6, a Wnt ligand receptor, is one of the critical elements of this pathway and could potentially be an excellent therapeutic target. Niclosamide has been shown to inhibit the Wnt/β-catenin signaling pathway by causing degradation of LRP6. TRA-8, a monoclonal antibody specific to TRAIL death receptor 5, is cytotoxic to BLBC cell lines and their CSC-enriched populations. The goal of this study was to examine whether niclosamide is cytotoxic to BLBCs, specifically the CSC population, and if in combination with TRA-8 could produce increased cytotoxicity. Aldehyde dehydrogenase (ALDH) is a known marker of CSCs. By testing BLBC cells for ALDH expression by flow cytometry, we were able to isolate a nonadherent population of cells that have high ALDH expression. Niclosamide showed cytotoxicity against these nonadherent ALDH-expressing cells in addition to adherent cells from four BLBC cell lines: 2LMP, SUM159, HCC1187, and HCC1143. Niclosamide treatment produced reduced levels of LRP6 and β-catenin, which is a downstream Wnt/β-catenin signaling protein. The combination of TRA-8 and niclosamide produced additive cytotoxicity and a reduction in Wnt/β-catenin activity. Niclosamide in combination with TRA-8 suppressed growth of 2LMP orthotopic tumor xenografts. These results suggest that niclosamide or congeners of this agent may be useful for the treatment of BLBC.
Collapse
Affiliation(s)
- Angelina I Londoño-Joshi
- Authors' Affiliations: Departments of Pathology, Biology, Biostatistics, Medicine, and Radiation Oncology; Division of Gynecologic Oncology; Southern Research Institute; and Division of Hematology and Onocology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJG, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP. Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta Rev Cancer 2013; 1845:53-65. [PMID: 24316024 DOI: 10.1016/j.bbcan.2013.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 12/31/2022]
Abstract
The Wnt (wingless-type) signaling pathway plays an important role in embryonic development, tissue homeostasis, and tumor progression becaluse of its effect on cell proliferation, migration, and differentiation. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or to Frizzled receptors. In recent years, aberrant expression of SFRPs has been reported to be associated with numerous cancers. As gene expression of SFRP members is often lost through promoter hypermethylation, inhibition of methylation through the use of epigenetic modifying agents could renew the expression of SFRP members and further antagonize deleterious Wnt signaling. Several reports have described epigenetic silencing of these Wnt signaling antagonists in various human cancers, suggesting their possible role as tumor suppressors. SFRP family members thus come across as potential tools in combating Wnt-driven tumorigenesis. However, little is known about SFRP family members and their role in different cancers. This review comprehensively covers all the available information on the role of SFRP molecules in various human cancers.
Collapse
Affiliation(s)
- Rohit Surana
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sakshi Sikka
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sudha R Warrier
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Hong Jie Gabriel Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia
| | - Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Western Australian Biomedical Research Institute & Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Arun M Dharmarajan
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|