1
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:378-396. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence supports CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology (Emeritus), Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Huo Z, Duan Y, Zhan D, Xu X, Zheng N, Cai J, Sun R, Wang J, Cheng F, Gao Z, Xu C, Liu W, Dong Y, Ma S, Zhang Q, Zheng Y, Lou L, Kuang D, Chu Q, Qin J, Wang G, Wang Y. Proteomic Stratification of Prognosis and Treatment Options for Small Cell Lung Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae033. [PMID: 38961535 PMCID: PMC11423856 DOI: 10.1093/gpbjnl/qzae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 07/05/2024]
Abstract
Small cell lung cancer (SCLC) is a highly malignant and heterogeneous cancer with limited therapeutic options and prognosis prediction models. Here, we analyzed formalin-fixed, paraffin-embedded (FFPE) samples of surgical resections by proteomic profiling, and stratified SCLC into three proteomic subtypes (S-I, S-II, and S-III) with distinct clinical outcomes and chemotherapy responses. The proteomic subtyping was an independent prognostic factor and performed better than current tumor-node-metastasis or Veterans Administration Lung Study Group staging methods. The subtyping results could be further validated using FFPE biopsy samples from an independent cohort, extending the analysis to both surgical and biopsy samples. The signatures of the S-II subtype in particular suggested potential benefits from immunotherapy. Differentially overexpressed proteins in S-III, the worst prognostic subtype, allowed us to nominate potential therapeutic targets, indicating that patient selection may bring new hope for previously failed clinical trials. Finally, analysis of an independent cohort of SCLC patients who had received immunotherapy validated the prediction that the S-II patients had better progression-free survival and overall survival after first-line immunotherapy. Collectively, our study provides the rationale for future clinical investigations to validate the current findings for more accurate prognosis prediction and precise treatments.
Collapse
Affiliation(s)
- Zitian Huo
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongdong Zhan
- Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
| | - Xizhen Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Cai
- Institution of Pathology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Jianping Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fang Cheng
- Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
| | - Zhan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Caixia Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuting Dong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sailong Ma
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyun Zheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Lou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Qin
- Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
3
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, Wen Q, Zhou JH, Yuan L, Zhuang W, Xiao ZQ. ANXA1 Promotes Tumor Immune Evasion by Binding PARP1 and Upregulating Stat3-Induced Expression of PD-L1 in Multiple Cancers. Cancer Immunol Res 2023; 11:1367-1383. [PMID: 37566399 DOI: 10.1158/2326-6066.cir-22-0896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuang
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Zhao R, Jiang Y, Zhang J, Huang Y, Xiong C, Zhao Z, Huang T, Liu W, Zhou N, Li Z, Luo X, Tang Y. Development and validation of a novel necroptosis-related gene signature for predicting prognosis and therapeutic response in Ewing sarcoma. Front Med (Lausanne) 2023; 10:1239487. [PMID: 37663658 PMCID: PMC10470467 DOI: 10.3389/fmed.2023.1239487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Ewing sarcoma (ES) is the second most common malignant bone tumor in children and has a poor prognosis due to early metastasis and easy recurrence. Necroptosis is a newly discovered cell death method, and its critical role in tumor immunity and therapy has attracted widespread attention. Thus, the emergence of necroptosis may provide bright prospects for the treatment of ES and deserves our further study. Here, based on the random forest algorithm, we identified 6 key necroptosis-related genes (NRGs) and used them to construct an NRG signature with excellent predictive performance. Subsequent analysis showed that NRGs were closely associated with ES tumor immunity, and the signature was also good at predicting immunotherapy and chemotherapy response. Next, a comprehensive analysis of key genes showed that RIPK1, JAK1, and CHMP7 were potential therapeutic targets. The Cancer Dependency Map (DepMap) results showed that CHMP7 is associated with ES cell growth, and the Gene Set Cancer Analysis (GSCALite) results revealed that the JAK1 mutation frequency was the highest. The expression of 3 genes was all negatively correlated with methylation and positively with copy number variation (CNV). Finally, an accurate nomogram was constructed with this signature and clinical traits. In short, this study constructed an accurate prognostic signature and identified 3 novel therapeutic targets against ES.
Collapse
Affiliation(s)
- Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Chuang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zenghui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Tianji Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Nian Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zefang Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yongli Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kuang X, Zhang Z, Li D, Bao W, Pan J, Zhou P, Chen H, Gao Z, Xie X, Yang C, Zhu G, Zhou Z, Tang R, Feng Z, Zhou L, Feng X, Wang L, Yang J, Jiang L. Peptidase inhibitor (PI16) impairs bladder cancer metastasis by inhibiting NF-κB activation via disrupting multiple-site ubiquitination of NEMO. Cell Mol Biol Lett 2023; 28:62. [PMID: 37525118 PMCID: PMC10388466 DOI: 10.1186/s11658-023-00465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a malignancy that frequently metastasizes and leads to poor patient prognosis. It is essential to understand the molecular mechanisms underlying the progression and metastasis of BLCA and identify potential biomarkers. METHODS The expression of peptidase inhibitor 16 (PI16) was analysed using quantitative PCR, immunoblotting and immunohistochemistry assays. The functional roles of PI16 were evaluated using wound healing, transwell, and human umbilical vein endothelial cell tube formation assays, as well as in vivo tumour models. The effects of PI16 on nuclear factor κB (NF-κB) signalling activation were examined using luciferase reporter gene systems, immunoblotting and immunofluorescence assays. Co-immunoprecipitation was used to investigate the interaction of PI16 with annexin-A1 (ANXA1) and NEMO. RESULTS PI16 expression was downregulated in bladder cancer tissues, and lower PI16 levels correlated with disease progression and poor survival in patients with BLCA. Overexpressing PI16 inhibited BLCA cell growth, motility, invasion and angiogenesis in vitro and in vivo, while silencing PI16 had the opposite effects. Mechanistically, PI16 inhibited the activation of the NF-κB pathway by interacting with ANXA1, which inhibited K63 and M1 ubiquitination of NEMO. CONCLUSIONS These results indicate that PI16 functions as a tumour suppressor in BLCA by inhibiting tumour growth and metastasis. Additionally, PI16 may serve as a potential biomarker for metastatic BLCA.
Collapse
Affiliation(s)
- Xiangqin Kuang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Medical Imaging, Health Science Center, Hubei Minzu University, Enshi, 445000, China
| | - Zhuojun Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Difeng Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Pathology, School of Medicine, Women's Hospital, Zhejiang University, 310006, Hangzhou, China
| | - Wenhao Bao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinyuan Pan
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Ping Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Han Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqing Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyi Xie
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chunxiao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ge Zhu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongqiu Zhou
- Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, 620000, China
| | - Ruiming Tang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, 511518, China
| | - Zhengfu Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, 511518, China
| | - Lihuan Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, 511518, China
| | - Xiaoli Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, 511518, China
| | - Lan Wang
- Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianan Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
- Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lili Jiang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
6
|
Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances. Pharmaceuticals (Basel) 2023; 16:783. [PMID: 37375731 DOI: 10.3390/ph16060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and development by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing therapeutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative influences on cancers. In this review, we summarize and discuss recent research on the regulation of NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Sun
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fangying Xu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, and Department of Hepatobiliary and Pancreatic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| |
Collapse
|
7
|
Yu ZZ, Liu YY, Zhu W, Xiao D, Huang W, Lu SS, Yi H, Zeng T, Feng XP, Yuan L, Qiu JY, Wu D, Wen Q, Zhou JH, Zhuang W, Xiao ZQ. ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers. J Immunother Cancer 2023; 11:jitc-2022-006345. [PMID: 37001908 PMCID: PMC10069584 DOI: 10.1136/jitc-2022-006345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers.MethodsBinding of A11 to PD-L1 was identified by biotin pull-down coupled with mass spectrometry analysis. USP7 as PD-L1’s deubiquitinase was found by screening a human deubiquitinase cDNA library. The role and mechanism of A11 competing with USP7 to degrade PD-L1 were analyzed. The capability to enhance the T cell-mediated tumor cell killing activity and antitumor effect of A11 via suppressing tumor immune evasion were investigated. The synergistic antitumor effect of A11 and PD-L1 mAb (monoclonal antibody) via suppressing tumor immune evasion were also studied in mice. The expression and clinical significance of USP7 and PD-L1 in cancer tissues were evaluated by immunohistochemistry.ResultsA11 decreases PD-L1 protein stability and levels by ubiquitin proteasome pathway in breast cancer, lung cancer and melanoma cells. Mechanistically, A11 competes with PD-L1’s deubiquitinase USP7 for binding PD-L1, and then degrades PD-L1 by inhibiting USP7-mediated PD-L1 deubiquitination. Functionally, A11 promotes T cell ability of killing cancer cells in vitro, inhibits tumor immune evasion in mice via increasing the population and activation of CD8+T cells in tumor microenvironment, and A11 and PD-1 mAb possess synergistic antitumor effect in mice. Moreover, expression levels of both USP7 and PD-L1 are significantly higher in breast cancer, non-small cell lung cancer and skin melanoma tissues than those in their corresponding normal tissues and are positively correlated in cancer tissues, and both proteins for predicting efficacy of PD-1 mAb immunotherapy and patient prognosis are superior to individual protein.ConclusionOur results reveal that A11 competes with USP7 to bind and degrade PD-L1 in cancer cells, A11 exhibits obvious antitumor effects and synergistic antitumor activity with PD-1 mAb via inhibiting tumor immune evasion and A11 can serve as an alternative strategy for ICIs therapy in multiple cancers.
Collapse
Affiliation(s)
- Zheng-Zheng Yu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun-Ya Liu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie-Ya Qiu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Chen H, Chen X, Zhang Z, Bao W, Gao Z, Li D, Xie X, Zhou P, Yang C, Zhou Z, Pan J, Kuang X, Tang R, Feng Z, Zhou L, Zhu D, Yang J, Wang L, Huang H, Tang D, Liu J, Jiang L. Extracellular vesicles-transferred SBSN drives glioma aggressiveness by activating NF-κB via ANXA1-dependent ubiquitination of NEMO. Oncogene 2022; 41:5253-5265. [DOI: 10.1038/s41388-022-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022]
|
9
|
Zhao Q, Sheng MF, Wang YY, Wang XY, Liu WY, Zhang YY, Ke TY, Chen S, Pang GZ, Yong L, Ding Z, Shen YJ, Shen YX, Shao W. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol 2022; 13:975250. [PMID: 36386180 PMCID: PMC9663662 DOI: 10.3389/fphar.2022.975250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Fei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yao-Yun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei-Yi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Yuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Tiao-Ying Ke
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Shu Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Gao-Zong Pang
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yong
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Xian Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022; 14:v14102129. [PMID: 36298684 PMCID: PMC9610432 DOI: 10.3390/v14102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals with a significant socioeconomic impact. One of the issues related to this disease is the ability of its etiological agent, foot-and-mouth disease virus (FMDV), to persist in the organism of its hosts via underlying mechanisms that remain to be elucidated. The establishment of a virus–host equilibrium via protein–protein interactions could contribute to explaining these phenomena. FMDV has indeed developed numerous strategies to evade the immune response, especially the type I interferon response. Viral proteins target this innate antiviral response at different levels, ranging from blocking the detection of viral RNAs to inhibiting the expression of ISGs. The large diversity of impacts of these interactions must be considered in the light of the in vitro models that have been used to demonstrate them, some being sometimes far from biological systems. In this review, we have therefore listed the interactions between FMDV and the interferon response as exhaustively as possible, focusing on both their biological effect and the study models used.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- AgroParisTech, 75005 Paris, France
- Correspondence: (M.S.); (S.B.-B.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (M.S.); (S.B.-B.)
| |
Collapse
|
11
|
Pearanpan L, Nordin FJ, Siew EL, Kumolosasi E, Mohamad Hanif EA, Masre SF, Chua EW, Cheng HS, Rajab NF. A Cell-Based Systematic Review on the Role of Annexin A1 in Triple-Negative Breast Cancers. Int J Mol Sci 2022; 23:ijms23158256. [PMID: 35897832 PMCID: PMC9367890 DOI: 10.3390/ijms23158256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is often associated with a poorer prognosis and does not respond to hormonal therapy. Increasing evidence highlights the exploitability of Annexin A1 (AnxA1), a calcium dependent protein, as a precision medicine for TNBC. To systematically summarize the role of AnxA1 and its associated mechanisms in TNBC, we performed data mining using three main databases: PubMed, Scopus, and Ovid/Medline. The papers retrieved were based on two different sets of key words such as “Annexin A1” or “Lipocortin 1” and “Breast cancer” or “TNBC”. A total of 388 articles were identified, with 210 chosen for comprehensive screening and 13 papers that met inclusion criteria were included. Current evidence from cell culture studies showed that AnxA1 expression is correlated with NF-κB, which promotes migration by activating ERK phosphorylation. AnxaA1 also activates TGF-β signaling which upregulates MMP-9 and miR196a expression to enhance epithelial-mesenchymal transition and migratory capacity of TNBC cells. AnxA1 can steer the macrophage polarization toward the M2 phenotype to create a pro-tumor immune environment. Existing research suggests a potential role of AnxA1 in the metastasis and immune landscape of TNBC tumors. Preclinical and clinical experiments are warranted to investigate the feasibility and effectiveness of targeting AnxA1 in TNBC.
Collapse
Affiliation(s)
- Lishantini Pearanpan
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
| | - Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ee Ling Siew
- ASASIpintar Program, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Endang Kumolosasi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore;
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Correspondence: ; Tel.: +60-3-8921-5555
| |
Collapse
|
12
|
Cadamuro M, Romanzi A, Guido M, Sarcognato S, Cillo U, Gringeri E, Zanus G, Strazzabosco M, Simioni P, Villa E, Fabris L. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J Pers Med 2022; 12:jpm12071086. [PMID: 35887583 PMCID: PMC9324584 DOI: 10.3390/jpm12071086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The prognosis of cholangiocarcinoma remains poor in spite of the advances in immunotherapy and molecular profiling, which has led to the identification of several targetable genetic alterations. Surgical procedures, including both liver resection and liver transplantation, still represent the treatment with the best curative potential, though the outcomes are significantly compromised by the early development of lymph node metastases. Progression of lymphatic metastasis from the primary tumor to tumor-draining lymph nodes is mediated by tumor-associated lymphangiogenesis, a topic largely overlooked until recently. Recent findings highlight tumor-associated lymphangiogenesis as paradigmatic of the role played by the tumor microenvironment in sustaining cholangiocarcinoma invasiveness and progression. This study reviews the current knowledge about the intercellular signaling and molecular mechanism of tumor-associated lymphangiogenesis in cholangiocarcinoma in the hope of identifying novel therapeutic targets to halt a process that often limits the success of the few available treatments.
Collapse
Affiliation(s)
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Giacomo Zanus
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Mario Strazzabosco
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, 35122 Padua, Italy;
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| |
Collapse
|
13
|
Chen R, Chen C, Han N, Guo W, Deng H, Wang Y, Ding Y, Zhang M. Annexin-1 is an oncogene in glioblastoma and causes tumour immune escape through the indirect upregulation of interleukin-8. J Cell Mol Med 2022; 26:4343-4356. [PMID: 35770335 PMCID: PMC9344830 DOI: 10.1111/jcmm.17458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐1 (ANXA1) is widely reported to be deregulated in various cancers and is involved in tumorigenesis. However, its effects on glioblastoma (GBM) remain unclear. Using immunohistochemistry with tissue microarrays, we showed that ANXA1 was overexpressed in GBM, positively correlated with higher World Health Organization (WHO) grades of glioma, and negatively associated with poor survival. To further explore its role and the underlying molecular mechanism in GBM, we constructed ANXA1shRNA U87 and U251 cell lines for further experiments. ANXA1 downregulation suppressed GBM cell proliferation, migration, and invasion and enhanced their radiosensitivity. Furthermore, we determined that ANXA1 was involved in dendritic cell (DC) maturation in patients with GBM and that DC infiltration was inversely proportional to GBM prognosis. Considering that previous reports have shown that Interleukin‐8 (IL‐8) is associated with DC migration and maturation and is correlated with NF‐κB transcriptional regulation, we examined IL‐8 and p65 subunit expressions and p65 phosphorylation levels in GBM cells under an ANXA1 knockdown. These results suggest that ANXA1 significantly promotes IL‐8 production and p65 phosphorylation levels. We inferred that ANXA1 is a potential biomarker and a candidate therapeutic target for GBM treatment and may mediate tumour immune escape through NF‐kB (p65) activation and IL‐8 upregulation.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengqi Chen
- Department of Oncology, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan university, Wuhan, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Abstract
The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1−/− knockout cells showed IFN-β production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-β production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-β or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-β production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-β production and FMDV 3A antagonizes ANXA1-promoted IFN-β production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world’s most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-β and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.
Collapse
|
15
|
Foo SL, Sachaphibulkij K, Lee CLY, Yap GLR, Cui J, Arumugam T, Lim LHK. Breast cancer metastasis to brain results in recruitment and activation of microglia through annexin-A1/formyl peptide receptor signaling. Breast Cancer Res 2022; 24:25. [PMID: 35382852 PMCID: PMC8985313 DOI: 10.1186/s13058-022-01514-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background Despite advancements in therapies, brain metastasis in patients with triple negative subtype of breast cancer remains a therapeutic challenge. Activated microglia are often observed in close proximity to, or within, malignant tumor masses, suggesting a critical role that microglia play in brain tumor progression. Annexin-A1 (ANXA1), a glucocorticoid-regulated protein with immune-regulatory properties, has been implicated in the growth and metastasis of many cancers. Its role in breast cancer-microglia signaling crosstalk is not known. Methods The importance of microglia proliferation and activation in breast cancer to brain metastasis was evaluated in MMTV-Wnt1 spontaneous mammary tumor mice and BALBc mice injected with 4T1 murine breast cancer cells into the carotid artery using flow cytometry. 4T1 induced-proliferation and migration of primary microglia and BV2 microglia cells were evaluated using 2D and coculture transwell assays. The requirement of ANXA1 in these functions was examined using a Crispr/Cas9 deletion mutant of ANXA1 in 4T1 breast cancer cells as well as BV2 microglia. Small molecule inhibition of the ANXA1 receptor FPR1 and FPR2 were also examined. The signaling pathways involved in these interactions were assessed using western blotting. The association between lymph node positive recurrence-free patient survival and distant metastasis-free patient survival and ANXA1 and FPR1 and FPR2 expression was examined using TCGA datasets. Results Microglia activation is observed prior to brain metastasis in MMTV-Wnt1 mice with primary and secondary metastasis in the periphery. Metastatic 4T1 mammary cancer cells secrete ANXA1 to promote microglial migration, which in turn, enhances tumor cell migration. Silencing of ANXA1 in 4T1 cells by Crispr/Cas9 deletion, or using inhibitors of FPR1 or FPR2 inhibits microglia migration and leads to reduced activation of STAT3. Finally, elevated ANXA1, FPR1 and FPR2 is significantly associated with poor outcome in lymph node positive patients, particularly, for distant metastasis free patient survival. Conclusions The present study uncovered a network encompassing autocrine/paracrine ANXA1 signaling between metastatic mammary cancer cells and microglia that drives microglial recruitment and activation. Inhibition of ANXA1 and/or its receptor may be therapeutically rewarding in the treatment of breast cancer and secondary metastasis to the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01514-2.
Collapse
|
16
|
Chai Y, Xu L, He R, Zhong L, Wang Y. Identification of hub genes specific to pulmonary metastasis in osteosarcoma through integrated bioinformatics analysis. Technol Health Care 2021; 30:735-745. [PMID: 34542049 DOI: 10.3233/thc-213163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary metastasis is the most frequent cause of death in osteosarcoma (OS) patients. Recently, several bioinformatics studies specific to pulmonary metastatic osteosarcoma (PMOS) have been applied to identify genetic alterations. However, the interpretation and reliability of the results obtained were limited for the independent database analysis. OBJECTIVE The expression profiles and key pathways specific to PMOS remain to be comprehensively explored. Therefore, in our study, three original datasets of GEO database were selected. METHODS Initially, three microarray datasets (GSE14359, GSE14827, and GSE85537) were downloaded from the GEO database. Differentially expressed genes (DEGs) between PMOS and nonmetastatic osteosarcoma (NMOS) were identified and mined using DAVID. Subsequently, GO and KEGG pathway analyses were carried out for DEGs. Corresponding PPI network of DEGs was constructed based on the data collected from STRING datasets. The network was visualized with Cytoscape software, and ten hub genes were selected from the network. Finally, survival analysis of these hub genes also used the TARGET database. RESULTS In total, 569 upregulated and 1238 downregulated genes were filtered as DEGs between PMOS and NMOS. Based on the GO analysis result, these DEGs were significantly enriched in the anatomical structure development, extracellular matrix, biological adhesion, and cell adhesion terms. Based on the KEGG pathway analysis result, these DEGs were mainly enriched in the pathways in cancer, PI3K-Akt signaling, MAPK signaling, focal adhesion, cytokine-cytokine receptor interaction, and IL-17 signaling. Hub genes (ANXA1 and CXCL12) were significantly associated with overall survival time in OS patient. CONCLUSION Our results may provide new insight into pulmonary metastasis of OS. However, experimental studies remain necessary to elucidate the biological function and mechanism underlying PMOS.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lihan Xu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Rui He
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liangjun Zhong
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
18
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Dinya E, Gerdan C, Szegvari G, Hirsch FR, Dome B, Lohinai Z. Characterization of Tumor-Associated Macrophages and the Immune Microenvironment in Limited-Stage Neuroendocrine-High and -Low Small Cell Lung Cancer. BIOLOGY 2021; 10:502. [PMID: 34200100 PMCID: PMC8228874 DOI: 10.3390/biology10060502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Viktoria Laszlo
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Tunde Harko
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, 1094 Budapest, Hungary;
| | - Csongor Gerdan
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Gabor Szegvari
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Fred R. Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY 1190, USA
| | - Balazs Dome
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoltan Lohinai
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| |
Collapse
|
19
|
da Silva PHR, Borges BC, Uehara IA, Soldi LR, de Araújo RA, Silva MJB. Chemokines and the extracellular matrix: Set of targets for tumor development and treatment. Cytokine 2021; 144:155548. [PMID: 33972165 DOI: 10.1016/j.cyto.2021.155548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
The extracellular matrix (ECM) consists of various molecules that support tissue cells, including proteins, fibronectin, laminin, collagen IV, and glycosaminoglycans. In addition to interactions between the ECM and cells, the ECM also interacts with chemokines, and growth factors, and these interactions ensure cell survival, development, differentiation, and migration of both immune system cells and tumor cells. This review provides an overview of the mechanisms of interaction between the ECM and chemokines, focusing on the tumor microenvironment and the modulation of these elements as a target for therapies in several types of cancer.
Collapse
Affiliation(s)
- Paulo Henrique Rosa da Silva
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Isadora Akemi Uehara
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luiz Ricardo Soldi
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Rogério Agenor de Araújo
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
20
|
Henrique T, Zanon CDF, Girol AP, Stefanini ACB, Contessoto NSDA, da Silveira NJF, Bezerra DP, Silveira ER, Barbosa-Filho JM, Cornélio ML, Oliani SM, Tajara EH. Biological and physical approaches on the role of piplartine (piperlongumine) in cancer. Sci Rep 2020; 10:22283. [PMID: 33335138 PMCID: PMC7746756 DOI: 10.1038/s41598-020-78220-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation provides a favorable microenvironment for tumorigenesis, which opens opportunities for targeting cancer development and progression. Piplartine (PL) is a biologically active alkaloid from long peppers that exhibits anti-inflammatory and antitumor activity. In the present study, we investigated the physical and chemical interactions of PL with anti-inflammatory compounds and their effects on cell proliferation and migration and on the gene expression of inflammatory mediators. Molecular docking data and physicochemical analysis suggested that PL shows potential interactions with a peptide of annexin A1 (ANXA1), an endogenous anti-inflammatory mediator with therapeutic potential in cancer. Treatment of neoplastic cells with PL alone or with annexin A1 mimic peptide reduced cell proliferation and viability and modulated the expression of MCP-1 chemokine, IL-8 cytokine and genes involved in inflammatory processes. The results also suggested an inhibitory effect of PL on tubulin expression. In addition, PL apparently had no influence on cell migration and invasion at the concentration tested. Considering the role of inflammation in the context of promoting tumor initiation, the present study shows the potential of piplartine as a therapeutic immunomodulator for cancer prevention and progression.
Collapse
Affiliation(s)
- Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Caroline de F Zanon
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana P Girol
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- Integrated College Padre Albino Foundation (FIPA), Catanduva, SP, 15806-310, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Nayara S de A Contessoto
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Nelson J F da Silveira
- Laboratory of Molecular Modeling and Computer Simulation/MolMod-CS, Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Edilberto R Silveira
- Department of Chemistry, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - José M Barbosa-Filho
- Laboratory of Pharmaceutics Technology, Federal University of Paraiba, João Pessoa, PB, 58051-900, Brazil
| | - Marinonio L Cornélio
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Sonia M Oliani
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
21
|
Acetylharpagide Protects Mice from Staphylococcus Aureus-Induced Acute Lung Injury by Inhibiting NF-κB Signaling Pathway. Molecules 2020; 25:molecules25235523. [PMID: 33255656 PMCID: PMC7728067 DOI: 10.3390/molecules25235523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.
Collapse
|
22
|
Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, Unno M, Sasano H, Jitkaew S. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal 2020; 18:161. [PMID: 33036630 PMCID: PMC7545934 DOI: 10.1186/s12964-020-00661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Swati Choksi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892 USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi 98-8075 Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
23
|
Saurabh K, Shah PP, Doll MA, Siskind LJ, Beverly LJ. UBR-box containing protein, UBR5, is over-expressed in human lung adenocarcinoma and is a potential therapeutic target. BMC Cancer 2020; 20:824. [PMID: 32867711 PMCID: PMC7457484 DOI: 10.1186/s12885-020-07322-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND N-end rule ubiquitination pathway is known to be disrupted in many diseases, including cancer. UBR5, an E3 ubiquitin ligase, is mutated and/or overexpressed in human lung cancer cells suggesting its pathological role in cancer. METHODS We determined expression of UBR5 protein in multiple lung cancer cell lines and human patient samples. Using immunoprecipitation followed by mass spectrometry we determined the UBR5 interacting proteins. The impact of loss of UBR5 for lung adenocarcinoma cell lines was analyzed using cell viability, clonogenic assays and in vivo xenograft models in nude mice. Additional Western blot analysis was performed to assess the loss of UBR5 on downstream signaling. Statistical analysis was done by one-way ANOVA for in vitro studies and Wilcoxon paired t-test for in vivo tumor volumes. RESULTS We show variability of UBR5 expression levels in lung adenocarcinoma cell lines and in primary human patient samples. To gain better insight into the role that UBR5 may play in lung cancer progression we performed unbiased interactome analyses for UBR5. Data indicate that UBR5 has a wide range of interacting protein partners that are known to be involved in critical cellular processes such as DNA damage, proliferation and cell cycle regulation. We have demonstrated that shRNA-mediated loss of UBR5 decreases cell viability and clonogenic potential of lung adenocarcinoma cell lines. In addition, we found decreased levels of activated AKT signaling after the loss of UBR5 in lung adenocarcinoma cell lines using multiple means of UBR5 knockdown/knockout. Furthermore, we demonstrated that loss of UBR5 in lung adenocarcinoma cells results in significant reduction of tumor volume in nude mice. CONCLUSIONS These findings demonstrate that deregulation of the N-end rule ubiquitination pathway plays a crucial role in the etiology of some human cancers, and blocking this pathway via UBR5-specific inhibitors, may represent a unique therapeutic target for human cancers.
Collapse
Affiliation(s)
- Kumar Saurabh
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Parag P Shah
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Mark A Doll
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Leah J Siskind
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Levi J Beverly
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
- Division of Hematology and Oncology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
24
|
Ganesan T, Sinniah A, Ibrahim ZA, Chik Z, Alshawsh MA. Annexin A1: A Bane or a Boon in Cancer? A Systematic Review. Molecules 2020; 25:molecules25163700. [PMID: 32823805 PMCID: PMC7465196 DOI: 10.3390/molecules25163700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
Annexin A1 has been extensively investigated as an anti-inflammatory protein, but its role in different types of cancer has not been consolidated in a single systematic review to date. Thus, the aim of this paper is to systematically review and critically analyse 18 studies (in-vivo and in-vitro) to consolidate, in a concerted manner, all the information on differential expression of Annexin A1 in different types of cancer and the role this protein plays in tumorigenesis. Pubmed, Scopus, Web of Science, and ScienceDirect were used for the literature search and the keywords used are “annexin A1,” “lipocortin 1,” “cancer,” “malignancy,” “neoplasm,” “neoplasia,” and “tumor.” A total of 1128 articles were retrieved by implementing a standard search strategy subjected to meticulous screening processes and 442 articles were selected for full article screening. A total of 18 articles that adhered to the inclusion criteria were included in the systematic review and these articles possessed low to moderate bias. These studies showed a strong correlation between Annexin A1 expression and cancer progression via modulation of various cancer-associated pathways. Differential expression of Annexin A1 is shown to play a role in cellular proliferation, metastasis, lymphatic invasion, and development of resistance to anti-cancer treatment. Meta-analysis in the future may provide a statistically driven association between Annexin A1 expression and malignancy progression.
Collapse
|
25
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Deng XZ, Geng SS, Luo M, Chai JJ, Xu Y, Chen CL, Qiu L, Ke Q, Duan QW, Song SM, Shen L, Luo ZG. Curcumin potentiates laryngeal squamous carcinoma radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression. J Recept Signal Transduct Res 2020; 40:541-549. [PMID: 32515250 DOI: 10.1080/10799893.2020.1767649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Context: Curcumin has shown efficacy in promoting radiosensitivity combined with radiotherapy. However, the role and mechanism of curcumin on radiosensitivity in laryngeal squamous cell cancer (LSCC) is largely unknown.Objective: The aim of our study is to explore the role of IKKγ-NF-κB signaling in curcumin enhancing LSCC cell radiosensitivity in vitro.Materials and methods: Curcumin and X-ray were used to induce cell DNA damage and apoptosis, or inhibit cell clone formation. IKKγ siRNA and plasmid were used to change IKKγ expression. The CCK8 assay was used to detect cell viability. Clone formation ability was analyzed using a clonogenic assay, cell apoptosis was examined using flow cytometry, an immunofluorescence assay was used to detect DNA damage, while mRNA and protein levels were assayed using real time PCR and western blotting, respectively.Results: Curcumin significantly enhanced irradiation-induced DNA damage and apoptosis, while weakening clone-forming abilities of LSCC cell line Hep2 and Hep2-max. Compared to Hep2 cells, Hep2-max cells are more sensitive to curcumin post-irradiation. Curcumin suppressed irradiation-induced NF-κB activation by suppressing IKKγ expression, but not IKKα and IKKβ. Overexpression of IKKγ decreased irradiation-induced DNA damage and apoptosis, while promoting clone-forming abilities of Hep2 and Hep2-max cells. IKKγ overexpression further increased expression of NF-κB downstream genes, Bcl-XL, Bcl-2, and cyclin D1. Conversely, IKKγ silencing enhanced irradiation-induced DNA damage and apoptosis, but promoted clone formation in Hep2 and Hep2-max cells. Additionally, IKKγ silencing inhibited expression of Bcl-XL, Bcl-2, and cyclin D1.Conclusions: Curcumin enhances LSCC radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression.
Collapse
Affiliation(s)
- Xin-Zhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China.,HubeiKey Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Shan-Shan Geng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China.,Postgraduate Training Base, Shiyan Taihe Hospital, Jinzhou Medical University, Shiyan, Hubei, PR China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jing-Jing Chai
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Ying Xu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Chun-Li Chen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Qi-Wen Duan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Shi-Mao Song
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Li Shen
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhi-Guo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| |
Collapse
|
28
|
Galvão I, de Carvalho RVH, Vago JP, Silva ALN, Carvalho TG, Antunes MM, Ribeiro FM, Menezes GB, Zamboni DS, Sousa LP, Teixeira MM. The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology 2020; 160:78-89. [PMID: 32107769 DOI: 10.1111/imm.13184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1β release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1β release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1β, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Toniana G Carvalho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maísa M Antunes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X, Yan F. DCST1-AS1 Promotes TGF-β-Induced Epithelial-Mesenchymal Transition and Enhances Chemoresistance in Triple-Negative Breast Cancer Cells via ANXA1. Front Oncol 2020; 10:280. [PMID: 32226772 PMCID: PMC7080863 DOI: 10.3389/fonc.2020.00280] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype, and the primary systemic treatment strategy involves conventional chemotherapy. DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) is a long non-coding RNA that promotes TNBC migration and invasion. Studying the role of DCST1-AS1 in promoting epithelial–mesenchymal transition (EMT) and chemoresistance will provide a new strategy for TNBC therapy. In the present study, we found that DCST1-AS1 regulates the expression or secretion of EMT-related proteins E-cadherin, snail family zinc finger 1 (SNAI1), vimentin, matrix metallopeptidase 2 (MMP2), and matrix metallopeptidase 9 (MMP9). Interference with DCST1-AS1 impaired TGF-β-induced TNBC cell invasion and migration. DCST1-AS1 directly binds to ANXA1 in BT-549 cells and affects the expression of ANXA1. DCST1-AS1 enhances TGF-β/Smad signaling in BT-549 cells through ANXA1 to promote EMT. The combination of DCST1-AS1 and ANXA1 also contributes to enhancement of the resistance of BT-549 cells to doxorubicin and paclitaxel. In conclusion, DCST1-AS1 promotes TGF-β-induced EMT and enhances chemoresistance in TNBC cells through ANXA1, and therefore represents a potentially promising target for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Department of Clinical Laboratory, Nanjing Qixia District Hospital, Nanjing, China
| | - Huanhuan Chen
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Linping Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Nassef MZ, Kopp S, Melnik D, Corydon TJ, Sahana J, Krüger M, Wehland M, Bauer TJ, Liemersdorf C, Hemmersbach R, Infanger M, Grimm D. Short-Term Microgravity Influences Cell Adhesion in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:E5730. [PMID: 31731625 PMCID: PMC6887954 DOI: 10.3390/ijms20225730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
With the commercialization of spaceflight and the exploration of space, it is important to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We examined the influence of r-µg, simulated microgravity (s-µg, incubator random positioning machine (iRPM)), hypergravity (hyper-g), and vibration (VIB) on triple-negative breast cancer (TNBC) cells (MDA-MB-231 cell line) with the aim to study early changes in the gene expression of factors associated with cell adhesion, apoptosis, nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. We had the opportunity to attend a parabolic flight (PF) mission and to study changes in RNA transcription in the MDA-MB cells exposed to PF maneuvers (29th Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). PF maneuvers induced an early up-regulation of ICAM1, CD44 and ERK1 mRNAs after the first parabola (P1) and a delayed upregulation of NFKB1, NFKBIA, NFKBIB, and FAK1 after the last parabola (P31). ICAM-1, VCAM-1 and CD44 protein levels were elevated, whereas the NF-κB subunit p-65 and annexin-A2 protein levels were reduced after the 31st parabola (P31). The PRKCA, RAF1, BAX mRNA were not changed and cleaved caspase-3 was not detectable in MDA-MB-231 cells exposed to PF maneuvers. Hyper-g-exposure of the cells elevated the expression of CD44 and NFKBIA mRNAs, iRPM-exposure downregulated ANXA2 and BAX, whereas VIB did not affect the TNBC cells. The early changes in ICAM-1 and VCAM-1 and the rapid decrease in the NF-κB subunit p-65 might be considered as fast-reacting, gravity-regulated and cell-protective mechanisms of TNBC cells exposed to altered gravity conditions. This data suggest a key role for the detected gravity-signaling elements in three-dimensional growth and metastasis.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Christian Liemersdorf
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
31
|
Li CZ, Lin YX, Huang TC, Pan JY, Wang GX. Receptor-Interacting Protein Kinase 1 Promotes Cholangiocarcinoma Proliferation And Lymphangiogenesis Through The Activation Protein 1 Pathway. Onco Targets Ther 2019; 12:9029-9040. [PMID: 31806991 PMCID: PMC6830363 DOI: 10.2147/ott.s215276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Receptor-interacting protein kinase 1 (RIPK1) is an important upstream regulator of multiple cell signaling pathways including inflammatory signals. RIPK1 is reported to be closely associated with the prognostic implications of cancer, especially epithelial tumors. But its role in proliferation and lymphangiogenesis in cholangiocarcinoma (CCA) remains unclear and requires further investigation. PATIENTS AND METHODS Expression of RIPK1 in human CCA tissues and CCA cell lines (QBC939, HUH28 and CCPL-1) was measured using qPCR, immunoblotting and immunohistochemistry. Silencing of RIPK1 was achieved by transduction of CCA cells via lentiviral plasmids (LV3-H1/GFP&Puro) encapsulating RIPK1 shRNA (LV-shRIPK1) or negative control shRNA (LV-shNC), and puromycin was used to select stable colonies. Proliferation and lymphangiogenesis were assessed in vitro by CCK-8 and matrigel-based tube formation assays, respectively. Activity of the activation protein-1 (AP-1) was evaluated by double-luciferase reporter gene assay. Protein expression of JNK, P38MAPK, ERK1/2, AP-1, P-AP-1, E-cadherin, N-cadherin and vascular endothelial growth factor-C (VEGF-C) was measured by immunoblotting or ELISA. An orthotopic CCA model in null mice was generated by transplanting QBC939 LV-shRIPK1, LV-shNC and control cells to further evaluate the role of RIPK1 on lymphangiogenesis in vivo. Immunohistochemistry was utilized to evaluate the expression of RIPK1 and VEGF-C, and tumor lymphatic vessels in the CCA model mice. RESULTS Upregulated expression of RIPK1 in CCA tissues was closely related to tumor size, lymph node metastasis and poor prognosis. RIPK1 promoted proliferation and lymphangiogenesis in CCA cells, and regulated the activation of JNK and P38MAPK-mediated AP-1/VEGF-C pathway. Finally, in vivo animal experiments in the orthotopic CCA mouse model further confirmed the function of RIPK1 in lymphangiogenesis. CONCLUSION This is the first report demonstrating the role of RIPK1 in proliferation and lymphangiogenesis through the MAPK (JNK and P38MAPK)- AP-1 pathway in CCA.
Collapse
Affiliation(s)
- Cheng-Zong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Yu-Xiang Lin
- Department of Surgery Ward 6, The Second Affiliated Hospital of Fujian Medical University (Licheng District), Quanzhou36200, People’s Republic of China
| | - Tian-Cong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Jun-Yong Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| | - Gao-Xiong Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou36200, People’s Republic of China
| |
Collapse
|
32
|
Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and Angiogenesis. Int J Mol Sci 2019; 20:ijms20174197. [PMID: 31461932 PMCID: PMC6747082 DOI: 10.3390/ijms20174197] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Annexin A1 (ANXA1) is a phospholipid-linked protein involved in inflammation, immune response, and mast cell reactivity. Recently, we reported that ANXA1 is associated with aggressive features of triple-negative breast cancer (TNBC); however, its clinical relevance remains controversial. We hypothesized that human TNBC with high expression of ANXA1 mRNA is associated with pro-cancerous immune cell infiltration, including mast cells, and with an aggressive phenotype. Clinical and RNA-seq data were obtained from The Cancer Genome Atlas (TCGA, n = 1079) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1904). TNBC patients had significantly higher levels of ANXA1 expression compared to the other subtypes in both TCGA and METABRIC cohorts (p < 0.001). ANXA1 protein expression was assessed by immunohistochemistry in Japanese TNBC patient cohort (n = 48), where 17 cases (35.4%) had positive ANXA1 staining, and their overall survival was significantly shorter compared with negative staining group (p = 0.008). The CIBERSORT algorithm was used to calculate immune cell infiltrations. ANXA1 high tumors were associated with activated mast cells and M2 macrophages (p > 0.01), but did not show any association with tumor heterogeneity nor cytolytic activity. High expression of ANXA1 group enriched inflammation, epithelial-to-mesenchymal transition (EMT), and angiogenesis-related genes in a gene set enrichment assay in both cohorts. To our knowledge, this is the first study to demonstrate that ANXA1 is associated with infiltration of mast cells and inflammation that is associated with the aggressive phenotype of TNBC, such as EMT and angiogenesis.
Collapse
|
33
|
Cardin LT, Prates J, da Cunha BR, Tajara EH, Oliani SM, Rodrigues‐Lisoni FC. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019; 9:668-681. [PMID: 30984541 PMCID: PMC6443877 DOI: 10.1002/2211-5463.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide, and its tumorigenesis can be influenced by the microenvironment. The anti-inflammatory protein annexin A1 (ANXA1) has been reported to be associated with cancer progression and metastasis, suggesting that it plays a role in regulating tumour cell proliferation. Here, we examined the effect of the N-terminal peptide Ac2-26 of ANXA1 on the HaCaT cell line (normal) and HeLa cell line (cervical cancer) co-cultured with endothelium cell-conditioned medium (HMC). Treatment with Ac2-26 decreased proliferation and increased motility of cervical cancer cells, but did not affect cellular morphology or viability. Combined HMC stimulus and Ac2-26 treatment resulted in an increase in apoptotic HeLa cells, upregulated expression of MMP2, and downregulated expression of COX2,EP3 and EP4. In conclusion, Ac2-26 treatment may modulate cellular and molecular mechanisms underlying cervical carcinogenesis.
Collapse
Affiliation(s)
- Laila Toniol Cardin
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Janesly Prates
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Eloiza Helena Tajara
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Sonia Maria Oliani
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | | |
Collapse
|
34
|
Annexin-A1 – A Blessing or a Curse in Cancer? Trends Mol Med 2019; 25:315-327. [DOI: 10.1016/j.molmed.2019.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
|
35
|
Guan X, Fang Y, Long J, Zhang Y. Annexin 1-nuclear factor-κB-microRNA-26a regulatory pathway in the metastasis of non-small cell lung cancer. Thorac Cancer 2019; 10:665-675. [PMID: 30756482 PMCID: PMC6449244 DOI: 10.1111/1759-7714.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background Annexin 1 (ANXA1) expression is associated with the malignant tumor phenotype, making it an attractive therapeutic target. However, little is known about the regulation of ANXA1 in non‐small cell lung cancer (NSCLC). Methods We investigated the biological roles of ANXA1 in tumor growth, migration, and invasion, and explored the possibility of ANXA1 as a potential therapeutic target for the treatment of NSCLC. Results Our findings revealed that ANXA1 enhanced nuclear factor (NF)‐κB activation in NSCLC cells by interaction with inhibitor of NF‐κB kinase complex subunit, IKKγ. We also found that NF‐κB could negatively regulate microRNA (miR)‐26a, and miR‐26a was regulated through the ANXA1–NF‐κB regulatory pathway. NF‐κB activation negatively regulated by miR‐26a was confirmed in NSCLC. Conclusion Together, these results provide evidence of the mechanisms of the ANXA1–NF‐κB–miR‐26a regulatory pathway in the invasion and migration in NSCLC.
Collapse
Affiliation(s)
- Xiaoying Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| |
Collapse
|
36
|
Zhu JF, Huang W, Yi HM, Xiao T, Li JY, Feng J, Yi H, Lu SS, Li XH, Lu RH, He QY, Xiao ZQ. Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death Dis 2018; 9:1154. [PMID: 30459351 PMCID: PMC6244011 DOI: 10.1038/s41419-018-1204-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023]
Abstract
Annexin A1 (ANXA1) is dysregulated in the various tumors. However, the role and mechanism of ANXA1 in the cancers are poorly understood. In this study, we first showed a clinically positive correlation between ANXA1 and autophagy-associated protein SQSTM1 expression in nasopharyngeal carcinoma (NPC) and ANXA1-regulating SQSTM1 expression through autophagy, and further demonstrated that ANXA1 inhibited BECN1 and ATG5-dependent autophagy in the NPC cells. Using phospho-kinase antibody array to identify signaling through which ANXA1 regulated NPC cell autophagy, we found that ANXA1-suppressed autophagy was associated with PI3K/AKT signaling activation. We also showed that ANXA1 expression was significantly increased in the NPCs with metastasis relative to NPCs without metastasis and positively correlated with lymphonode and distant metastasis; high ANXA1 expression in the NPC cells promoted in vitro tumor cell migration and invasion and in vivo metastasis. Lastly, we showed that inhibition of autophagy restored the ability of tumor cell migration and invasion, epithelial-mesenchymal transition (EMT)-like alterations and in vivo metastasis in the ANXA1 knockdown NPC cells with autophagy activation; ANXA1-suppresed autophagy induced EMT-like alterations possibly by inhibiting autophagy-mediated degradation of Snail. Our data suggest that ANXA1-suppressed autophagy promotes NPC cell migration, invasion and metastasis by activating PI3K/AKT signaling pathway, highlighting that the activation of autophagy may inhibit metastasis of NPC with high ANXA1 expression.
Collapse
Affiliation(s)
- Jin-Feng Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, 830011, Urumqi, Xinjiang, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ta Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xin-Hui Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Rou-Huang Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiu-Yan He
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
37
|
Ampomah PB, Kong WT, Zharkova O, Chua SCJH, Perumal Samy R, Lim LHK. Annexins in Influenza Virus Replication and Pathogenesis. Front Pharmacol 2018; 9:1282. [PMID: 30498445 PMCID: PMC6249340 DOI: 10.3389/fphar.2018.01282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Influenza A viruses (IAVs) are important human respiratory pathogens which cause seasonal or periodic endemic infections. IAV can result in severe or fatal clinical complications including pneumonia and respiratory distress syndrome. Treatment of IAV infections is complicated because the virus can evade host immunity through antigenic drifts and antigenic shifts, to establish infections making new treatment options desirable. Annexins (ANXs) are a family of calcium and phospholipid binding proteins with immunomodulatory roles in viral infections, lung injury, and inflammation. A current understanding of the role of ANXs in modulating IAV infection and host responses will enable the future development of more effective antiviral therapies. This review presents a comprehensive understanding of the advances made in the field of ANXs, in particular, ANXA1 and IAV research and highlights the importance of ANXs as a suitable target for IAV therapy.
Collapse
Affiliation(s)
- Patrick Baah Ampomah
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wan Ting Kong
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja C. J. H. Chua
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R. Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H. K. Lim
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Alterations of Signaling Pathways Related to the Immune System in Breast Cancer: New Perspectives in Patient Management. Int J Mol Sci 2018; 19:ijms19092733. [PMID: 30213113 PMCID: PMC6165530 DOI: 10.3390/ijms19092733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
In recent years, immune manipulation for cancer treatment, including breast cancer, has been increasingly gaining consent, and many attempts have been made, mainly by either strengthening the immune response (IR) or by inhibiting immune evasion. Therefore, elucidating the related mechanisms is of importance due to the potential to improve the management of cancer patients by immunotherapy. This review article summarized some recent experimental studies, which have discovered novel alterations of signaling pathways related to the immune system in breast cancer. These altered signaling pathways have been grouped according to the general biological mechanism involved: tumor-initiating cells (TICs), cancer stem cells (CSCs), immune evasion, tumor growth and progression, prediction of clinical outcome and prediction of response, or resistance to chemotherapy. These altered pathways related to the immune system open clinical opportunities for the prognosis or treatment of patients. Many of these pathways are related to the origin of breast cancer and immune evasion. We recommended development of new drugs which act on these molecular pathways, and the designing of clinical trials to be carried out mainly in breast cancer patients who required adjuvant treatment.
Collapse
|
39
|
Moraes LA, Ampomah PB, Lim LHK. Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adh Migr 2018; 12:417-423. [PMID: 30122097 DOI: 10.1080/19336918.2018.1486143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeting inflammation in cancer has shown promise to improve and complement current therapies. The tumor microenvironment plays an important role in cancer growth and metastasis and -tumor associated macrophages possess pro-tumoral and pro-metastatic properties. Annexin A1 (ANXA1) is an immune-modulating protein with diverse functions in the immune system and in cancer. In breast cancer, high ANXA1 expression leads to poor prognosis and increased metastasis. Here, we will review ANXA1 as a modulator of inflammation, and discuss its importance in breast cancer and highlight its new role in alternative macrophage activation in the tumor microenvironment. This review may provide an updated understanding into the various roles of ANXA1 which may enable future therapeutic developments for the treatment of breast cancer.
Collapse
Affiliation(s)
- Leonardo A Moraes
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Patrick B Ampomah
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Lina H K Lim
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| |
Collapse
|
40
|
Xia Q, Li X, Zhou H, Zheng L, Shi J. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell Death Dis 2018; 9:657. [PMID: 29844306 PMCID: PMC5974363 DOI: 10.1038/s41419-018-0686-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022]
Abstract
The subcellular location of annexin A1 (ANXA1) determines the ultimate fate of neurons after ischemic stroke. ANXA1 nuclear translocation is involved in neuronal apoptosis after cerebral ischemia, and extracellular ANXA1 is also associated with regulation of inflammatory responses. As the factors and mechanism that influence ANXA1 subcellular translocation remain unclear, studies aiming to determine and clarify the role of ANXA1 as a cell fate ‘regulator’ within cells are critically needed. In this study, we found that intracerebroventricular injection of the recombinant adenovirus vector Ad-S100A11 (carrying S100A11) strongly improved cognitive function and induced robust neuroprotective effects after ischemic stroke in vivo. Furthermore, upregulation of S100A11 protected against neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. Surprisingly, S100A11 overexpression markedly decreased ANXA1 nuclear translocation and subsequently alleviated OGD/R-induced neuronal apoptosis. Notably, S100A11 exerted its neuroprotective effect by directly binding ANXA1. Importantly, S100A11 directly interacted with ANXA1 through the nuclear translocation signal (NTS) of ANXA1, which is essential for ANXA1 to import into the nucleus. Consistent with our previous studies, ANXA1 nuclear translocation after OGD/R promoted p53 transcriptional activity, induced mRNA expression of the pro-apoptotic Bid gene, and activated the caspase-3 apoptotic pathway, which was almost completely reversed by S100A11 overexpression. Thus, S100A11 protects against cell apoptosis by inhibiting OGD/R-induced ANXA1 nuclear translocation. This study provides a novel mechanism whereby S100A11 protects against neuronal cells apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Li
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huijuan Zhou
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Zheng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China. .,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
41
|
Annexin A6 regulates catabolic events in articular chondrocytes via the modulation of NF-κB and Wnt/ß-catenin signaling. PLoS One 2018; 13:e0197690. [PMID: 29771996 PMCID: PMC5957413 DOI: 10.1371/journal.pone.0197690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Annexin A6 (AnxA6) is expressed in articular chondrocytes at levels higher than in other mesenchymal cell types. However, the role of AnxA6 in articular chondrocytes is not known. Here we show that complete lack of AnxA6 functions resulted in increased ß-catenin activation in Wnt3a-treated murine articular chondrocytes, whereas AnxA6 expressing articular chondrocytes showed decreased ß-catenin activation. High expression of AnxA6 in human articular chondrocytes showed the highest inhibition of Wnt/ß-catenin signaling. Inhibition of Wnt/ß-catenin signaling activity by AnxA6 together with cytosolic Ca2+ was achieved by interfering with the plasma membrane association of the Wnt signaling complex. AnxA6 also affected the cross-talk between Wnt/ß-catenin signaling and NF-κB signaling by decreasing ß-catenin activity and increasing NF-κB activity in Wnt3a-, interleukin-1beta (IL-1ß)-, and combined Wnt3a/IL-1ß-treated cells. Wnt3a treatment increased the mRNA levels of catabolic markers (cyclooxygenase-2, interleukin-6, inducible nitric oxide synthase) to a much lesser degree than IL-1ß treatment in human articular chondrocytes, and decreased the mRNA levels of matrix metalloproteinase-13 (MMP-13) and articular cartilage markers (aggrecan, type II collagen). Furthermore, Wnt3a decreased the mRNA levels of catabolic markers and MMP-13 in IL-1ß-treated human articular chondrocytes. High expression of AnxA6 resulted in decreased mRNA levels of catabolic markers, and increased MMP-13 and articular cartilage marker mRNA levels in Wnt3a-treated human articular chondrocytes, whereas leading to increased mRNA levels of catabolic markers and MMP-13 in human articular chondrocytes treated with IL-1ß, or combined Wnt3a and IL-1ß. Our findings define a novel role for AnxA6 in articular chondrocytes via its modulation of Wnt/ß-catenin and NF-κB signaling activities and the cross-talk between these two signaling pathways.
Collapse
|
42
|
Li CZ, Jiang XJ, Lin B, Hong HJ, Zhu SY, Jiang L, Wang XQ, Tang NH, She FF, Chen YL. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway. Onco Targets Ther 2018; 11:2875-2890. [PMID: 29844685 PMCID: PMC5962258 DOI: 10.2147/ott.s159026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. Conclusion We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway.
Collapse
Affiliation(s)
- Cheng-Zong Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China.,Department of General Surgery, The Second Affiliated Hospital Of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xiao-Jie Jiang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Bin Lin
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hai-Jie Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Si-Yuan Zhu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Lei Jiang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiao-Qian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Nan-Hong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Fei-Fei She
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumour Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
43
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
44
|
Regulation of breast cancer induced bone disease by cancer-specific IKKβ. Oncotarget 2018; 9:16134-16148. [PMID: 29662632 PMCID: PMC5882323 DOI: 10.18632/oncotarget.24743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/25/2018] [Indexed: 12/18/2022] Open
Abstract
NFκB is implicated in breast cancer bone metastasis and skeletal remodelling. However, the role of IKKβ, a key component of the canonical NFκB pathway, in the regulation of breast cancer osteolytic metastasis has not been investigated. Here, we describe the cancer-specific contribution of IKKβ to bone metastasis, skeletal tumour growth and osteolysis associated with breast cancer. IKKβ is highly expressed in invasive breast tumours and its level of expression was higher in patients with bone metastasis. IKKβ overexpression in parental MDA-MD-231 breast cancer cells, promoted mammary tumour growth but failed to convey osteolytic potential to these cells in mice. In contrast, IKKβ overexpression in osteotropic sub-clones of MDA-MB-231 cells with differing osteolytic phenotypes increased incidence of bone metastasis, exacerbated osteolysis and enhanced skeletal tumour growth, whereas its knockdown was inhibitory. Functional and mechanistic studies revealed that IKKβ enhanced the ability of osteotropic MDA-MB-231 cells to migrate, increase osteoclastogenesis, and to inhibit osteoblast differentiation via a mechanism mediated, at least in part, by cytoplasmic sequestering of FoxO3a and VEGFA production. Thus, tumour-selective manipulation of IKKβ and its interaction with FoxO3a may represent a novel strategy to reduce the development of secondary breast cancer in the skeleton.
Collapse
|
45
|
Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci 2018; 11:76. [PMID: 29662435 PMCID: PMC5890123 DOI: 10.3389/fnmol.2018.00076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/24/2022] Open
Abstract
Annexin A1 (ANXA1) is an endogenous protein with potent anti-inflammatory properties in the brain. Although ANXA1 has been predominantly studied for its binding to formyl peptide receptors (FPRs) on plasma membranes, little is known regarding whether this protein has an anti-inflammatory effect in the cytosol. Here, we investigated the mechanism by which the ANXA1 peptide Ac2-26 decreases high TNF-α production and IKKβ activity, which was caused by oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal conditioned medium (NCM) in microglia. We found that exogenous Ac2-26 crosses into the cytoplasm of microglia and inhibits both gene expression and protein secretion of TNF-α. Ac2-26 also causes a decrease in IKKβ protein but not IKKβ mRNA, and this effect is inverted by lysosome inhibitor NH4CL. Furthermore, we demonstrate that Ac2-26 induces IKKβ accumulation in lysosomes and that lysosomal-associated membrane protein 2A (LAMP-2A), not LC-3, is enhanced in microglia exposed to Ac2-26. We hypothesize that Ac2-26 mediates IKKβ degradation in lysosomes through chaperone-mediated autophagy (CMA). Interestingly, ANXA1 in the cytoplasm does not interact with IKKβ but with HSPB1, and Ac2-26 promotes HSPB1 binding to IKKβ. Furthermore, both ANXA1 and HSPB1 can interact with Hsc70 and LAMP-2A, but IKKβ only associates with LAMP-2A. Downregulation of HSPB1 or LAMP-2A reverses the degradation of IKKβ induced by Ac2-26. Taken together, these findings define an essential role of exogenous Ac2-26 in microglia and demonstrate that Ac2-26 is associated with HSPB1 and promotes HSPB1 binding to IKKβ, which is degraded by CMA, thereby reducing TNF-α expression.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan An
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Xu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Shao
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|
47
|
Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment. Sci Rep 2017; 7:17925. [PMID: 29263330 PMCID: PMC5738423 DOI: 10.1038/s41598-017-17622-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Macrophages are potent immune cells with well-established roles in the response to stress, injury, infection and inflammation. The classically activated macrophages (M1) are induced by lipopolysaccharide (LPS) and express a wide range of pro-inflammatory genes. M2 macrophages are induced by T helper type 2 cytokines such as interleukin-4 (IL4) and express high levels of anti-inflammatory and tissue repair genes. The strong association between macrophages and tumour cells as well as the high incidences of leukocyte infiltration in solid tumours have contributed to the discovery that tumour-associated macrophages (TAMs) are key to tumour progression. Here, we investigated the role of Annexin A1 (ANXA1), a well characterized immunomodulatory protein on macrophage polarization and the interaction between macrophages and breast cancer cells. Our results demonstrate that ANXA1 regulates macrophage polarization and activation. ANXA1 can act dually as an endogenous signalling molecule or as a secreted mediator which acts via its receptor, FPR2, to promote macrophage polarization. Furthermore, ANXA1 deficient mice exhibit reduced tumour growth and enhanced survival in vivo, possibly due to increased M1 macrophages within the tumor microenvironment. These results provide new insights into the molecular mechanisms of macrophage polarization with therapeutic potential to suppress breast cancer growth and metastasis.
Collapse
|
48
|
Alli-Shaik A, Wee S, Lim LHK, Gunaratne J. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells. Breast Cancer Res 2017; 19:132. [PMID: 29233185 PMCID: PMC5727667 DOI: 10.1186/s13058-017-0924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Annexin-1 (ANXA1) plays pivotal roles in regulating various physiological processes including inflammation, proliferation and apoptosis, and deregulation of ANXA1 functions has been associated with tumorigenesis and metastasis events in several types of cancer. Though ANXA1 levels correlate with breast cancer disease status and outcome, its distinct functional involvement in breast cancer initiation and progression remains unclear. We hypothesized that ANXA1-responsive kinase signaling alteration and associated phosphorylation signaling underlie early events in breast cancer initiation events and hence profiled ANXA1-dependent phosphorylation changes in mammary gland epithelial cells. Methods Quantitative phosphoproteomics analysis of mammary gland epithelial cells derived from ANXA1-heterozygous and ANXA1-deficient mice was carried out using stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry. Kinase and signaling changes underlying ANXA1 perturbations were derived by upstream kinase prediction and integrated network analysis of altered proteins and phosphoproteins. Results We identified a total of 8110 unique phosphorylation sites, of which 582 phosphorylation sites on 372 proteins had ANXA1-responsive changes. A majority of these phosphorylation changes occurred on proteins associated with cytoskeletal reorganization spanning the focal adhesion, stress fibers, and also the microtubule network proposing new roles for ANXA1 in regulating microtubule dynamics. Comparative analysis of regulated global proteome and phosphoproteome highlighted key differences in translational and post-translational effects of ANXA1, and suggested closely coordinated rewiring of the cell adhesion network. Kinase prediction analysis suggested activity modulation of calmodulin-dependent protein kinase II (CAMK2), P21-activated kinase (PAK), extracellular signal-regulated kinase (ERK), and IκB kinase (IKK) upon loss of ANXA1. Integrative analysis revealed regulation of the WNT and Hippo signaling pathways in ANXA1-deficient mammary epithelial cells, wherein there is downregulation of transcriptional effects of TEA domain family (TEAD) suggestive of ANXA1-responsive transcriptional rewiring. Conclusions The phosphoproteome landscape uncovered several novel perspectives for ANXA1 in mammary gland biology and highlighted its involvement in key signaling pathways modulating cell adhesion and migration that could contribute to breast cancer initiation. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0924-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asfa Alli-Shaik
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sheena Wee
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Lina H K Lim
- Department of Physiology, Immunology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
49
|
Yuan Y, Anbalagan D, Lee LH, Samy RP, Shanmugam MK, Kumar AP, Sethi G, Lobie PE, Lim LHK. ANXA1 inhibits miRNA-196a in a negative feedback loop through NF-kB and c-Myc to reduce breast cancer proliferation. Oncotarget 2017; 7:27007-20. [PMID: 27105503 PMCID: PMC5053628 DOI: 10.18632/oncotarget.8875] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
MiRNAs are endogenous ~22 nt RNAs which play critical regulatory roles in a wide range of biological and pathological processes, which can act as oncogenes or tumor suppressor genes depending on their target genes. We have recently shown that ANXA1 inhibits the expression of miRNAs including miR196a. Here, we show that miR196a was highly expressed in ER+ MCF-7 breast cancer cells when compared to normal mammary gland cells, with expression levels negatively correlating to ANXA1. ANXA1 inhibits the biogenesis of oncogenic miR-196a by suppressing primary-miR196a indirectly through the stimulation of c-myc and NFkB expression and activity in breast cancer cells. In a negative feedback loop, miR-196a directly inhibits ANXA1 and enhances breast cancer cell proliferation in vitro. Finally, miR196a promotes breast tumor growth in vivo. This study reports a novel regulatory circuit between ANXA1, NF-kB, c-myc and miR-196a which regulates breast cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore (NUS), Singapore
| | - Durkeshwari Anbalagan
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore (NUS), Singapore
| | - Lay Hoon Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore (NUS), Singapore
| | - Ramar Perumal Samy
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore (NUS), Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,National University Cancer Institute, NUHS, Singapore.,Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore
| | - Peter E Lobie
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore (NUS), Singapore.,NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| |
Collapse
|
50
|
PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice. Proc Natl Acad Sci U S A 2017; 114:E9328-E9337. [PMID: 29078319 PMCID: PMC5676899 DOI: 10.1073/pnas.1707938114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To provide optimal host defense, the full spectrum of antibody-based immunity requires natural antibodies and immunization-induced antigen-specific antibodies. Here we show that the PTIP (Pax transactivation domain-interacting protein) chromatin regulator is induced by B cell activation to potentiate the establishment of steady-state and postimmune serum antibody levels. It does so by promoting activation-associated proliferation and differentiation of all the major B cell subsets, at least in part, through regulating the NF-κB pathway. With the genetic basis still unknown for a majority of patients with common variable immunodeficiency, further work investigating how PTIP controls cell signaling may generate valuable new insight for human health and disease. B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.
Collapse
|