1
|
Çıldır ÖŞ, Özmen Ö, Kul S, Rişvanlı A, Özalp G, Sabuncu A, Kul O. Genetic analysis of PALB2 gene WD40 domain in canine mammary tumour patients. Vet Med Sci 2024; 10:e1366. [PMID: 38527110 PMCID: PMC10962921 DOI: 10.1002/vms3.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.
Collapse
Affiliation(s)
- Özge Şebnem Çıldır
- Department of GeneticsFaculty of Veterinary MedicineKafkas UniversityKarsTürkiye
- Department of GeneticsFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Özge Özmen
- Department of GeneticsFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Selim Kul
- Department of Animal BreedingFaculty of Veterinary MedicineYozgat Bozok UniversityYozgatTürkiye
| | - Ali Rişvanlı
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineFırat UniversityElazığTürkiye
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineKyrgyz‐Turkish Manas UniversityBishkekKyrgyzstan
| | - Gözde Özalp
- Department of Obstetrics and GynecologyFaculty of Veterinary MedicineBursa Uludağ UniversityBursaTürkiye
| | - Ahmet Sabuncu
- Department of Obstetrics and GynecologyFaculty of Veterinary Medicineİstanbul UniversityİstanbulTürkiye
| | - Oğuz Kul
- Department of PathologyFaculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| |
Collapse
|
2
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
3
|
Zhang X, Yang F, Huang Z, Liu X, Xia G, Huang J, Yang Y, Li J, Huang J, Liu Y, Zhou T, Qi W, Gao G, Yang X. Macrophages Promote Subtype Conversion and Endocrine Resistance in Breast Cancer. Cancers (Basel) 2024; 16:678. [PMID: 38339428 PMCID: PMC10854660 DOI: 10.3390/cancers16030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The progression of tumors from less aggressive subtypes to more aggressive states during metastasis poses challenges for treatment strategies. Previous studies have revealed the molecular subtype conversion between primary and metastatic tumors in breast cancer (BC). However, the subtype conversion during lymph node metastasis (LNM) and the underlying mechanism remains unclear. METHODS We compared clinical subtypes in paired primary tumors and positive lymph nodes (PLNs) in BC patients and further validated them in the mouse model. Bioinformatics analysis and macrophage-conditioned medium treatment were performed to investigate the role of macrophages in subtype conversion. RESULTS During LNM, hormone receptors (HRs) were down-regulated, while HER2 was up-regulated, leading to the transformation of luminal A tumors towards luminal B tumors and from luminal B subtype towards HER2-enriched (HER2-E) subtype. The mouse model demonstrated the elevated levels of HER2 in PLN while retaining luminal characteristics. Among the various cells in the tumor microenvironment (TME), macrophages were the most clinically relevant in terms of prognosis. The treatment of a macrophage-conditioned medium further confirmed the downregulation of HR expression and upregulation of HER2 expression, inducing tamoxifen resistance. Through bioinformatics analysis, MNX1 was identified as a potential transcription factor governing the expression of HR and HER2. CONCLUSION Our study revealed the HER2-E subtype conversion during LNM in BC. Macrophages were the crucial cell type in TME, inducing the downregulation of HR and upregulation of HER2, probably via MNX1. Targeting macrophages or MNX1 may provide new avenues for endocrine therapy and targeted treatment of BC patients with LNM.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Fengyu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Zhijian Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaojun Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Gan Xia
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Jieye Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Yang Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Junchen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Jin Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Yuxin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510700, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510700, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Arbildi P, Calvo F, Macías V, Rodríguez-Camejo C, Sóñora C, Hernández A. Study of tissue transglutaminase spliced variants expressed in THP-1 derived macrophages exhibiting distinct functional phenotypes. Immunobiology 2023; 228:152752. [PMID: 37813017 DOI: 10.1016/j.imbio.2023.152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1β in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.
Collapse
Affiliation(s)
- Paula Arbildi
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Federico Calvo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Victoria Macías
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Claudio Rodríguez-Camejo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Cecilia Sóñora
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay; Escuela Universitaria de Tecnología Médica (EUTM), Facultad de Medicina, Universidad de la República, Alfredo Navarro S/N, Montevideo 11600, Uruguay.
| | - Ana Hernández
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| |
Collapse
|
5
|
Shehadeh-Tout F, Milioli HH, Roslan S, Jansson PJ, Dharmasivam M, Graham D, Anderson R, Wijesinghe T, Azad MG, Richardson DR, Kovacevic Z. Innovative Thiosemicarbazones that Induce Multi-Modal Mechanisms to Down-Regulate Estrogen-, Progesterone-, Androgen- and Prolactin-Receptors in Breast Cancer. Pharmacol Res 2023:106806. [PMID: 37244387 DOI: 10.1016/j.phrs.2023.106806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.
Collapse
Affiliation(s)
- Faten Shehadeh-Tout
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Heloisa H Milioli
- Connie Johnson Breast Cancer Research Laboratory, Garvan Institute of Medical Research, NSW 2010 Australia
| | - Suraya Roslan
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia
| | - Patric J Jansson
- Cancer Drug Resistance and Stem Cell Program, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Dinny Graham
- Breast Cancer Group, The Westmead Institute for Medical Research and Westmead Clinical School, University of Sydney, NSW 2145 Australia
| | - Robin Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Zaklina Kovacevic
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Physiology, School of Biomedical Sciences, University of NSW, NSW 2052 Australia.
| |
Collapse
|
6
|
Comparing the Biology of Young versus Old Age Estrogen-Receptor-Positive Breast Cancer through Gene and Protein Expression Analyses. Biomedicines 2023; 11:biomedicines11010200. [PMID: 36672708 PMCID: PMC9855392 DOI: 10.3390/biomedicines11010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Background: Breast cancer developed at a young age (≤45 years) is hypothesized to have unique biology; however, findings in this field are controversial. Methods: We compared the whole transcriptomic profile of young vs. old-age breast cancer using DNA microarray. RNA was extracted from 13 fresh estrogen receptor (ER)-positive primary breast cancer tissues of untreated patients (7 = young age ≤45 years and 6 = old age ≥55 years). In silico validation for the differentially expressed genes (DEGs) by young-age patients was conducted using The Cancer Genome Atlas (TCGA) database. Next, we analyzed the protein expression encoded by two of the significantly down-regulated genes by young-age patients, Glycine N-acyltransferase-like 1 (GLYATL-1) and Ran-binding protein 3 like (RANBP3L), using immunohistochemical analysis in an independent cohort of 56 and 74 ER-positive pre-therapeutic primary breast cancer tissues, respectively. Results: 12 genes were significantly differentially expressed by young-age breast cancers (fold change >2 or <2- with FDR p-value < 0.05). TCGA data confirmed the differential expression of six genes. Protein expression analysis of GLYATL-1 and RANBP3L did not show heterogeneous expression between young and old-age breast cancer tissues. Loss of expression of GLYATL-1 was significantly (p-value 0.005) associated with positive lymph node status. Higher expression of RANBP3L was significantly associated with breast cancers with lower histopathological grades (p-value 0.038). Conclusions: At the transcriptomic level, breast cancer developed in young and old age patients seems homogenous. The variation in the transcriptomic profiles can be attributed to the other clinicopathological characteristics rather than the age of the patient.
Collapse
|
7
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Wang B, Ma X, Xie M, Wu Y, Wang Y, Duan R, Zhang C, Yu L, Guo X, Gao L. CBP-JMF: An Improved Joint Matrix Tri-Factorization Method for Characterizing Complex Biological Processes of Diseases. Front Genet 2021; 12:665416. [PMID: 33968140 PMCID: PMC8103031 DOI: 10.3389/fgene.2021.665416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-omics molecules regulate complex biological processes (CBPs), which reflect the activities of various molecules in living organisms. Meanwhile, the applications to represent disease subtypes and cell types have created an urgent need for sample grouping and associated CBP-inferring tools. In this paper, we present CBP-JMF, a practical tool primarily for discovering CBPs, which underlie sample groups as disease subtypes in applications. Differently from existing methods, CBP-JMF is based on a joint non-negative matrix tri-factorization framework and is implemented in Python. As a pragmatic application, we apply CBP-JMF to identify CBPs for four subtypes of breast cancer. The result shows significant overlapping between genes extracted from CBPs and known subtype pathways. We verify the effectiveness of our tool in detecting CBPs that interpret subtypes of disease.
Collapse
Affiliation(s)
- Bingbo Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Xiujuan Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Minghui Xie
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yue Wu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yajun Wang
- School of Humanities and Foreign Languages, Xi'an University of Technology, Xi'an, China
| | - Ran Duan
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Chenxing Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
9
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
10
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
11
|
Chamberlin T, Clack M, Silvers C, Kuziel G, Thompson V, Johnson H, Arendt LM. Targeting Obesity-Induced Macrophages during Preneoplastic Growth Promotes Mammary Epithelial Stem/Progenitor Activity, DNA Damage, and Tumor Formation. Cancer Res 2020; 80:4465-4475. [PMID: 32868380 DOI: 10.1158/0008-5472.can-20-0789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Obesity enhances breast cancer risk in postmenopausal women and premenopausal women with genetic or familial risk factors. We have shown previously that within breast tissue, obesity increases macrophage-driven inflammation and promotes expansion of luminal epithelial cell populations that are hypothesized to be the cells of origin for the most common subtypes of breast cancer. However, it is not clear how these changes within the microenvironment of the breast alter cancer risk and tumor growth. Using a high-fat diet to induce obesity, we examined preneoplastic changes associated with epithelial cell-specific loss of Trp53. Obesity significantly enhanced the incidence of tumors of diverse histotypes and increased stromal cells within the tumor microenvironment. Obesity also promoted the growth of preneoplastic lesions containing elevated numbers of luminal epithelial progenitor cells, which were surrounded by macrophages. To understand how macrophage-driven inflammation due to obesity enhances tumor formation, mice were treated with IgG or anti-F4/80 antibodies to deplete macrophages during preneoplastic growth. Unexpectedly, depletion of macrophages in obese mice enhanced mammary epithelial cell stem/progenitor activity, elevated expression of estrogen receptor alpha, and increased DNA damage in cells. Together, these results suggest that in obesity, macrophages reduce epithelial cells with DNA damage, which may limit the progression of preneoplastic breast lesions, and uncovers complex macrophage function within the evolving tumor microenvironment. Understanding how obesity alters the function of macrophages during tumor formation may lead to chemoprevention options for at-risk obese women. SIGNIFICANCE: Understanding how obesity impacts early tumor growth and response to macrophage-targeted therapies may improve therapeutics for obese patients with breast cancer and identify patient populations that would benefit from macrophage-targeted therapies.
Collapse
Affiliation(s)
- Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Megan Clack
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Caylee Silvers
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Victoria Thompson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Haley Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin. .,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,Program in Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
12
|
He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K, Yeh S. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol 2020; 14:1779-1799. [PMID: 32356397 PMCID: PMC7400793 DOI: 10.1002/1878-0261.12701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Data analysis of clinical samples suggests that higher estrogen receptor α (ERα) expression could be associated with worse overall survival in some patients with non‐small‐cell lung cancer (NSCLC). Immunofluorescence results further showed that higher ERα expression was linked to larger numbers of infiltrated macrophages in NSCLC tissues. However, the detailed mechanisms underlying this phenomenon remain unclear. Results from in vitro studies with multiple cell lines revealed that, in NSCLC cells, ERα can activate the CCL2/CCR2 axis to promote macrophage infiltration, M2 polarization, and MMP9 production, which can then increase NSCLC cell invasion. Mechanistic studies using chromatin immunoprecipitation and promoter luciferase assays demonstrated that ERα could bind to estrogen response elements (EREs) on the CCL2 promoter to increase CCL2 expression. Furthermore, ERα‐increased macrophage infiltration can induce a positive feedback mechanism to increase lung cancer cell ERα expression via the up‐regulation of the CXCL12/CXCR4 pathway. Targeting these newly identified pathways, NSCLC ERα‐increased macrophage infiltration or the macrophage‐to‐NSCLC CXCL12/CXCR4/ERα signal, with anti‐estrogens or CCR2/CXCR4 antagonists, may help in the development of new alternative therapies to better treat NSCLC.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Weiwei Yu
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaohong Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Discov Oncol 2020; 11:129-147. [PMID: 32592004 DOI: 10.1007/s12672-020-00388-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression. Currently, the introduction of genomic sequencing platforms and additional genome-wide technologies has provided additional insight on how chromatin structures may coordinate with these intrinsic and extrinsic mechanisms to regulate ESR1 expression. Understanding these interactions will allow us to have a clearer understanding of how ESR1 expression is regulated and eventually provide clues on how to influence its regulation with potential treatments. In this review, we highlight key studies concerning the genomic structure of ESR1, mechanisms that affect the dynamics of ESR1 expression, and considerations towards affecting ESR1 expression and hormone responsiveness in breast cancer.
Collapse
|
14
|
Dong X, Huang X, Yao Z, Wu Y, Chen D, Tan C, Lin J, Zhang D, Hu Y, Wu J, Wei G, Zhu X. Tumour-associated macrophages as a novel target of VEGI-251 in cancer therapy. J Cell Mol Med 2020; 24:7884-7895. [PMID: 32452100 PMCID: PMC7348178 DOI: 10.1111/jcmm.15421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tumour‐associated macrophages (TAMs), which possess M2‐like characters and are derived from immature monocytes in the circulatory system, represent a predominant population of inflammatory cells in solid tumours. TAM infiltration in tumour microenvironment can be used as an important prognostic marker in many cancer types and is a potential target for cancer prevention or treatment. VEGI‐251 not only is involved in the inhibition of tumour angiogenesis, but also participates in the regulation of host immunity. This work aimed to investigate the involvement of VEGI‐251 in the regulation of specific antitumour immunity. We found that recombinant human VEGI‐251(rhVEGI‐251) efficiently mediated the elimination of TAMs in tumour tissue in mice, and induced apoptosis of purified TAMs in vitro. During this process, caspase‐8 and caspase‐3 were activated, leading to PARP cleavage and apoptosis. Most importantly, we further elucidated the mechanism underlying VEGI‐251‐triggered TAM apoptosis, which suggests that ASK1, an intermediate component of the VEGI‐251, activates the JNK pathway via TRAF2 in a potentially DR3‐dependent manner in the process of TAM apoptosis. Collectively, our findings provide new insights into the basic mechanisms underlying the actions of VEGI‐251 that might lead to future development of antitumour therapeutic strategies using VEGI‐251 to target TAMs.
Collapse
Affiliation(s)
- Xinhuai Dong
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xuan Huang
- Department of Obstetrics and Gynecology, Fetal Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Delin Chen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chahui Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Lin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danrui Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hu
- Changsha Customs District P.R. China, Changsha, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guohong Wei
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM, Deshane JS. Lung Tumor Cell-Derived Exosomes Promote M2 Macrophage Polarization. Cells 2020; 9:cells9051303. [PMID: 32456301 PMCID: PMC7290460 DOI: 10.3390/cells9051303] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular cross-talk within the tumor microenvironment (TME) by exosomes is known to promote tumor progression. Tumor promoting macrophages with an M2 phenotype are suppressors of anti-tumor immunity. However, the impact of tumor-derived exosomes in modulating macrophage polarization in the lung TME is largely unknown. Herein, we investigated if lung tumor-derived exosomes alter transcriptional and bioenergetic signatures of M0 macrophages and polarize them to an M2 phenotype. The concentration of exosomes produced by p53 null H358 lung tumor cells was significantly reduced compared to A549 (p53 wild-type) lung tumor cells, consistent with p53-mediated regulation of exosome production. In co-culture studies, M0 macrophages internalized tumor-derived exosomes, and differentiated into M2 phenotype. Importantly, we demonstrate that tumor-derived exosomes enhance the oxygen consumption rate of macrophages, altering their bioenergetic state consistent with that of M2 macrophages. In vitro co-cultures of M0 macrophages with H358 exosomes demonstrated that exosome-induced M2 polarization may be p53 independent. Murine bone marrow cells and bone marrow-derived myeloid-derived suppressor cells (MDSCs) co-cultured with lewis lung carcinoma (LLC)-derived exosomes differentiated to M2 macrophages. Collectively, these studies provide evidence for a novel role for lung tumor-exosomes in M2 macrophage polarization, which then offers new therapeutic targets for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Alexandra Pritchard
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Sultan Tousif
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Yong Wang
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Kenneth Hough
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Saad Khan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - John Strenkowski
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Balu K. Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Jessy S. Deshane
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
- Correspondence: ; Tel.: +1-205-996-2041
| |
Collapse
|
16
|
Lee YS, Song SJ, Hong HK, Oh BY, Lee WY, Cho YB. The FBW7-MCL-1 axis is key in M1 and M2 macrophage-related colon cancer cell progression: validating the immunotherapeutic value of targeting PI3Kγ. Exp Mol Med 2020; 52:815-831. [PMID: 32444799 PMCID: PMC7272616 DOI: 10.1038/s12276-020-0436-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/23/2020] [Accepted: 04/08/2020] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer is a devastating disease with a low 5-year survival rate. Recently, many researchers have studied the mechanisms of tumor progression related to the tumor microenvironment. Here, we addressed the prognostic value of tumor-associated macrophages (TAMs) using a total of 232 CRC patient tissue samples and investigated the mechanisms underlying TAM-related colon cancer progression with respect to PI3Kγ regulation using in vitro, in vivo, and ex vivo approaches. Patients with M2/M1 < 3 had significantly improved progression-free survival and overall survival compared with patients with M2/M1 > 3. M1 and M2 macrophages elicited opposite effects on colon cancer progression via the FBW7-MCL-1 axis. Blocking macrophage PI3Kγ had cytotoxic effects on colon cancer cells and inhibited epithelial–mesenchymal transition features by regulating the FBW7-MCL-1 axis. The results of this study suggest that macrophage PI3Kγ may be a promising target for immunotherapy in colon cancer. Drugs that target a specific subset of immune cells could render colorectal tumors more susceptible to immunological destruction by the host. The cellular composition of a tumor profoundly affects the odds of progression or survival, and some immune cell types can stall the antitumor response rather than strengthening it. Researchers led by Yong Beom Cho of Sungkyunkwan University, Seoul, South Korea, explored the impact of various subpopulations of macrophages, cells that help coordinate the immune counterattack against cancer. The researchers learned that the relative balance between M2 and M1 subtypes of macrophages correlates with colorectal cancer outcomes, patients with less M2 and more M1 activity generally faring better. They also uncovered a strategy for inhibiting M2 activity, which unleashes a more-aggressive response against the tumor and could thus offer a useful therapeutic approach.
Collapse
Affiliation(s)
- Yeo Song Lee
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Future Medicine Samsung Medical Center, Seoul, Republic of Korea
| | - Su Jeong Song
- Institute for Future Medicine Samsung Medical Center, Seoul, Republic of Korea
| | - Hye Kyung Hong
- Institute for Future Medicine Samsung Medical Center, Seoul, Republic of Korea
| | - Bo Young Oh
- Department of Colorectal Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Inflammatory macrophage derived TNFα downregulates estrogen receptor α via FOXO3a inactivation in human breast cancer cells. Exp Cell Res 2020; 390:111932. [PMID: 32145253 DOI: 10.1016/j.yexcr.2020.111932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Patients with estrogen receptor α positive (ERα+) breast cancer can respond to endocrine therapy, but treatment resistance is common and associated with downregulation of ERα expression in the dormant residual cells. Here we show, using long-term NSG xenograft models of human breast cancer and primary human monocytes, in vitro primary cell cultures and tumors from breast cancer patients, that macrophage derived tumor necrosis factor alpha (TNFα) downregulates ERα in breast cancer cells via inactivation of the transcription factor Forkhead box O transcription factor 3a (FOXO3a). Moreover, presence of tumor associated macrophages in the primary tumor of breast cancer patients, was associated with ERα negativity, and with worse prognosis in patients with ERα+ tumors. We propose that pro-inflammatory macrophages, despite being tumoricidal, may have direct effects on tumor progression and endocrine resistance in breast cancer patients. Our findings suggest that TNFα antagonists should be evaluated for treatment of ERα+ breast cancer.
Collapse
|
18
|
Mwafy SE, El-Guindy DM. Pathologic assessment of tumor-associated macrophages and their histologic localization in invasive breast carcinoma. J Egypt Natl Canc Inst 2020; 32:6. [PMID: 32372332 DOI: 10.1186/s43046-020-0018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are important in regulating cross-talk between tumor cells and tumor microenvironment. TAMs are involved in multiple steps of tumor progression and invasion. This study aimed to compare CD163 expression with the widely used CD68 pan-macrophage marker in invasive breast carcinoma. Furthermore, it focused on assessing the significance of TAMs localization in relation to clinicopathological parameters. RESULTS CD68 and CD163 immunohistochemical expressions within TAMs infiltrating both tumor nest (TN) and tumor stroma (TS) were evaluated in 60 specimens with invasive breast carcinoma. High CD68-positive stromal TAMs was significantly related to larger tumor, nodal metastasis and vascular invasion (p = 0.003, 0.037, 0.032, respectively), whereas high CD163-positive stromal TAMs was significantly related to larger tumors, nodal metastasis, stage III tumors, vascular invasion, estrogen receptor (ER) negativity, and triple-negative subtype (p = 0.023, < 0.001, 0.001, 0.022, 0.002, 0.017, respectively). On multivariate analysis, high CD68-positive TAMs infiltrating TS was significantly associated with larger tumor and positive nodal metastasis (p = 0.006 and 0.016, respectively), whereas high CD163 TAMs density within TS was significantly associated with positive vascular invasion, nodal metastasis, and molecular subtypes (p = 0.003, 0.001, and 0.009, respectively). CONCLUSION TAMs within tumor stroma and tumor nest have different levels of association with poor prognostic parameters. So, it is of great importance to consider the histologic localization of TAMs in addition to the degree of TAMs infiltration.
Collapse
Affiliation(s)
- Shorouk E Mwafy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
19
|
Abstract
The tumor microenvironment is the primary location in which tumor cells and the host immune system interact. There are many physiological, biochemical, cellular mechanisms in the neighbor of tumor which is composed of various cell types. Interactions of chemokines and chemokine receptors can recruit immune cell subsets into the tumor microenvironment. These interactions can modulate tumor progression and metastasis. In this chapter, we will focus on chemokine (C-C motif) ligand 7 (CCL7) that is highly expressed in the tumor microenvironment of various cancers, including colorectal cancer, breast cancer, oral cancer, renal cancer, and gastric cancer. We reviewed how CCL7 can affect cancer immunity and tumorigenesis by describing its regulation and roles in immune cell recruitment and stromal cell biology.
Collapse
|
20
|
Lung DK, Warrick JW, Hematti P, Callander NS, Mark CJ, Miyamoto S, Alarid ET. Bone Marrow Stromal Cells Transcriptionally Repress ESR1 but Cannot Overcome Constitutive ESR1 Mutant Activity. Endocrinology 2019; 160:2427-2440. [PMID: 31504407 PMCID: PMC6760314 DOI: 10.1210/en.2019-00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022]
Abstract
Estrogen receptor α (ER) is the target of endocrine therapies in ER-positive breast cancer (BC), but their therapeutic effectiveness diminishes with disease progression. Most metastatic BCs retain an ER-positive status, but ER expression levels are reduced. We asked how the bone tumor microenvironment (TME) regulates ER expression. We observed ESR1 mRNA and ER protein downregulation in BC cells treated with conditioned media (CM) from patient-derived, cancer-activated bone marrow stromal cells (BMSCs) and the BMSC cell line HS5. Decreases in ESR1 mRNA were attributed to decreases in nascent transcripts as well as decreased RNA polymerase II occupancy and H3K27Ac levels on the ESR1 promoter and/or distal enhancer (ENH1). Repression extended to neighboring genes of ESR1, including ARMT1 and SYNE1. Although ERK/MAPK signaling pathway can repress ER expression by other TME cell types, MAPK inhibition did not reverse decreases in ER expression by BMSC-CM. ESR1 mRNA and ER protein half-lives in MCF7 cells were unchanged by BMSC-CM treatment. Whereas ER phosphorylation was induced, ER activity was repressed by BMSC-CM as neither ER occupancy at known binding sites nor estrogen response element-luciferase activity was detected. BMSC-CM also repressed expression of ER target genes. In cells expressing the Y537S and D538G ESR1 mutations, BMSC-CM reduced ESR1, but expression of target genes PGR and TFF1 remained significantly elevated compared with that of control wild-type cells. These studies demonstrate that BMSCs can transcriptionally corepress ESR1 with neighboring genes and inhibit receptor activity, but the functional consequences of the BMSC TME can be limited by metastasis-associated ESR1 mutations.
Collapse
Affiliation(s)
- David K Lung
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Natalie S Callander
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Christina J Mark
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: Elaine T. Alarid, PhD, 6151 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, Wisconsin 53705. E-mail: .
| |
Collapse
|
21
|
Campesato LF, Silva APM, Cordeiro L, Correa BR, Navarro FCP, Zanin RF, Marçola M, Inoue LT, Duarte ML, Molgora M, Pasqualini F, Massara M, Galante P, Barroso-Sousa R, Polentarutti N, Riva F, Costa ET, Mantovani A, Garlanda C, Camargo AA. High IL-1R8 expression in breast tumors promotes tumor growth and contributes to impaired antitumor immunity. Oncotarget 2018; 8:49470-49483. [PMID: 28533483 PMCID: PMC5564782 DOI: 10.18632/oncotarget.17713] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
Tumors develop numerous strategies to fine-tune inflammation and avoid detection and eradication by the immune system. The identification of mechanisms leading to local immune dysregulation is critical to improve cancer therapy. We here demonstrate that Interleukin-1 receptor 8 (IL-1R8 - previously known as SIGIRR/TIR8), a negative regulator of Toll-Like and Interleukin-1 Receptor family signaling, is up-regulated during breast epithelial cell transformation and in primary breast tumors. IL-1R8 expression in transformed breast epithelial cells reduced IL-1-dependent NF-κB activation and production of pro-inflammatory cytokines, inhibited NK cell activation and favored M2-like macrophage polarization. In a murine breast cancer model (MMTV-neu), IL-1R8-deficiency reduced tumor growth and metastasis and was associated with increased mobilization and activation of immune cells, such as NK cells and CD8+ T cells. Finally, immune-gene signature analysis in clinical specimens revealed that high IL-1R8 expression is associated with impaired innate immune sensing and T-cell exclusion from the tumor microenvironment. Our results indicate that high IL-1R8 expression acts as a novel immunomodulatory mechanism leading to dysregulated immunity with important implications for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Luis Felipe Campesato
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil.,Graduate Program in Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Luna Cordeiro
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Bruna R Correa
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Fabio C P Navarro
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Rafael F Zanin
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Marçola
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lilian T Inoue
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Mariana L Duarte
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | | | | | | | - Pedro Galante
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | | | | | - Federica Riva
- Department of Veterinary Pathology, University of Milan, Milan, Italy
| | - Erico T Costa
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | | | - Anamaria A Camargo
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Lindsten T, Hedbrant A, Ramberg A, Wijkander J, Solterbeck A, Eriksson M, Delbro D, Erlandsson A. Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol 2017; 51:104-114. [PMID: 28498427 PMCID: PMC5467790 DOI: 10.3892/ijo.2017.3996] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors, including breast cancers, are frequently infiltrated with innate immune cells and tumor-associated macrophages (TAMs) represent the major inflammatory component in stroma of many tumors. In this study, we examined the immunoreactivity of the macrophage markers CD68 and CD163 as well as the hormone receptors estrogen receptor α (ERα), progesterone receptor (PR), estrogen receptor β1 (ERβ1), human epidermal growth factor receptor 2 (HER-2), matrix metalloproteinase 9 (MMP‑9), urokinase-type plasminogen activator receptor (uPAR) and the proliferations marker Ki67 in 17 breast cancer biopsies. The quantitative score for CD68+ and CD163+ strongly indicate M2 phenotype dominance in the currently investigated biopsies. We found that an increasing level of macrophages was negatively associated with ERα or PR, whereas a positive association was observed for Ki-67 or uPAR. No significant association could be seen between the level of macrophage and HER-2, ERβ1 or MMP-9 expression. Effect of conditioned media (CM) generated from cultured human M1 and M2 macrophage phenotypes were investigated on the proliferation and expression of selected markers in the T47D breast cancer cell line. We found that in contrast to the in vivo situation, in particularly the CM from M1 macrophages decreased the growth and Ki67 expression in T47D, and significantly increased ERβ1 mRNA levels. Moreover, in accordance to the in vivo situation the CM from the macrophages decreased the expression of ERα protein as well as ERα or PR mRNA. In conclusion our results show that macrophages alone have the capability to decrease the tumor cell expression of ERα and PR in vitro. In the tumor environment in vivo macrophages also contribute to an increase in tumor cell expression of uPAR and Ki67, suggesting that macrophages are involved in impairing the prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Therése Lindsten
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | | | - Anna Ramberg
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Anja Solterbeck
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Margareta Eriksson
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Dick Delbro
- School of Medical Sciences, Örebro University, SE-702 81 Örebro, Sweden
| | - Ann Erlandsson
- Department of Environmental and Life Sciences/Biology, Karlstad University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
23
|
miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 2016; 128:3125-3136. [PMID: 27702798 DOI: 10.1182/blood-2016-02-697003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic changes drive monocyte differentiation and fate. Although abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders, molecular events regulating mitochondrial activity to control life and death in monocytes remain poorly understood. We show here that, in human monocytes, microRNA-125b (miR-125b) attenuates the mitochondrial respiration through the silencing of the BH3-only proapoptotic protein BIK and promotes the elongation of the mitochondrial network through the targeting of the mitochondrial fission process 1 protein MTP18, leading to apoptosis. Proinflammatory activation of monocyte-derived macrophages is associated with a concomitant increase in miR-125b expression and decrease in BIK and MTP18 expression, which lead to reduced oxidative phosphorylation and enhanced mitochondrial fusion. In a chronic inflammatory systemic disorder, CD14+ blood monocytes display reduced miR-125b expression as compared with healthy controls, inversely correlated with BIK and MTP18 messenger RNA expression. Our findings not only identify BIK and MTP18 as novel targets for miR-125b that control mitochondrial metabolism and dynamics, respectively, but also reveal a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation. Together, these data unravel new molecular mechanisms for a proapoptotic role of miR-125b in monocytes and identify potential targets for interfering with excessive inflammatory activation of monocytes in inflammatory disorders.
Collapse
|
24
|
Wrobel K, Zhao YC, Kulkoyluoglu E, Chen KLA, Hieronymi K, Holloway J, Li S, Ray T, Ray PS, Landesman Y, Lipka AE, Smith RL, Madak-Erdogan Z. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization. Mol Endocrinol 2016; 30:1029-1045. [PMID: 27533791 PMCID: PMC5045498 DOI: 10.1210/me.2016-1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022] Open
Abstract
Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Biological Transport/drug effects
- Biological Transport/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitogen-Activated Protein Kinase 7/genetics
- Mitogen-Activated Protein Kinase 7/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/pharmacology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Kinga Wrobel
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yiru Chen Zhao
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Karen Lee Ann Chen
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Kadriye Hieronymi
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Jamie Holloway
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Sarah Li
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Tania Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Partha Sarathi Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yosef Landesman
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Alexander Edward Lipka
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Rebecca Lee Smith
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| |
Collapse
|
25
|
Tong H, Ke JQ, Jiang FZ, Wang XJ, Wang FY, Li YR, Lu W, Wan XP. Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer. Cancer Lett 2016; 376:127-36. [PMID: 27018308 DOI: 10.1016/j.canlet.2016.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE To elucidate the role of tumor-associated macrophage (TAM) in the loss of ERα in endometrial cancer (EC) and the underlying mechanism. MATERIALS AND METHODS Tissue microarrays and immunohistochemistry assays were performed using endometrial cancer tissue along with coculture, immunofluorescence, invasion assays and ChIP-qPCR using a human endometrial cancer cell line. RESULTS Compared with normal tissue, an increased number of TAM was found in EC tissue (34.0 ± 2.6 vs. 8.3 ± 1.1, respectively; p < 0.001), which may downregulate ERα (27.4%, p < 0.05 for HEC-1A and 16.9%, p < 0.05 for Ishikawa) and promote EC cell invasion (1.8-fold, p < 0.001 for HEC-1A and 2.0-fold, p < 0.001 for Ishikawa). Furthermore, we found that TAM-derived CXCL8 mediated the loss of ERα and cancer invasion via HOXB13. HOXB13 was highly expressed in the ERα-negative subtype (r = -0.204, p = 0.002) and low expression of ESR1 was associated with a poor prognosis for EC patients (log-rank p < 0.05). CONCLUSION TAM-secreted CXCL8 downregulated the ERα expression of EC cells via HOXB13, which may be associated with cancer invasion, metastasis and poor prognosis.
Collapse
Affiliation(s)
- Huan Tong
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Zhou Jiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Yuan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ran Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Lu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Ping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Shah SH, Miller P, Garcia-Contreras M, Ao Z, Machlin L, Issa E, El-Ashry D. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther 2015; 16:1671-81. [PMID: 26186233 DOI: 10.1080/15384047.2015.1071742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple juxtacrine and paracrine interactions occur between cancer cells and non-cancer cells of the tumor microenvironment (TME) that direct tumor progression. Cancer Associated Fibroblasts (CAFs) are an integral component of the TME, and the majority of breast tumor stroma is comprised of CAFs. Heterotypic interactions between cancer cells and non-cancer cells of the TME occur via soluble agents, including cytokines, hormones, growth factors, and secreted microRNAs. We previously identified a microRNA signature indicative of hyperactive MAPK signaling (hMAPK-miRNA signature) that significantly associated with reduced recurrence-free and overall survival. Here we report that the hMAPK-miRNA signature associates with a high metric of stromal cell infiltrate, and we investigate the role of microRNAs, particularly hMAPK-microRNAs, secreted by CAFs on estrogen receptor (ER) expression in breast cancer cells. ER-positive MCF-7/ltE2- cells were treated with conditioned media (CM) from CAFs derived from breast cancers of different PAM50 subtypes (CAFBAS, CAFHER2, and CAFLA). CAF CM isolated specifically from ER-negative primary breast tumors led to ER repression in vitro. Nanoparticle tracking analysis and transmission electron microscopy confirmed the presence of CAF-secreted exosomes in CM and the uptake of these exosomes by the ER+ MCF-7/ltE2- cells. Differentially expressed microRNAs in CAF CM as well as in MCF-7/ltE2- cells treated with this CM were identified. Knockdown of miR-221/222 in CAFBAS resulted in knockdown of miR221/222 levels in the conditioned media and the CM from CAFBAS; miR221/222 knockdown rescued ER repression in ER-positive cell lines treated with CAFBAS-CM. Collectively, our results demonstrate that CAF-secreted microRNAs are directly involved in ER-repression, and may contribute to the MAPK-induced ER repression in breast cancer cells.
Collapse
Affiliation(s)
- Sanket H Shah
- a Cancer Biology; University of Miami ; Miami , FL USA
| | - Philip Miller
- c Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine ; Miami , FL USA
| | - Marta Garcia-Contreras
- d Diabetes Research Institute; University of Miami Miller School of Medicine ; Miami , FL USA
| | - Zheng Ao
- a Cancer Biology; University of Miami ; Miami , FL USA
| | - Leah Machlin
- c Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine ; Miami , FL USA
| | - Emilio Issa
- e Department of Biology ; University of Miami ; Miami , FL USA
| | - Dorraya El-Ashry
- b Department of Internal Medicine ; University of Miami Miller School of Medicine ; Miami , FL USA.,c Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine ; Miami , FL USA
| |
Collapse
|
27
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
28
|
Nur77 deficiency leads to systemic inflammation in elderly mice. JOURNAL OF INFLAMMATION-LONDON 2015; 12:40. [PMID: 26113803 PMCID: PMC4480882 DOI: 10.1186/s12950-015-0085-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023]
Abstract
Background Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. Findings We found that elderly 8-month-old Nur77-deficient mice (Nur77−/−) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77+/+), Nur77−/− mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77−/− mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. Conclusions These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0085-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Murray JI, West NR, Murphy LC, Watson PH. Intratumoural inflammation and endocrine resistance in breast cancer. Endocr Relat Cancer 2015; 22:R51-67. [PMID: 25404688 DOI: 10.1530/erc-14-0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming clear that inflammation-associated mechanisms can affect progression of breast cancer and modulate responses to treatment. Estrogen receptor alpha (ERα (ESR1)) is the principal biomarker and therapeutic target for endocrine therapies in breast cancer. Over 70% of patients are ESR1-positive at diagnosis and are candidates for endocrine therapy. However, ESR1-positive tumours can become resistant to endocrine therapy. Multiple mechanisms of endocrine resistance have been proposed, including suppression of ESR1. This review discusses the relationship between intratumoural inflammation and endocrine resistance with a particular focus on inflammation-mediated suppression of ESR1.
Collapse
Affiliation(s)
- Jill I Murray
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nathan R West
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh C Murphy
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Peter H Watson
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Berry SM, Singh C, Lang JD, Strotman LN, Alarid ET, Beebe DJ. Streamlining gene expression analysis: integration of co-culture and mRNA purification. Integr Biol (Camb) 2014; 6:224-31. [PMID: 24413730 DOI: 10.1039/c3ib40136g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting and nucleic acid purification). Also, a significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integrated platform for performing microfluidic cell culture and extraction of mRNA for gene expression analysis. This platform was able to recover 30-fold more mRNA than a similar, non-integrated system. Additionally, using a breast cancer/bone marrow stroma co-culture, we recapitulated stromal-dependent, estrogen-independent growth of the breast cancer cells, coincident with transcriptional changes. We anticipate that this platform will be used for streamlined analysis of paracrine signaling events as well as for screening potential drugs and/or patient samples.
Collapse
Affiliation(s)
- Scott M Berry
- Departments of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Plotkin A, Volmar CH, Wahlestedt C, Ayad N, El-Ashry D. Transcriptional repression of ER through hMAPK dependent histone deacetylation by class I HDACs. Breast Cancer Res Treat 2014; 147:249-63. [PMID: 25129342 DOI: 10.1007/s10549-014-3093-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
Anti-estrogen therapies are not effective in ER- breast cancers, thus identifying mechanisms underlying lack of ER expression in ER- breast cancers is imperative. We have previously demonstrated that hyperactivation of MAPK (hMAPK) downstream of overexpressed EGFR or overexpression/amplification of Her2 represses ER protein and mRNA expression. Abrogation of hMAPK in ER- breast cancer cell lines and primary cultures causes re-expression of ER and restoration of anti-estrogen responses. This study was performed to identify mechanisms of hMAPK-induced transcriptional repression of ER. We found that ER promoter activity is significantly reduced in the presence of hMAPK signaling, yet did not identify specific promoter sequences responsible for this repression. We performed an epigenetic compound screen in an ER- breast cancer cell line that expresses hMAPK yet does not exhibit ER promoter hypermethylation. A number of HDAC inhibitors were identified and confirmed to modulate ER expression and estrogen signaling in multiple ER- cell lines and tumor samples lacking ER promoter methylation. siRNA-mediated knockdown of HDACs 1, 2, and 3 reversed the mRNA repression in multiple breast cancer cell lines and primary cultures and ER promoter-associated histone acetylation increased following MAPK inhibition. These data implicate histone deacetylation downstream of hMAPK in the observed ER mRNA repression associated with hMAPK. Importantly, histone deacetylation appears to be a common mechanism in the transcriptional repression of ER between ER- breast cancers with or without ER promoter hypermethylation.
Collapse
Affiliation(s)
- Amy Plotkin
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, 1501 NW 10th Ave., Miami, FL, 33136, USA
| | | | | | | | | |
Collapse
|
32
|
Holton SE, Bergamaschi A, Katzenellenbogen BS, Bhargava R. Integration of molecular profiling and chemical imaging to elucidate fibroblast-microenvironment impact on cancer cell phenotype and endocrine resistance in breast cancer. PLoS One 2014; 9:e96878. [PMID: 24816718 PMCID: PMC4016150 DOI: 10.1371/journal.pone.0096878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/12/2014] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is known to play a key role in altering the properties and behavior of nearby cancer cells. Its influence on resistance to endocrine therapy and cancer relapse, however, is poorly understood. Here we investigate the interaction of mammary fibroblasts and estrogen receptor-positive breast cancer cells in three-dimensional culture models in order to characterize gene expression, cellular changes, and the secreted protein factors involved in the cellular cross-talk. We show that fibroblasts, which are the predominant cell type found in the stroma adjacent to the cancer cells in a tumor, induce an epithelial-to-mesenchymal transition in the cancer cells, leading to hormone-independent growth, a more invasive phenotype, and resistance to endocrine therapy. Here, we applied a label-free chemical imaging modality, Fourier transform infrared (FT-IR) spectroscopic imaging, to identify cells that had transitioned to hormone-independent growth. Both the molecular and chemical profiles identified here were translated from cell culture to patient samples: a secreted protein signature was used to stratify patient populations based on gene expression and FT-IR was used to characterize breast tumor patient biopsies. Our findings underscore the role of mammary fibroblasts in promoting aggressiveness and endocrine therapy resistance in ER-positive breast cancers and highlight the utility of FT-IR for the further characterization of breast cancer samples.
Collapse
Affiliation(s)
- Sarah E. Holton
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Anna Bergamaschi
- Departments of Molecular and Integrative Physiology, Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology, Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Departments of Mechanical Science and Engineering, Electrical and Computer Engineering, and Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Traditionally, steroid hormones such as the vitamin D3 metabolites, testosterone and dihydrotesterone, and 17β-estradiol act through cytosolic and nuclear receptors that directly interact with DNA to alter gene transcription and regulate cellular development. However, recent studies focused on rapid and membrane effects of steroid hormones have given invaluable insight into their non-classical mechanisms of action. In some cases, the traditional receptors were implicated as acting also in the plasma membrane as membrane-associated receptors. However, recent data have demonstrated the presence of an alternative splicing variant to traditional estrogen receptor α known as ERα36, which is present in the plasma membranes of several different cell types including several cancer cell types and even in some normal cells including cartilage and bone cells. The physiological effects that result from the membrane activation of ERα36 may vary from one cell type to another, but the mechanism of action appears to use similar pathways such as the activation of various protein kinases and phospholipases leading to the activation of signaling cascades that result in rapid, non-genomic responses. These rapid responses can affect cell proliferation and apoptotic signaling, indirectly activate downstream genomic signaling through phosphorylation cascades of transcription factors, and crosstalk with classical pathways via interaction with classical receptors. This review describes the data from the last several years and discusses the non-classical, rapid, and membrane-associated cellular responses to steroid hormones, particularly 17β-estradiol, through the classical receptors ERα and ERβ and various non-classical receptors, especially estrogen receptor-α36 (ERα36).
Collapse
Affiliation(s)
- Reyhaan A Chaudhri
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; Atlanta Clinical and Translational Science Institute, Emory University, 1440 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Tchernichovsky 59, Kfar Saba 44299, Israel
| | - Khairat Elbaradie
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; Department of Zoology, Tanta University, 69 Tout Ankh Amoon St, Tanta 31111, Egypt
| | - Zvi Schwartz
- School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MSC 7894, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284, USA.
| |
Collapse
|
34
|
Madak-Erdogan Z, Ventrella R, Petry L, Katzenellenbogen BS. Novel roles for ERK5 and cofilin as critical mediators linking ERα-driven transcription, actin reorganization, and invasiveness in breast cancer. Mol Cancer Res 2014; 12:714-27. [PMID: 24505128 DOI: 10.1158/1541-7786.mcr-13-0588] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Cancer cell motility and invasiveness are fundamental characteristics of the malignant phenotype and are regulated through diverse signaling networks involving kinases and transcription factors. This study establishes an estrogen receptor (ERα)/MAPK (ERK5)/cofilin (CFL1) network that specifies the degree of breast cancer cell aggressiveness through coupling of actin reorganization and hormone receptor-mediated transcription. Using dominant negative and constitutively active forms, as well as small-molecule inhibitors of extracellular signal-regulated kinase (ERK)5 and MAP-ERK kinase (MEK)5, it was revealed that hormone activation of ERα determined the subcellular localization of ERK5, which functions as a coregulator of ERα-dependent gene transcription. Notably, ERK5 acted in concert with the actin remodeling protein, CFL1, and upon hormone exposure, both localized to active nuclear transcriptional hubs as verified by immunofluorescence and proximity ligation assays. Both ERK5 and CFL1 facilitated PAF1 recruitment to the RNA Pol II complex and both were required for regulation of gene transcription. In contrast, in cells lacking ERα, ERK5 and CFL1 localized to cytoplasmic membrane regions of high actin remodeling, promoting cell motility and invasion, thereby revealing a mechanism likely contributing to the generally poorer prognosis of patients with ERα-negative breast cancer. Thus, this study uncovers the dynamic interplay of nuclear receptor-mediated transcription and actin reorganization in phenotypes of breast cancer aggressiveness. IMPLICATIONS Identification of the ER/ERK5/CFL1 axis suggests new prognostic biomarkers and novel therapeutic avenues to moderate cancer aggressiveness.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Authors' Affiliation: Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | | |
Collapse
|
35
|
Kim BY, Park I, Jung YK, Han MS, Kim GW, Han SW. DICAM-mediated Inhibition of Type 1 Interferon System during Macrophage Differentiation of THP-1 Cells. JOURNAL OF RHEUMATIC DISEASES 2014. [DOI: 10.4078/jrd.2014.21.3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bo Yeon Kim
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - In Park
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Youn Kwan Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Min Su Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Gun Woo Kim
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Seung Woo Han
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| |
Collapse
|
36
|
Hoppe R, Achinger-Kawecka J, Winter S, Fritz P, Lo WY, Schroth W, Brauch H. Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer 2013; 49:3598-608. [DOI: 10.1016/j.ejca.2013.07.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
|
37
|
Kuo CH, Chen KF, Chou SH, Huang YF, Wu CY, Cheng DE, Chen YW, Yang CJ, Hung JY, Huang MS. Lung tumor-associated dendritic cell-derived resistin promoted cancer progression by increasing Wolf-Hirschhorn syndrome candidate 1/Twist pathway. Carcinogenesis 2013; 34:2600-9. [PMID: 23955539 DOI: 10.1093/carcin/bgt281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The interaction between tumors and their microenvironments leads to a vicious cycle, which strengthens both immune suppression and cancer progression. The present study demonstrates for the first time that tumor-associated dendritic cells (TADCs) are a source of resistin, which is responsible for increasing lung cancer epithelial-to-mesenchymal transition. In addition, large amounts of resistin in the condition medium (CM) of TADCs increase cell migration and invasion, as well as the osteolytic bone metastatic properties of lung cancer cells. Neutralization of resistin from TADC-CM prevents the advanced malignancy-inducing features of TADC-CM. Significantly elevated levels of resistin have been observed in mice transplanted with lung cancer cells, tumor-infiltrating CD11c(+) DCs in human lung cancer samples and lung cancer patients' sera. Induction of lung cancer progression by TADC-derived resistin is associated with increased expression of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase. Resistin-induced WHSC1 increases the dimethylation of histone 3 at lysine 36 and decreases the trimethylation of histone 3 at lysine 27 on the promoter of Twist, resulting in an enhancement of the expression of Twist. Knockdown of WHSC1 by small interfering RNA transfection significantly decreases resistin-mediated cancer progression by decreasing the upregulation of Twist, suggesting that WHSC1 plays a critical role in the regulation of Twist by epigenetic modification. Furthermore, mice that received antiresistin antibodies showed a decreased incidence of cancer development and metastasis. These findings suggest that TADC-derived resistin may be a novel candidate in promoting the development of lung cancer.
Collapse
Affiliation(s)
- Chih-Hsin Kuo
- The Affiliated Senior High School of National Kaohsiung Normal University, Kaohsiung 802, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler Thromb Vasc Biol 2013; 33:1127-34. [PMID: 23640494 DOI: 10.1161/atvbaha.113.301328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are plastic and versatile cells adapting their function/phenotype to the microenvironment. Distinct macrophage subpopulations with different functions, including classically (M1) and (M2) activated macrophages, have been described. Reciprocal skewing of macrophage polarization between the M1 and M2 state is a process modulated by transcription factors, such as the nuclear peroxisome proliferator-activated receptors. However, whether the estrogen/estrogen receptor pathways control the balance between M1/M2 macrophages is only partially understood. Estrogen-dependent effects on the macrophage system may be regarded as potential targets of pharmacological approaches to protect postmenopausal women from the elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
39
|
Lang JD, Berry SM, Powers GL, Beebe DJ, Alarid ET. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr Biol (Camb) 2013; 5:807-16. [PMID: 23559098 PMCID: PMC3648339 DOI: 10.1039/c3ib20265h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer cell growth and therapeutic response are manipulated extrinsically by microenvironment signals. Despite recognition of the importance of the microenvironment in a variety of tumor processes, predictive measures that incorporate the activity of the surrounding cellular environment are lacking. In contrast, tumor cell biomarkers are well established in the clinic. Expression of Estrogen Receptor-alpha (ERα) is the primary defining feature of hormonally responsive tumors and is the molecular target of therapy in the most commonly diagnosed molecular subtype of breast cancer. While a number of soluble factors have been implicated in ERα activation, the complexity of signaling between the cellular microenvironment and the cancer cell implies multivariate control. The cumulative impact of the microenvironment signaling, which we define as microenvironmental activity, is more difficult to predict than the sum of its parts. Here we tested the impact of an array of microenvironments on ERα signaling utilizing a microfluidic co-culture model. Quantitative immunofluorescence was employed to assess changes in ERα protein levels, combined with gene expression and phosphorylation status, as measures of activation. Analysis of microenvironment-induced growth under the same conditions revealed a previously undescribed correlation between growth and ERα protein down-regulation. These data suggest an expanded utility for the tumor biomarker ERα, in which the combination of dynamic regulation of ERα protein and growth in a breast cancer biosensor cell become a read-out of the microenvironmental activity.
Collapse
Affiliation(s)
- Jessica D Lang
- University of Wisconsin-Madison Carbone Comprehensive Cancer Center, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
40
|
Li G, Zhang J, Jin K, He K, Zheng Y, Xu X, Wang H, Wang H, Li Z, Yu X, Teng X, Cao J, Teng L. Estrogen receptor-α36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells. Mol Oncol 2013; 7:611-24. [PMID: 23499324 DOI: 10.1016/j.molonc.2013.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 01/07/2023] Open
Abstract
Acquired tamoxifen (TAM) resistance limits the therapeutic benefit of TAM in patients with hormone-dependent breast cancer. The switch from estrogen-dependent to growth factor-dependent growth is a critical step in this process. However, the molecular mechanisms underlying this switch remain poorly understood. In this study, we established a TAM resistant cell sub line (MCF-7/TAM) from estrogen receptor-α (ER-α66) positive breast cancer MCF-7 cells by culturing ER-α66-positive MCF-7 cells in medium plus 1 μM TAM over 6 months. MCF-7/TAM cells were then found to exhibit accelerated proliferation rate together with enhanced in vitro migratory and invasive ability. And the estrogen receptor-α36 (ER-α36), a novel 36-kDa variant of ER-α66, was dramatically overexpressed in this in vitro model, compared to the parental MCF-7 cells. Meanwhile, the expression of epidermal growth factor receptor (EGFR) in MCF-7/TAM cells was significantly up-regulated both in mRNA level and protein level, and the expression of ER-α66 was greatly down-regulated oppositely. In the subsequent studies, we overexpressed ER-α36 in MCF-7 cells by stable transfection and found that ER-α36 transfected MCF-7 cells (MCF-7/ER-α36) similarly exhibited decreased sensitivity to TAM, accelerated proliferative rate and enhanced in vitro migratory and invasive ability, compared to empty vector transfected MCF-7 cells (MCF-7/V). Real-time qPCR and Western blotting analysis revealed that MCF-7/ER-α36 cells possessed increased EGFR expression but decreased ER-α66 expression both in mRNA level and protein level, compared to MCF-7/V cells. This change in MCF-7/ER-α36 cells could be reversed by neutralizing anti-ER-α36 antibody treatment. Furthermore, knock-down of ER-α36 expression in MCF-7/TAM cells resulted in reduced proliferation rate together with decreased in vitro migratory and invasive ability. Decreased EGFR mRNA and protein expression as well as increased ER-α66 mRNA expression were also observed in MCF-7/TAM cells with down-regulated ER-α36 expression. In addition, blocking EGFR/ERK signaling in MCF-7/ER-α36 cells could restore the expression of ER-α66 partly, suggesting a regulatory function of EGFR/ERK signaling in down-regulation of ER-α66 expression. In conclusion, our results indicated for the first time a regulatory role of ER-α36 in up-regulation of EGFR expression and down-regulation of ER-α66 expression, which could be an underlying mechanism for the growth status switch in breast tumors that contribute to the generation of acquired TAM resistance. And ER-α36 could be considered a potential new therapeutic target in breast tumors which have acquired resistance to TAM.
Collapse
Affiliation(s)
- Guangliang Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, 79, Qingchun Road, Hangzhou, Zhejiang Province 310003, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ch'ng ES, Tuan Sharif SE, Jaafar H. In human invasive breast ductal carcinoma, tumor stromal macrophages and tumor nest macrophages have distinct relationships with clinicopathological parameters and tumor angiogenesis. Virchows Arch 2013; 462:257-67. [PMID: 23283409 DOI: 10.1007/s00428-012-1362-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/02/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages play a crucial role in breast cancer progression and tumor angiogenesis. However, evaluation of tumor-associated macrophages incorporating their histological locations is lacking. The aim of this study was to clarify whether macrophages in tumor stroma and macrophages in tumor cell nests have distinctive properties in relation to pertinent breast cancer clinicopathological parameters and tumor angiogenesis. In 94 human invasive breast ductal carcinomas, tumor-associated macrophages were immunostained with anti-CD68 antibody and counted or graded according to these histological locations. Microvessels were immunostained with anti-CD34 antibody and counted for microvessel density. We found that the presence of tumor stromal and tumor nest macrophages was closely correlated (p = 0.001). Both tumor stromal and tumor nest macrophages were associated with mitotic count (p = 0.001 and p = 0.037, respectively). However, only higher tumor stromal macrophage grades were associated with higher tumor grades (p = 0.004) and negative estrogen receptor status (p = 0.007). Multivariate analysis showed that tumors with a high mitotic count score (score 3 vs. scores 1 and 2) had a higher tumor stromal macrophage density (Grades III and IV) when adjusted for tumor size, tubule formation, and estrogen receptor status (odds ratio 3.41, p = 0.010). The tumor nest macrophage count significantly correlated with the microvessel density (p < 0.001). These results imply that tumor stromal macrophages and tumor nest macrophages residing in different tumor microenvironments have distinctive roles.
Collapse
Affiliation(s)
- Ewe Seng Ch'ng
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | |
Collapse
|
42
|
Modulation of estrogen receptor alpha activity and expression during breast cancer progression. VITAMINS AND HORMONES 2013; 93:135-60. [PMID: 23810005 DOI: 10.1016/b978-0-12-416673-8.00004-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seventy percent of breast tumors express the estrogen receptor (ER), which is generally considered to predict a better outcome relative to ER-negative tumors, as they often respond to antiestrogen therapies. During cancer progression, mammary tumors can escape from estrogen control, resulting in the acquisition of invasive properties and resistance to treatment. ER expression is a dynamic phenomenon and is finely regulated at numerous levels, including the gene, mRNA, and protein levels. As a consequence, many molecular mechanisms have been implicated in modulating ER activity and estrogen signaling in mammary cancer. In fact, one-third of ER-positive breast cancer cells do not respond to first-line endocrine therapies, and a large subset of relapsing tumors retain ER expression. Increased knowledge of these mechanisms has led to the development of better prognostic methods and targeted therapies for patients; however, additional research is still needed to improve patient survival. In this chapter, we focus on the signaling pathways leading to changes in or loss of ER activity in breast cancer progression.
Collapse
|
43
|
Rokavec M, Luo JL. The transient and constitutive inflammatory signaling in tumorigenesis. Cell Cycle 2012; 11:2587-8. [PMID: 22751429 PMCID: PMC3409001 DOI: 10.4161/cc.21139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.
Collapse
|