1
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
2
|
Gezer U, Özgür E, Yörüker EE, Polatoglou E, Holdenrieder S, Bronkhorst A. LINE-1 cfDNA Methylation as an Emerging Biomarker in Solid Cancers. Cancers (Basel) 2024; 16:3725. [PMID: 39594682 PMCID: PMC11592170 DOI: 10.3390/cancers16223725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetic dysregulation is a hallmark of many human malignancies, with DNA methylation being a primary mechanism influencing gene expression and maintaining genomic stability. Genome-wide hypomethylation, characteristic of many cancers, is partly attributed to the demethylation of repetitive elements, including LINE-1, a prevalent non-LTR retrotransposon. The methylation status of LINE-1 is closely associated with overall genomic methylation levels in tumors. cfDNA comprises extracellular DNA fragments found in bodily fluids such as plasma, serum, and urine, offering a dynamic snapshot of the genetic and epigenetic landscape of tumors. This real-time sampling provides a minimally invasive avenue for cancer diagnostics, prognostics, and monitoring. The methylation status of LINE-1 in cfDNA has emerged as a promising biomarker, with several studies highlighting its potential in diagnosing and predicting outcomes in cancer patients. Recent research also suggests that cfDNA-based LINE-1 methylation analysis could serve as a valuable tool in evaluating the efficacy of cancer therapies, including immunotherapy. The growing clinical significance of cfDNA calls for a closer examination of its components, particularly repetitive elements like LINE-1. Despite their importance, the role of LINE-1 elements in cfDNA has not been thoroughly gauged. We aim to address this gap by reviewing the current literature on LINE-1 cfDNA assays, focusing on their potential applications in diagnostics and disease monitoring.
Collapse
Affiliation(s)
- Ugur Gezer
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Emre Özgür
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Ebru E. Yörüker
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Eleni Polatoglou
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| | - Abel Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| |
Collapse
|
3
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
4
|
Tang H, Guan Y, Yuan Z, Guo T, Tan X, Fan Y, Zhang E, Wang X. Histone demethylase KDM4B contributes to advanced clear cell renal carcinoma and association with copy number variations and cell cycle progression. Epigenetics 2023; 18:2192319. [PMID: 36952476 PMCID: PMC10038057 DOI: 10.1080/15592294.2023.2192319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Advanced renal cell carcinoma (RCC) poses a threat to patient survival. Epigenetic remodelling is the pathogenesis of renal cancer. Histone demethylase 4B (KDM4B) is overexpressed in many cancers through various pathways. However, the role of KDM4B in clear cell renal carcinoma has not yet been elucidated. The differential expression of KDM4B was first verified by analysing public databases. The expression of KDM4B in fresh tissues and pathology slides was further analysed by western blotting and immunohistochemical staining. KDM4B overexpression and knockdown cell lines were also established. Cell Counting Kit-8 (CCK-8) assay was used to detect cell growth. Transwell assays were performed to assess cell migration. Xenografts were used to evaluate tumour growth and metastasis in vivo. Finally, KDM4B expression levels associated with copy number variation (CNV) and cell cycle stage were evaluated based on single-cell RNA sequencing data. KDM4B was expressed at higher levels in tumour tissues than in the adjacent normal tissues. High levels of KDM4B are associated with worse pathological features and poorer prognosis. KDM4B also promotes cell proliferation and migration in vitro, as well as tumour growth and metastasis in vivo. Tumour cells with high KDM4B expression exhibited higher CNV levels and a greater proportion of cells in the G1/S transition phase. Our results confirm that KDM4B promotes the progression of clear cell renal carcinoma, is correlated with poor prognosis, and may be related to high levels of CNV and cell cycle progression.
Collapse
Affiliation(s)
- Heting Tang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fan
- Department of Renal Transplantation, Xiangan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Chandhasin C, Dang V, Perabo F, Del Rosario J, Chen YK, Filvaroff E, Stafford JA, Clarke M. TACH101, a first-in-class pan-inhibitor of KDM4 histone demethylase. Anticancer Drugs 2023; 34:1122-1131. [PMID: 37067993 PMCID: PMC10569680 DOI: 10.1097/cad.0000000000001514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 04/18/2023]
Abstract
Histone lysine demethylase 4 (KDM4) is an epigenetic regulator that facilitates the transition between transcriptionally silent and active chromatin states by catalyzing the removal of methyl groups on histones H3K9, H3K36, and H1.4K26. KDM4 overamplification or dysregulation has been reported in various cancers and has been shown to drive key processes linked to tumorigenesis, such as replicative immortality, evasion of apoptosis, metastasis, DNA repair deficiency, and genomic instability. KDM4 also plays a role in epigenetic regulation of cancer stem cell renewal and has been linked to more aggressive disease and poorer clinical outcomes. The KDM4 family is composed of four main isoforms (KDM4A-D) that demonstrate functional redundancy and cross-activity; thus, selective inhibition of one isoform appears to be ineffective and pan-inhibition targeting multiple KDM4 isoforms is required. Here, we describe TACH101, a novel, small-molecule pan-inhibitor of KDM4 that selectively targets KDM4A-D with no effect on other KDM families. TACH101 demonstrated potent antiproliferative activity in cancer cell lines and organoid models derived from various histologies, including colorectal, esophageal, gastric, breast, pancreatic, and hematological malignancies. In vivo , potent inhibition of KDM4 led to efficient tumor growth inhibition and regression in several xenograft models. A reduction in the population of tumor-initiating cells was observed following TACH101 treatment. Overall, these observations demonstrate the broad applicability of TACH101 as a potential anticancer agent and support its advancement into clinical trials.
Collapse
|
6
|
Wang Y, Ye D, Li Y, Lv F, Shen W, Li H, Tian L, Fan Z, Li Y, Wang Y, Li F, Chen Y. Prognostic and immune infiltrative biomarkers of CENPO in pan-cancer and its relationship with lung adenocarcinoma cell proliferation and metastasis. BMC Cancer 2023; 23:735. [PMID: 37558987 PMCID: PMC10410993 DOI: 10.1186/s12885-023-11233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The centromere protein O (CENPO) is an important member of the centromere protein family. However, the role of CENPO in pan-cancer and immune infiltration has not been reported. Here, we investigated the role of CENPO in pan-cancer and further validated its role in lung adenocarcinoma (LUAD) by in vitro experiments. METHOD The UCSC Xena database and The Cancer Genome Atlas (TCGA)-LUAD data were used to assess the expression levels of CENPO. The potential value of CENPO as a diagnostic and prognostic biomarker for pan-cancer was evaluated using TCGA data and the GEPIA database. The -expression profiles of LUAD patients and the corresponding clinical data were downloaded for correlation analysis. The role of CENPO in immune infiltration was investigated using the UCSC Xena database. Subsequently, qRT-PCR was performed to detect the expression of CENPO. Cell proliferation, migration, and invasion were determined using CCK-8, wound-healing assay, and transwell assay, respectively. RESULTS CENPO is highly expressed in most cancers, and the upregulation of CENPO is associated with poor prognosis in many cancers. CENPO expression correlates with age, TNM stage, N stage, T stage, and receipt of radiotherapy in LUAD patients, and LUAD patients with high CENPO expression have poorer overall survival (OS) and disease-free survival (DFS). In addition, CENPO expression is associated with immune cell infiltration and immune checkpoint inhibitors. Moreover, the expression of CENPO was closely related to the expression of tumor mutational load and microsatellite instability. In vitro experiments showed that CENPO expression was increased in LUAD cell lines and that knockdown of CENPO significantly inhibited the proliferation, cell invasion, and migration ability of LUAD cells. CONCLUSION CENPO may be a potential pan-cancer biomarker and oncogene, especially in LUAD. In addition, CENPO is associated with immune cell infiltration and may serve as a new molecular therapeutic target and effective prognostic marker for LUAD.
Collapse
Affiliation(s)
- Yuanbiao Wang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
- Ganzhou Cancer Hospital, Ganzhou, 341000, China
| | - Daowen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Ying Li
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fenghong Lv
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Wanbo Shen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Hui Li
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Linghan Tian
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Zongling Fan
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Yanling Li
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Yan Wang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Feng Li
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China
| | - Yan Chen
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, China.
| |
Collapse
|
7
|
Besselink N, Keijer J, Vermeulen C, Boymans S, de Ridder J, van Hoeck A, Cuppen E, Kuijk E. The genome-wide mutational consequences of DNA hypomethylation. Sci Rep 2023; 13:6874. [PMID: 37106015 PMCID: PMC10140063 DOI: 10.1038/s41598-023-33932-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
DNA methylation is important for establishing and maintaining cell identity and for genomic stability. This is achieved by regulating the accessibility of regulatory and transcriptional elements and the compaction of subtelomeric, centromeric, and other inactive genomic regions. Carcinogenesis is accompanied by a global loss in DNA methylation, which facilitates the transformation of cells. Cancer hypomethylation may also cause genomic instability, for example through interference with the protective function of telomeres and centromeres. However, understanding the role(s) of hypomethylation in tumor evolution is incomplete because the precise mutational consequences of global hypomethylation have thus far not been systematically assessed. Here we made genome-wide inventories of all possible genetic variation that accumulates in single cells upon the long-term global hypomethylation by CRISPR interference-mediated conditional knockdown of DNMT1. Depletion of DNMT1 resulted in a genomewide reduction in DNA methylation. The degree of DNA methylation loss was similar to that observed in many cancer types. Hypomethylated cells showed reduced proliferation rates, increased transcription of genes, reactivation of the inactive X-chromosome and abnormal nuclear morphologies. Prolonged hypomethylation was accompanied by increased chromosomal instability. However, there was no increase in mutational burden, enrichment for certain mutational signatures or accumulation of structural variation to the genome. In conclusion, the primary consequence of hypomethylation is genomic instability, which in cancer leads to increased tumor heterogeneity and thereby fuels cancer evolution.
Collapse
Affiliation(s)
- Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke Keijer
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlo Vermeulen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen de Ridder
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arne van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Carnie CJ, Armstrong L, Sebesta M, Ariza A, Wang X, Graham E, Zhu K, Ahel D. ERCC6L2 mitigates replication stress and promotes centromere stability. Cell Rep 2023; 42:112329. [PMID: 37014751 DOI: 10.1016/j.celrep.2023.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Structurally complex genomic regions, such as centromeres, are inherently difficult to duplicate. The mechanism behind centromere inheritance is not well understood, and one of the key questions relates to the reassembly of centromeric chromatin following DNA replication. Here, we define ERCC6L2 as a key regulator of this process. ERCC6L2 accumulates at centromeres and promotes deposition of core centromeric factors. Interestingly, ERCC6L2-/- cells show unrestrained replication of centromeric DNA, likely caused by the erosion of centromeric chromatin. Beyond centromeres, ERCC6L2 facilitates replication at genomic repeats and non-canonical DNA structures. Notably, ERCC6L2 interacts with the DNA-clamp PCNA through an atypical peptide, presented here in a co-crystal structure. Finally, ERCC6L2 also restricts DNA end resection, acting independently of the 53BP1-REV7-Shieldin complex. We propose a mechanistic model, which reconciles seemingly distinct functions of ERCC6L2 in DNA repair and DNA replication. These findings provide a molecular context for studies linking ERCC6L2 to human disease.
Collapse
Affiliation(s)
| | - Lucy Armstrong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xiaomeng Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
9
|
Gao H, Xu H, Wang C, Cui L, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Zhang R, Li Z, Wang T. Optical Genome Mapping for Comprehensive Assessment of Chromosomal Aberrations and Discovery of New Fusion Genes in Pediatric B-Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:35. [PMID: 36612032 PMCID: PMC9817688 DOI: 10.3390/cancers15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the potential added value of Optical Genomic Mapping (OGM) for identifying chromosomal aberrations. METHODS We utilized Optical Genomic Mapping (OGM) to determine chromosomal aberrations in 46 children with B-cell Acute lymphoblastic leukemia ALL (B-ALL) and compared the results of OGM with conventional technologies. Partial detection results were verified by WGS and PCR. RESULTS OGM showed a good concordance with conventional cytogenetic techniques in identifying the reproducible and pathologically significant genomic SVs. Two new fusion genes (LMNB1::PPP2R2B and TMEM272::KDM4B) were identified by OGM and verified by WGS and RT-PCR for the first time. OGM has a greater ability to detect complex chromosomal aberrations, refine complicated karyotypes, and identify more SVs. Several novel fusion genes and single-gene alterations, associated with definite or potential pathologic significance that had not been detected by traditional methods, were also identified. CONCLUSION OGM addresses some of the limitations associated with conventional cytogenomic testing. This all-in-one process allows the detection of most major genomic risk markers in one test, which may have important meanings for the development of leukemia pathogenesis and targeted drugs.
Collapse
Affiliation(s)
- Huixia Gao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chanjuan Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Lei Cui
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaotong Huang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Weijing Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhixia Yue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Shuo Tian
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianlin Xue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianyu Xing
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Jun Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ying Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ruidong Zhang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhigang Li
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Tianyou Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| |
Collapse
|
10
|
Chromosomal Heteromorphisms and Cancer Susceptibility Revisited. Cells 2022; 11:cells11203239. [PMID: 36291106 PMCID: PMC9600968 DOI: 10.3390/cells11203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomal heteromorphisms (CHs) are a part of genetic variation in man. The past literature largely posited whether CHs could be correlated with the development of malignancies. While this possibility seemed closed by end of the 1990s, recent data have raised the question again on the potential influences of repetitive DNA elements, the main components of CHs, in cancer susceptibility. Such new evidence for a potential role of CHs in cancer can be found in the following observations: (i) amplification and/or epigenetic alterations of CHs are routinely reported in tumors; (ii) the expression of CH-derived RNA in embryonal and other cells under stress, including cancer cells; (iii) the expression of parts of CH-DNA as long noncoding RNAs; plus (iv) theories that suggest a possible application of the “two-hit model” for euchromatic copy number variants (CNVs). Herein, these points are discussed in detail, which leads to the conclusion that CHs are by far not given sufficient consideration in routine cytogenetic analysis, e.g., leukemias and lymphomas, and need more attention in future research settings including solid tumors. This heightened focus may only be achieved by approaches other than standard sequencing or chromosomal microarrays, as these techniques are at a minimum impaired in their ability to detect, if not blind to, (highly) repetitive DNA sequences.
Collapse
|
11
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
12
|
A classical revival: Human satellite DNAs enter the genomics era. Semin Cell Dev Biol 2022; 128:2-14. [PMID: 35487859 DOI: 10.1016/j.semcdb.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
The classical human satellite DNAs, also referred to as human satellites 1, 2 and 3 (HSat1, HSat2, HSat3, or collectively HSat1-3), occur on most human chromosomes as large, pericentromeric tandem repeat arrays, which together constitute roughly 3% of the human genome (100 megabases, on average). Even though HSat1-3 were among the first human DNA sequences to be isolated and characterized at the dawn of molecular biology, they have remained almost entirely missing from the human genome reference assembly for 20 years, hindering studies of their sequence, regulation, and potential structural roles in the nucleus. Recently, the Telomere-to-Telomere Consortium produced the first truly complete assembly of a human genome, paving the way for new studies of HSat1-3 with modern genomic tools. This review provides an account of the history and current understanding of HSat1-3, with a view towards future studies of their evolution and roles in health and disease.
Collapse
|
13
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
14
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
15
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
17
|
Decombe S, Loll F, Caccianini L, Affannoukoué K, Izeddin I, Mozziconacci J, Escudé C, Lopes J. Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability. Epigenetics Chromatin 2021; 14:35. [PMID: 34321103 PMCID: PMC8317386 DOI: 10.1186/s13072-021-00410-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Centromeric regions of human chromosomes contain large numbers of tandemly repeated α-satellite sequences. These sequences are covered with constitutive heterochromatin which is enriched in trimethylation of histone H3 on lysine 9 (H3K9me3). Although well studied using artificial chromosomes and global perturbations, the contribution of this epigenetic mark to chromatin structure and genome stability remains poorly known in a more natural context. RESULTS Using transcriptional activator-like effectors (TALEs) fused to a histone lysine demethylase (KDM4B), we were able to reduce the level of H3K9me3 on the α-satellites repeats of human chromosome 7. We show that the removal of H3K9me3 affects chromatin structure by increasing the accessibility of DNA repeats to the TALE protein. Tethering TALE-demethylase to centromeric repeats impairs the recruitment of HP1α and proteins of Chromosomal Passenger Complex (CPC) on this specific centromere without affecting CENP-A loading. Finally, the epigenetic re-writing by the TALE-KDM4B affects specifically the stability of chromosome 7 upon mitosis, highlighting the importance of H3K9me3 in centromere integrity and chromosome stability, mediated by the recruitment of HP1α and the CPC. CONCLUSION Our cellular model allows to demonstrate the direct role of pericentromeric H3K9me3 epigenetic mark on centromere integrity and function in a natural context and opens interesting possibilities for further studies regarding the role of the H3K9me3 mark.
Collapse
Affiliation(s)
- Sheldon Decombe
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.,DCCBR, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - François Loll
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.,INSERM, UMR 1229, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
| | - Laura Caccianini
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Sorbonne Université, 75005, Paris, France
| | - Kévin Affannoukoué
- Institut Langevin, ESPCI Paris, PSL Université, CNRS, 75005, Paris, France.,Institut Fresnel, Aix Marseille Université CNRS Centrale Marseille, Marseille, France
| | - Ignacio Izeddin
- Institut Langevin, ESPCI Paris, PSL Université, CNRS, 75005, Paris, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Christophe Escudé
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Judith Lopes
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
18
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
19
|
Landers CC, Rabeler CA, Ferrari EK, D'Alessandro LR, Kang DD, Malisa J, Bashir SM, Carone DM. Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma 2021; 130:75-90. [PMID: 33585981 PMCID: PMC7889552 DOI: 10.1007/s00412-021-00753-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Within the pericentric regions of human chromosomes reside large arrays of tandemly repeated satellite sequences. Expression of the human pericentric satellite HSATII is prevented by extensive heterochromatin silencing in normal cells, yet in many cancer cells, HSATII RNA is aberrantly expressed and accumulates in large nuclear foci in cis. Expression and aggregation of HSATII RNA in cancer cells is concomitant with recruitment of key chromatin regulatory proteins including methyl-CpG binding protein 2 (MeCP2). While HSATII expression has been observed in a wide variety of cancer cell lines and tissues, the effect of its expression is unknown. We tested the effect of stable expression of HSATII RNA within cells that do not normally express HSATII. Ectopic HSATII expression in HeLa and primary fibroblast cells leads to focal accumulation of HSATII RNA in cis and triggers the accumulation of MeCP2 onto nuclear HSATII RNA bodies. Further, long-term expression of HSATII RNA leads to cell division defects including lagging chromosomes, chromatin bridges, and other chromatin defects. Thus, expression of HSATII RNA in normal cells phenocopies its nuclear accumulation in cancer cells and allows for the characterization of the cellular events triggered by aberrant expression of pericentric satellite RNA.
Collapse
Affiliation(s)
- Catherine C Landers
- Department of Nutritional Sciences, University of Connecticut , Storrs, CT, USA
| | | | | | | | - Diana D Kang
- Division of Pharmaceutics and Pharmacology College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Jessica Malisa
- Stanford University School of Medicine, Stanford, CA, USA
| | - Safia M Bashir
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
20
|
Xiang Y, Guo J, Li F, Xiong J. Tudor domain of histone demethylase KDM4B is a reader of H4K20me3. Acta Biochim Biophys Sin (Shanghai) 2020; 52:901-906. [PMID: 32537648 DOI: 10.1093/abbs/gmaa064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
The lysine histone demethylase KDM4B is overexpressed in several types of cancers and plays dual roles in genome stability maintenance. Although KDM4B is able to recognize several histone methylations, the underlying molecular mechanism is still unknown. In this study, we purified the KDM4B chromatin-associated hybrid tudor domains (HTDs) and plant home domains (PHDs) and performed the pull-down assay to screen the tri-methyl modified histone peptides that could be efficiently recognized by KDM4B. Our results showed that both HTD alone and the combination of HTD and PHD were able to specifically bind to H3K4me3 and H4K20me3. Because H4K20me3 is essential for KDM4B's rapid recruitment to DNA damage site, we further aligned the multiple tudor peptide sequence and identified two conserved residues Y993 and W987 that are critical for KDM4B-H4K20me3 interaction. The surface plasmon resonance analysis revealed that HTD displayed a rapid H4K20me3 bind-dissociate pattern. These findings therefore provided mechanistic insights into the binding of tudor domain of KDM4B protein with H4K20me3.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Guo
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
22
|
Cappelli C, Sepulveda H, Rivas S, Pola V, Urzúa U, Donoso G, Sagredo E, Carrero D, Casanova-Ortiz E, Sagredo A, González M, Manterola M, Nardocci G, Armisén R, Montecino M, Marcelain K. Ski Is Required for Tri-Methylation of H3K9 in Major Satellite and for Repression of Pericentromeric Genes: Mmp3, Mmp10 and Mmp13, in Mouse Fibroblasts. J Mol Biol 2020; 432:3222-3238. [PMID: 32198114 DOI: 10.1016/j.jmb.2020.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Abstract
Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
Collapse
Affiliation(s)
- Claudio Cappelli
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Sepulveda
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Solange Rivas
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Pola
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gerardo Donoso
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David Carrero
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marisel González
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcia Manterola
- Instituto de Ciencias Biomédicas. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gino Nardocci
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ricardo Armisén
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Martin Montecino
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Giordano M, Infantino L, Biggiogera M, Montecucco A, Biamonti G. Heat Shock Affects Mitotic Segregation of Human Chromosomes Bound to Stress-Induced Satellite III RNAs. Int J Mol Sci 2020; 21:ijms21082812. [PMID: 32316575 PMCID: PMC7216065 DOI: 10.3390/ijms21082812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Heat shock activates the transcription of arrays of Satellite III (SatIII) DNA repeats in the pericentromeric heterochromatic domains of specific human chromosomes, the longest of which is on chromosome 9. Long non-coding SatIII RNAs remain associated with transcription sites where they form nuclear stress bodies or nSBs. The biology of SatIII RNAs is still poorly understood. Here, we show that SatIII RNAs and nSBs are detectable up to four days after thermal stress and are linked to defects in chromosome behavior during mitosis. Heat shock perturbs the execution of mitosis. Cells reaching mitosis during the first 3 h of recovery accumulate in pro-metaphase. During the ensuing 48 h, this block is no longer detectable; however, a significant fraction of mitoses shows chromosome segregation defects. Notably, most of lagging chromosomes and chromosomal bridges are bound to nSBs and contain arrays of SatIII DNA. Disappearance of mitotic defects at the end of day 2 coincides with the processing of long non-coding SatIII RNAs into a ladder of small RNAs associated with chromatin and ranging in size from 25 to 75 nt. The production of these molecules does not rely on DICER and Argonaute 2 components of the RNA interference apparatus. Thus, massive transcription of SatIII DNA may contribute to chromosomal instability.
Collapse
Affiliation(s)
- Manuela Giordano
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche via Abbiategrasso 207, 27100 Pavia, Italy; (M.G.); (L.I.); (A.M.)
| | - Lucia Infantino
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche via Abbiategrasso 207, 27100 Pavia, Italy; (M.G.); (L.I.); (A.M.)
| | - Marco Biggiogera
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Alessandra Montecucco
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche via Abbiategrasso 207, 27100 Pavia, Italy; (M.G.); (L.I.); (A.M.)
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche via Abbiategrasso 207, 27100 Pavia, Italy; (M.G.); (L.I.); (A.M.)
- Correspondence: ; Tel.: +39-0382-546-334
| |
Collapse
|
24
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Valori V, Tus K, Laukaitis C, Harris DT, LeBeau L, Maggert KA. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics 2020; 15:85-106. [PMID: 31352858 PMCID: PMC6961696 DOI: 10.1080/15592294.2019.1649930] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chromatin-mediated silencing, including the formation of heterochromatin, silent chromosome territories, and repressed gene promoters, acts to stabilize patterns of gene regulation and the physical structure of the genome. Reduction of chromatin-mediated silencing can result in genome rearrangements, particularly at intrinsically unstable regions of the genome such as transposons, satellite repeats, and repetitive gene clusters including the rRNA gene clusters (rDNA). It is thus expected that mutational or environmental conditions that compromise heterochromatin function might cause genome instability, and diseases associated with decreased epigenetic stability might exhibit genome changes as part of their aetiology. We find the support of this hypothesis in invasive ductal breast carcinoma, in which reduced epigenetic silencing has been previously described, by using a facile method to quantify rDNA copy number in biopsied breast tumours and pair-matched healthy tissue. We found that rDNA and satellite DNA sequences had significant copy number variation - both losses and gains of copies - compared to healthy tissue, arguing that these genome rearrangements are common in developing breast cancer. Thus, any proposed aetiology onset or progression of breast cancer should consider alterations to the epigenome, but must also accommodate concomitant changes to genome sequence at heterochromatic loci.
Collapse
Affiliation(s)
- Virginia Valori
- Department of Applied Biosciences, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Katalin Tus
- Department of Pathology, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Christina Laukaitis
- Department of Medicine, University of Arizona, College of Medicine, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - David T. Harris
- Department of Immunobiology, University of Arizona, College of Medicine, Tucson, AZ, USA
- Arizona Health Sciences Center Biorepository, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Lauren LeBeau
- Department of Pathology, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Keith A. Maggert
- University of Arizona Cancer Center, University of Arizona, College of Medicine, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, College of Medicine, Tucson, AZ, USA
| |
Collapse
|
26
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
27
|
Zhou M, Li Y, Lin S, Chen Y, Qian Y, Zhao Z, Fan H. H3K9me3, H3K36me3, and H4K20me3 Expression Correlates with Patient Outcome in Esophageal Squamous Cell Carcinoma as Epigenetic Markers. Dig Dis Sci 2019; 64:2147-2157. [PMID: 30788686 DOI: 10.1007/s10620-019-05529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Histone methylation, as an essential pattern of posttranslational modifications, contributes to multiple cancer-related biological processes. Dysregulation of histone methylation is now considered a biomarker for cancer prognosis. AIMS This study investigated and evaluated the potential role of four histone lysine trimethylation markers as biomarkers for esophageal squamous cell carcinoma (ESCC) prognosis. METHODS Tissue arrays were made from 135 paraffin-embedded ESCC samples and examined for histone markers by immunohistochemistry, and 10 pairs of cancer and noncancerous mucosa tissues from ESCC patients were investigated with Western blot. Chi-squared test, Kaplan-Meier analysis with log-rank test, and Cox proportional hazard trend analyses were performed to assess the prognostic values of the markers. RESULTS Histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 9 trimethylation (H3K9me3), and histone 4 lysine 20 trimethylation (H4K20me3), but not histone 3 lysine 36 trimethylation (H3K36me3), showed stronger immunostaining signals in tumor tissues than in the corresponding adjacent non-neoplastic mucosa tissues. The expression patterns of H3K36me3, H3K9me3, and H4K20me3 correlated with tumor infiltrating depth, lymph node involvement, and pTNM stage. Low-scoring H3K9me3 and H4K20me3 predicted better prognosis, while H3K36me3 manifested the opposite trend. Poor prognosis occurred in ESCC patients with expression patterns of high levels of H3K9me3, high levels of H4K20me3, and low levels of H3K36me3 expression. CONCLUSIONS H3K9me3, H4K20me3, and H3K36me3 showed a close relationship with clinical features and were considered independent risk factors for survival of ESCC patients. The combination of H3K9me3, H4K20me3, and H3K36me3 expression, rather than the expression of a single histone marker, is believed to further enhance evaluations of ESCC prognosis and management.
Collapse
Affiliation(s)
- Menghan Zhou
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210018, China
| | - Yiping Li
- Department of Pathology, Medical School, Southeast University, Nanjing, 210009, China
| | - Shaofeng Lin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China.,Department of Oncology, Fujian Provincial Cancer Hospital, Fuzhou, 350000, China
| | - Yanping Chen
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Zhujiang Zhao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts. PLoS One 2019; 14:e0217699. [PMID: 31269077 PMCID: PMC6608945 DOI: 10.1371/journal.pone.0217699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.
Collapse
|
29
|
Abstract
Animal and plant centromeres are embedded in repetitive "satellite" DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.
Collapse
Affiliation(s)
- Sivakanthan Kasinathan
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Seattle, WA
| |
Collapse
|
30
|
Wu MC, Cheng HH, Yeh TS, Li YC, Chen TJ, Sit WY, Chuu CP, Kung HJ, Chien S, Wang WC. KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis. Cell Death Dis 2019; 10:68. [PMID: 30683841 PMCID: PMC6347645 DOI: 10.1038/s41419-019-1305-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
KDM4/JMJD2 Jumonji C-containing histone lysine demethylases (KDM4A–D) constitute an important class of epigenetic modulators in the transcriptional activation of cellular processes and genome stability. Interleukin-8 (IL-8) is overexpressed in gastric cancer, but the mechanisms and particularly the role of the epigenetic regulation of IL-8, are unclear. Here, we report that KDM4B, but not KDM4A/4C, upregulated IL-8 production in the absence or presence of Helicobacter pylori. Moreover, KDM4B physically interacts with c-Jun on IL-8, MMP1, and ITGAV promoters via its demethylation activity. The depletion of KDM4B leads to the decreased expression of integrin αV, which is exploited by H. pylori carrying the type IV secretion system, reducing IL-8 production and cell migration. Elevated KDM4B expression is significantly associated with the abundance of p-c-Jun in gastric cancer and is linked to a poor clinical outcome. Together, our results suggest that KDM4B is a key regulator of JNK/c-Jun-induced processes and is a valuable therapeutic target.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Yi-Chen Li
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Wei Yang Sit
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, 95616, USA. .,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 350, Taiwan.
| | - Shu Chien
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan.
| |
Collapse
|
31
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
32
|
Xiang Y, Yan K, Zheng Q, Ke H, Cheng J, Xiong W, Shi X, Wei L, Zhao M, Yang F, Wang P, Lu X, Fu L, Lu X, Li F. Histone Demethylase KDM4B Promotes DNA Damage by Activating Long Interspersed Nuclear Element-1. Cancer Res 2018; 79:86-98. [PMID: 30459150 DOI: 10.1158/0008-5472.can-18-1310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
The histone demethylase KDM4B is frequently overexpressed in various cancer types, and previous studies have indicated that the primary oncogenic function of KDM4B is its ability to demethylate H3K9me3 in different tumors, resulting in altered gene expression and genome instability. A genome-wide analysis to evaluate the effect of KDM4B on the global or local H3K9me3 level has not been performed. In this study, we assess whole-genome H3K9me3 distribution in cancer cells and find that H3K9me3 is largely enriched in long interspersed nuclear element-1 (LINE-1). A significant proportion of KDM4B-dependent H3K9me3 was located in evolutionarily young LINE-1 elements, which likely retain retrotransposition activity. Ectopic expression of KDM4B promoted LINE-1 expression, while depletion of KDM4B reduced it. Furthermore, KDM4B overexpression enhanced LINE-1 retrotransposition efficacy, copy number, and associated DNA damage, presumably via the histone demethylase activity of KDM4B. Breast cancer cell lines expressing high levels of KDM4B also exhibited increased LINE-1 expression and copy number compared with other cell lines. Pharmacologic inhibition of KDM4B significantly reduced LINE-1 expression and DNA damage in breast cancer cells with excessive KDM4B. Our study not only identifies KDM4B as a novel regulator of LINE-1, but it also suggests an unexpected oncogenic role for KDM4B overexpression in tumorigenesis, providing clues for the development of new cancer prevention strategies and therapies. SIGNIFICANCE: The histone demethylase KDM4B promotes tumorigenesis by inducing retrotransposition and DNA damage.
Collapse
Affiliation(s)
- Ying Xiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kai Yan
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Haiqiang Ke
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
| | - Wenjun Xiong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Shi
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Min Zhao
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Yang
- Department of Cell Biology and Genetics, Yangtze University, Jingzhou, Hubei, China
| | - Ping Wang
- Department of Oncology, Huanggang Central Hospital, Huanggang, Hubei, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Li Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Möller M, Habig M, Freitag M, Stukenbrock EH. Extraordinary Genome Instability and Widespread Chromosome Rearrangements During Vegetative Growth. Genetics 2018; 210:517-529. [PMID: 30072376 PMCID: PMC6216587 DOI: 10.1534/genetics.118.301050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022] Open
Abstract
The haploid genome of the pathogenic fungus Zymoseptoria tritici is contained on "core" and "accessory" chromosomes. While 13 core chromosomes are found in all strains, as many as eight accessory chromosomes show presence/absence variation and rearrangements among field isolates. The factors influencing these presence/absence polymorphisms are so far unknown. We investigated chromosome stability using experimental evolution, karyotyping, and genome sequencing. We report extremely high and variable rates of accessory chromosome loss during mitotic propagation in vitro and in planta Spontaneous chromosome loss was observed in 2 to >50% of cells during 4 weeks of incubation. Similar rates of chromosome loss in the closely related Zymoseptoria ardabiliae suggest that this extreme chromosome dynamic is a conserved phenomenon in the genus. Elevating the incubation temperature greatly increases instability of accessory and even core chromosomes, causing severe rearrangements involving telomere fusion and chromosome breakage. Chromosome losses do not affect the fitness of Zymoseptoria tritici in vitro, but some lead to increased virulence, suggesting an adaptive role of this extraordinary chromosome instability.
Collapse
Affiliation(s)
- Mareike Möller
- Environmental Genomics, Christian-Albrechts University, D-24118 Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University, D-24118 Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, D-24118 Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| |
Collapse
|
35
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
36
|
Kumari P, Popescu D, Yue S, Bober E, Ianni A, Braun T. Sirt7 inhibits Sirt1-mediated activation of Suv39h1. Cell Cycle 2018; 17:1403-1412. [PMID: 29963979 PMCID: PMC6132954 DOI: 10.1080/15384101.2018.1486166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sirtuins regulate a variety of cellular processes through protein deacetylation. The best-known member of mammalian sirtuin family, Sirt1, plays important roles in the maintenance of cellular homeostasis by regulating cell metabolism, differentiation and stress responses, among others. Sirt1 activity requires tight regulation to meet specific cellular requirements, which is achieved at different levels and by specific mechanisms. Recently, a regulatory loop between Sirt1 and another sirtuin, Sirt7, was identified. Sirt7 inhibits Sirt1 autodeacetylation at K230 and activation thereby preventing Sirt1-mediated repression of adipocyte differentiation by inhibition of the PPARγ gene. Here, we extend the regulatory complexity of Sirt7-dependent restriction of Sirt1 activity by demonstrating that Sirt7 reduces activation of a previously described prominent Sirt1 target, the histone methyltransferase Suv39h1. We show that removal of the acetyl-group at K230 in Sirt1 due to the absence of Sirt7 leads to hyperactivation of Sirt1 and thereby to constantly increased activity of Suv39h1.
Collapse
Affiliation(s)
- Poonam Kumari
- a Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Daniela Popescu
- a Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Shijing Yue
- b The State Key Laboratory of Medicinal Chemical Biology, School of Medicine , Nankai University , Tianjin , China.,c The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines , Nankai University , Tianjin , China
| | - Eva Bober
- a Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Alessandro Ianni
- a Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Thomas Braun
- a Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| |
Collapse
|
37
|
McNulty SM, Sullivan BA. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res 2018; 26:115-138. [PMID: 29974361 DOI: 10.1007/s10577-018-9582-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Repetitive DNA, formerly referred to by the misnomer "junk DNA," comprises a majority of the human genome. One class of this DNA, alpha satellite, comprises up to 10% of the genome. Alpha satellite is enriched at all human centromere regions and is competent for de novo centromere assembly. Because of the highly repetitive nature of alpha satellite, it has been difficult to achieve genome assemblies at centromeres using traditional next-generation sequencing approaches, and thus, centromeres represent gaps in the current human genome assembly. Moreover, alpha satellite DNA is transcribed into repetitive noncoding RNA and contributes to a large portion of the transcriptome. Recent efforts to characterize these transcripts and their function have uncovered pivotal roles for satellite RNA in genome stability, including silencing "selfish" DNA elements and recruiting centromere and kinetochore proteins. This review will describe the genomic and epigenetic features of alpha satellite DNA, discuss recent findings of noncoding transcripts produced from distinct alpha satellite arrays, and address current progress in the functional understanding of this oft-neglected repetitive sequence. We will discuss unique challenges of studying human satellite DNAs and RNAs and point toward new technologies that will continue to advance our understanding of this largely untapped portion of the genome.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Division of Human Genetics, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
38
|
Pesenti E, Kouprina N, Liskovykh M, Aurich-Costa J, Larionov V, Masumoto H, Earnshaw WC, Molina O. Generation of a Synthetic Human Chromosome with Two Centromeric Domains for Advanced Epigenetic Engineering Studies. ACS Synth Biol 2018; 7:1116-1130. [PMID: 29565577 PMCID: PMC5951608 DOI: 10.1021/acssynbio.8b00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity. However, the pathways leading to the formation and maintenance of centromere chromatin remain poorly characterized due to difficulties of analysis of centromeric repeats in native chromosomes. To address this problem, in our previous studies we generated a human artificial chromosome (HAC) whose centromere contains a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator, the alphoidtetO-HAC. The presence of tetO sequences allows the specific targeting of the centromeric region in the HAC with different chromatin modifiers fused to the tetracycline repressor. The alphoidtetO-HAC has been extensively used to investigate protein interactions within the kinetochore and to define the epigenetic signature of centromeric chromatin to maintain a functional kinetochore. In this study, we developed a novel synthetic HAC containing two alphoid DNA arrays with different targeting sequences, tetO, lacO and gal4, the alphoidhybrid-HAC. This new HAC can be used for detailed epigenetic engineering studies because its kinetochore can be simultaneously or independently targeted by different chromatin modifiers and other fusion proteins.
Collapse
Affiliation(s)
- Elisa Pesenti
- Wellcome
Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, United
Kingdom
| | - Natalay Kouprina
- Genome
Structure and Function Group, Developmental Therapeutics Branch, National
Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Mikhail Liskovykh
- Genome
Structure and Function Group, Developmental Therapeutics Branch, National
Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Joan Aurich-Costa
- Research
and Development, Cellay Inc., Cambridge, Massachusetts 02139, United States
| | - Vladimir Larionov
- Genome
Structure and Function Group, Developmental Therapeutics Branch, National
Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Hiroshi Masumoto
- Laboratory
of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisazaru 292-0818, Japan
| | - William C. Earnshaw
- Wellcome
Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, United
Kingdom,E-mail: ; tel: +34 93-557-2810
| | - Oscar Molina
- Wellcome
Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, United
Kingdom,Josep
Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain,E-mail: ; tel: +44-(0)131-650-7101
| |
Collapse
|
39
|
Levin M, Stark M, Assaraf YG. The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget 2018; 9:16861-16882. [PMID: 29682190 PMCID: PMC5908291 DOI: 10.18632/oncotarget.24717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Histone methylation is regulated to shape the epigenome by modulating DNA compaction, thus playing central roles in fundamental chromatin-based processes including transcriptional regulation, DNA repair and cell proliferation. Histone methylation is erased by demethylases including the well-established KDM4 subfamily members, however, little is known about their dimerization capacity and its impact on their demethylase activity. Using the powerful bimolecular fluorescence complementation technique, we herein show the in situ formation of human KDM4A and KDM4C homodimers and heterodimers in nuclei of live transfectant cells and evaluate their H3K9me3 demethylation activity. Using size exclusion HPLC as well as Western blot analysis, we show that endogenous KDM4C undergoes dimerization under physiological conditions. Importantly, we identify the JmjN domain as the KDM4C dimerization interface and pin-point specific charged residues therein to be essential for this dimerization. We further demonstrate that KDM4A/C dimerization is absolutely required for their demethylase activity which was abolished by the expression of free JmjN peptides. In contrast, KDM4B does not dimerize and functions as a monomer, and hence was not affected by free JmjN expression. KDM4 proteins are overexpressed in numerous malignancies and their pharmacological inhibition or depletion in cancer cells was shown to impair tumor cell proliferation, invasion and metastasis. Thus, the KDM4 dimer-interactome emerging from the present study bears potential implications for cancer therapeutics via selective inhibition of KDM4A/C demethylase activity using JmjN-based peptidomimetics.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
40
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 561] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
41
|
Li X, Moon G, Shin S, Zhang B, Janknecht R. Cooperation between ETS variant 2 and Jumonji domain‑containing 2 histone demethylases. Mol Med Rep 2018; 17:5518-5527. [PMID: 29393482 PMCID: PMC5865994 DOI: 10.3892/mmr.2018.8507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The E26 transformation-specific (ETS) variant 2 (ETV2) protein, also designated as ETS-related 71, is a member of the ETS transcription factor family and is essential for blood and vascular development in the embryo. The role of ETV2 in cancer has not yet been investigated. In the present study, the expression of ETV2 mRNA was identified in a variety of tumor types, including prostate carcinoma. In addition, ETV2 gene amplification was identified in several types of cancer, suggesting that ETV2 plays an oncogenic role in tumorigenesis. It was demonstrated that ETV2 forms complexes with two histone demethylases: Jumonji domain-containing (JMJD)2A and JMJD2D; JMJD2A has been previously reported as a driver of prostate cancer development. In the present study, it was reported that ETV2 exhibited the potential to stimulate the promoters of matrix metalloproteinases (MMPs), including MMP1 and MMP7, within LNCaP prostate cancer cells. JMJD2A and JMJD2D could synergize with ETV2 to activate the MMP1 promoter, whereas only JMJD2A stimulated the MMP7 promoter in cooperation with ETV2. Furthermore, ETV2 expression was positively associated with JMJD2A and JMJD2D mRNA levels in neuroendocrine prostate tumors, in which an ETV2 gene amplification rate of 17.8% was identified. Collectively, the results of the present study indicated that ETV2, JMJD2A and JMJD2D may jointly promote tumorigenesis, particularly neuroendocrine prostate tumors. In addition, the interaction with the JMJD2A and JMJD2D epigenetic regulators may be important in the ability of ETV2 to reprogram cells, modulate normal and cancer stem cells, and affect spermatogenesis.
Collapse
Affiliation(s)
- Xiaomeng Li
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gene Moon
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
42
|
Thakur J, Henikoff S. Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev 2018; 32:20-25. [PMID: 29386331 PMCID: PMC5828391 DOI: 10.1101/gad.307736.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
We combined classical salt fractionation with chromatin immunoprecipitation to recover human centromeric chromatin under native conditions. We found that >85% of the total centromeric chromatin is insoluble under conditions typically used for native chromatin extraction. To map both soluble and insoluble chromatin in situ, we combined CUT&RUN (cleavage under targets and release using nuclease), a targeted nuclease method, with salt fractionation. Using this approach, we observed unexpected structural and conformational variations of centromere protein A (CENP-A)-containing complexes on different α-satellite dimeric units within highly homogenous arrays. Our results suggest that slight α-satellite sequence differences control the structure and occupancy of the associated centromeric chromatin complex.
Collapse
Affiliation(s)
- Jitendra Thakur
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
43
|
Radhakrishnan A, Damodaran K, Soylemezoglu AC, Uhler C, Shivashankar GV. Machine Learning for Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis. Sci Rep 2017; 7:17946. [PMID: 29263424 PMCID: PMC5738417 DOI: 10.1038/s41598-017-17858-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 12/04/2022] Open
Abstract
Current cancer diagnosis employs various nuclear morphometric measures. While these have allowed accurate late-stage prognosis, early diagnosis is still a major challenge. Recent evidence highlights the importance of alterations in mechanical properties of single cells and their nuclei as critical drivers for the onset of cancer. We here present a method to detect subtle changes in nuclear morphometrics at single-cell resolution by combining fluorescence imaging and deep learning. This assay includes a convolutional neural net pipeline and allows us to discriminate between normal and human breast cancer cell lines (fibrocystic and metastatic states) as well as normal and cancer cells in tissue slices with high accuracy. Further, we establish the sensitivity of our pipeline by detecting subtle alterations in normal cells when subjected to small mechano-chemical perturbations that mimic tumor microenvironments. In addition, our assay provides interpretable features that could aid pathological inspections. This pipeline opens new avenues for early disease diagnostics and drug discovery.
Collapse
Affiliation(s)
- Adityanarayanan Radhakrishnan
- Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, Institute for Data, Systems and Society, MIT, Cambridge, MA, USA
| | - Karthik Damodaran
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ali C Soylemezoglu
- Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, Institute for Data, Systems and Society, MIT, Cambridge, MA, USA
| | - Caroline Uhler
- Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, Institute for Data, Systems and Society, MIT, Cambridge, MA, USA.
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore. .,FIRC Institute for Molecular Oncology (IFOM), Milan, Italy.
| |
Collapse
|
44
|
Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity. Dev Cell 2017; 42:156-169.e5. [PMID: 28743002 DOI: 10.1016/j.devcel.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.
Collapse
|
45
|
McNulty SM, Sullivan LL, Sullivan BA. Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. Dev Cell 2017; 42:226-240.e6. [PMID: 28787590 DOI: 10.1016/j.devcel.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/24/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
Human centromeres are defined by alpha satellite DNA arrays that are distinct and chromosome specific. Most human chromosomes contain multiple alpha satellite arrays that are competent for centromere assembly. Here, we show that human centromeres are defined by chromosome-specific RNAs linked to underlying organization of distinct alpha satellite arrays. Active and inactive arrays on the same chromosome produce discrete sets of transcripts in cis. Non-coding RNAs produced from active arrays are complexed with CENP-A and CENP-C, while inactive-array transcripts associate with CENP-B and are generally less stable. Loss of CENP-A does not affect transcript abundance or stability. However, depletion of array-specific RNAs reduces CENP-A and CENP-C at the targeted centromere via faulty CENP-A loading, arresting cells before mitosis. This work shows that each human alpha satellite array produces a unique set of non-coding transcripts, and RNAs present at active centromeres are necessary for kinetochore assembly and cell-cycle progression.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lori L Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Castellini L, Moon EJ, Razorenova OV, Krieg AJ, von Eyben R, Giaccia AJ. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Res 2017; 45:3674-3692. [PMID: 28073943 PMCID: PMC5397198 DOI: 10.1093/nar/gkw1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes.
Collapse
Affiliation(s)
- Laura Castellini
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Using human artificial chromosomes to study centromere assembly and function. Chromosoma 2017; 126:559-575. [DOI: 10.1007/s00412-017-0633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
48
|
A model of dynamic stability of H3K9me3 heterochromatin to explain the resistance to reprogramming of differentiated cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:184-195. [DOI: 10.1016/j.bbagrm.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/16/2022]
|
49
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
50
|
Ono T, Kamimura N, Matsuhashi T, Nagai T, Nishiyama T, Endo J, Hishiki T, Nakanishi T, Shimizu N, Tanaka H, Ohta S, Suematsu M, Ieda M, Sano M, Fukuda K, Kaneda R. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure. Sci Rep 2017; 7:39752. [PMID: 28051130 PMCID: PMC5209701 DOI: 10.1038/srep39752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Histone acetylation has been linked to cardiac hypertrophy and heart failure. However, the pathological implications of changes in histone methylation and the effects of interventions with histone methyltransferase inhibitors for heart failure have not been fully clarified. Here, we focused on H3K9me3 status in the heart and investigated the effects of the histone H3K9 methyltransferase inhibitor chaetocin on prognoses in Dahl salt-sensitive rats, an animal model of chronic heart failure. Chaetocin prolonged survival and restored mitochondrial dysfunction. ChIP-seq analysis demonstrated that chronic stress to the heart induced H3K9me3 elevation in thousands of repetitive elements, including intronic regions of mitochondria-related genes, such as the gene encoding peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Furthermore, chaetocin reversed this effect on these repetitive loci. These data suggested that excessive heterochromatinization of repetitive elements of mitochondrial genes in the failing heart may lead to the silencing of genes and impair heart function. Thus, chaetocin may be a potential therapeutic agent for chronic heart failure.
Collapse
Affiliation(s)
- Tomohiko Ono
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Tomohiro Matsuhashi
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Takahiko Nishiyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tsuyoshi Nakanishi
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- MS Business Unit, Shimadzu Corporation, Kyoto, Japan
| | - Noriaki Shimizu
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hirotoshi Tanaka
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|