1
|
Iliaki S, Kreike M, Ferreras Moreno N, De Meyer F, Aidarova A, Braun H, Libert C, Afonina IS, Beyaert R. Polo-like kinase 1 (PLK1) is a novel CARD14-binding protein in keratinocytes. Biochem Pharmacol 2024; 228:116316. [PMID: 38797267 DOI: 10.1016/j.bcp.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Caspase recruitment domain (CARD)-containing protein 14 (CARD14) is an intracellular protein that mediates nuclear factor-kappa B (NF-ĸB) signaling and proinflammatory gene expression in skin keratinocytes. Several hyperactivating CARD14 mutations have been associated with psoriasis and other inflammatory skin diseases. CARD14-induced NF-ĸB signaling is dependent on the formation of a CARD14-BCL10-MALT1 (CBM) signaling complex, but upstream receptors and molecular mechanisms that activate and regulate CARD14 signaling are still largely unclear. Using unbiased affinity purification and mass spectrometry (AP-MS) screening, we discover polo-like kinase 1 (PLK1) as a novel CARD14-binding protein. CARD14-PLK1 binding is independent of the CARD14 CARD domain but involves a consensus phospho-dependent PLK1-binding motif in the CARD14 linker region (LR). Expression of the psoriasis-associated CARD14(E138A) variant in human keratinocytes induces the recruitment of PLK1 to CARD14-containing signalosomes in interphase cells, but does not affect the specific location of PLK1 in mitotic cells. Finally, disruption of the PLK1-binding motif in CARD14(E138A) increases CARD14-induced proinflammatory signaling and gene expression. Together, our data identify PLK1 as a novel CARD14-binding protein and indicate a negative regulatory role for PLK1 in CARD14 signaling.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Marja Kreike
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Natalia Ferreras Moreno
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium; Center for Inflammation Research, Unit of Mouse Genetics and Inflammation, VIB, B-9052 Ghent, Belgium
| | - Femke De Meyer
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Aigerim Aidarova
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Harald Braun
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Claude Libert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium; Center for Inflammation Research, Unit of Mouse Genetics and Inflammation, VIB, B-9052 Ghent, Belgium
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
2
|
Galán-Vidal J, García-Gaipo L, Molinuevo R, Dias S, Tsoi A, Gómez-Román J, Elder JT, Hochegger H, Gandarillas A. Sumo-regulatory SENP2 controls the homeostatic squamous mitosis-differentiation checkpoint. Cell Death Dis 2024; 15:596. [PMID: 39152119 PMCID: PMC11329632 DOI: 10.1038/s41419-024-06969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Squamous or epidermoid cancer arises in stratified epithelia but also is frequent in the non-epidermoid epithelium of the lung by unclear mechanisms. A poorly studied mitotic checkpoint drives epithelial cells bearing irreparable genetic damage into epidermoid differentiation. We performed an RNA-sequencing gene search to target unknown regulators of this response and selected the SUMO regulatory protein SENP2. Alterations of SENP2 expression have been associated with some types of cancer. We found the protein to be strongly localised to mitotic spindles of freshly isolated human epidermal cells. Primary cells rapidly differentiated after silencing SENP2 with specific shRNAs. Loss of SENP2 produced in synchronised epithelial cells delays in mitotic entry and exit and defects in chromosomal alignment. The results altogether strongly argue for an essential role of SENP2 in the mitotic spindle and hence in controlling differentiation. In addition, the expression of SENP2 displayed an inverse correlation with the immuno-checkpoint biomarker PD-L1 in a pilot collection of aggressive lung carcinomas. Consistently, metastatic head and neck cancer cells that do not respond to the mitosis-differentiation checkpoint were resistant to depletion of SENP2. Our results identify SENP2 as a novel regulator of the epithelial mitosis-differentiation checkpoint and a potential biomarker in epithelial cancer.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Rut Molinuevo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Samantha Dias
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Javier Gómez-Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008, Santander, Spain
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut national de la santé et de la recherche médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
3
|
Contreras L, García-Gaipo L, Casar B, Gandarillas A. DNA damage signalling histone H2AX is required for tumour growth. Cell Death Discov 2024; 10:99. [PMID: 38402225 PMCID: PMC10894207 DOI: 10.1038/s41420-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer most frequently develops in self-renewal tissues that are the target of genetic alterations due to mutagens or intrinsic DNA replication errors. Histone γH2AX has a critical role in the cellular DNA repair pathway cascade and contributes to genomic stability. However, the role of γH2AX in the ontology of cancer is unclear. We have investigated this issue in the epidermis, a self-renewal epithelium continuously exposed to genetic hazard and replication stress. Silencing H2AX caused cell cycle hyperactivation, impaired DNA repair and epidermal hyperplasia in the skin. However, mutagen-induced carcinogenesis was strikingly reduced in the absence of H2AX. KO tumours appeared significantly later than controls and were fewer, smaller and more benign. The stem cell marker Δp63 drastically diminished in the KO epidermis. We conclude that H2AX is required for tissue-making during both homoeostasis and tumourigenesis, possibly by contributing to the control and repair of stem cells. Therefore, although H2AX is thought to act as a tumour suppressor and our results show that it contributes to homeostasis, they also indicate that it is required for the development of cancer.
Collapse
Affiliation(s)
- Lizbeth Contreras
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria (UC), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
4
|
Lloyd SM, Leon DB, Brady MO, Rodriguez D, McReynolds MP, Kweon J, Neely AE, Blumensaadt LA, Ho PJ, Bao X. CDK9 activity switch associated with AFF1 and HEXIM1 controls differentiation initiation from epidermal progenitors. Nat Commun 2022; 13:4408. [PMID: 35906225 PMCID: PMC9338292 DOI: 10.1038/s41467-022-32098-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Progenitors in epithelial tissues, such as human skin epidermis, continuously make fate decisions between self-renewal and differentiation. Here we show that the Super Elongation Complex (SEC) controls progenitor fate decisions by directly suppressing a group of "rapid response" genes, which feature high enrichment of paused Pol II in the progenitor state and robust Pol II elongation in differentiation. SEC's repressive role is dependent on the AFF1 scaffold, but not AFF4. In the progenitor state, AFF1-SEC associates with the HEXIM1-containing inactive CDK9 to suppress these rapid-response genes. A key rapid-response SEC target is ATF3, which promotes the upregulation of differentiation-activating transcription factors (GRHL3, OVOL1, PRDM1, ZNF750) to advance terminal differentiation. SEC peptidomimetic inhibitors or PKC signaling activates CDK9 and rapidly induces these transcription factors within hours in keratinocytes. Thus, our data suggest that the activity switch of SEC-associated CDK9 underlies the initial processes bifurcating progenitor fates between self-renewal and differentiation.
Collapse
Affiliation(s)
- Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University, Chicago, IL, 60611, USA
| | - Daniel B Leon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Mari O Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Deborah Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Madison P McReynolds
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute for Epigenetics, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Liu X, Chen H, Li Z, Duan L, Yang X, Jiang P, Xu L, Gong Y, Han K. Evaluation of Biological Effects and Transcriptome Changes Induced by LED Based Narrow Band UVB Phototherapy. Photochem Photobiol 2022; 98:1379-1389. [PMID: 35538716 DOI: 10.1111/php.13643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Ultraviolet (UV), particularly UVB, is widely used in the treatment of skin diseases including psoriasis, atopic dermatitis, vitiligo, mycosis fungoides, and pruritus. Recently, there has been a trend of replacing broad band UVB (BB-UVB) units with narrow band UVB (NB-UVB), as studies have demonstrated that NB-UVB is more efficacious in the treatment of psoriasis. The purpose of this study is to evaluate the biological effects and transcriptome changes induced by light emitting diode based NB-UVB (NB-UVB LED) phototherapy. Cell viability and the cell migration ability was significantly decreased post treatment, as well as apoptosis and ROS levels were remarkably increased. NB-UVB induced S phase arrest was observed 12 hours post irradiation. Bioinformatics analysis of transcriptome sequencing data revealed that NB-UVB LED irradiation induced dose-depended changes in multiple key signaling pathways, such as PI3K and cytoskeletal-related pathways. The depolymerization of cytoskeleton induced by NB-UVB was observed 24 hours post treatment. In addition, the expression levels of cytoskeleton related proteins FN1, ITGB4, ITGA1, RAC2 and DOCK1 decreased significantly 12 hours after irradiation. Our results indicated that NB-UVB LED may serve as a novel option for the development of NB-UVB phototherapy devices.
Collapse
Affiliation(s)
- Xinfeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Huaiyuan Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Zeyang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Xibin Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Ping Jiang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Linyu Xu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Yan Gong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| | - Kun Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China
| |
Collapse
|
6
|
Protooncogene MYC drives human melanocyte melanogenesis and senescence. Cancer Gene Ther 2022; 29:1160-1167. [PMID: 35022520 DOI: 10.1038/s41417-021-00424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In spite of extensive research and advances on the molecular biology of melanoma, the process of melanocytic differentiation or its relationship with proliferation is poorly understood. The role of proto-oncogenes in normal melanocyte biology is also intriguing. Proto-oncogene MYC is overexpressed in 40% of melanomas. It has been suggested that MYC can mediate senescence bypass in malignant melanocytes, an important event in melanoma development, likely in cooperation with other oncogenic pathways. However, despite the apparent importance of MYC in melanoma, its functions in normal melanocytes are unknown. We have overexpressed MYC in freshly isolated human primary melanocytes and studied the effects on melanocytic proliferation and differentiation. MYC promoted a transient activation of melanocytes including cell cycle entry, DNA damage and cell migration. Subsequently, MYC induced melanogenesis, increased cellular size and complexity and senescence. Interestingly, we also found strong expression of MYC in regions of human nevi displaying high pigmentation and high expression of senescence marker p16. The results altogether show that MYC drives melanocytic differentiation and suggest that senescence is associated with differentiation. We discuss the implications into the mechanisms governing melanocytic differentiation and the development of melanoma.
Collapse
|
7
|
Effects of 445 nm, 520 nm, and 638 nm Laser Irradiation on the Dermal Cells. Int J Mol Sci 2021; 22:ijms222111605. [PMID: 34769035 PMCID: PMC8584201 DOI: 10.3390/ijms222111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The invention of non-ionizing emission devices revolutionized science, medicine, industry, and the military. Currently, different laser systems are commonly used, generating the potential threat of excessive radiation exposure, which can lead to adverse health effects. Skin is the organ most exposed to laser irradiation; therefore, this study aims to evaluate the effects of 445 nm, 520 nm, and 638 nm non-ionizing irradiation on keratinocytes and fibroblasts. Methods: Keratinocytes and fibroblasts were exposed to a different fluency of 445 nm, 520 nm, and 638 nm laser irradiation. In addition, viability, type of cell death, cell cycle distribution, and proliferation rates were investigated. Results: The 445 nm irradiation was cytotoxic to BJ-5ta (≥58.7 J/cm2) but not to Ker-CT cells. Exposure influenced the cell cycle distribution of Ker-CT (≥61.2 J/cm2) and BJ-5ta (≥27.6 J/cm2) cells, as well as the Bj-5ta proliferation rate (≥50.5 J/cm2). The 520 nm irradiation was cytotoxic to BJ-5ta (≥468.4 J/cm2) and Ker-CT (≥385.7 J/cm2) cells. Cell cycle distribution (≥27.6 J/cm2) of Ker-CT cells was also affected. The 638 nm irradiation was cytotoxic to BJ-5ta and Ker-CT cells (≥151.5 J/cm2). The proliferation rate and cell cycle distribution of BJ-5ta (≥192.9 J/cm2) and Ker-CT (13.8 and 41.3 J/cm2) cells were also affected. Conclusions: At high fluences, 455 nm, 520 nm, and 638 nm irradiation, representing blue, green, and red light spectra, are hazardous to keratinocytes and fibroblasts. However, laser irradiation may benefit the cells at low fluences by modulating the cell cycle and proliferation rate.
Collapse
|
8
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|
9
|
Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells 2020; 10:cells10010025. [PMID: 33375680 PMCID: PMC7824480 DOI: 10.3390/cells10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.
Collapse
|
10
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
11
|
Molinuevo R, Freije A, Contreras L, Sanz JR, Gandarillas A. The DNA damage response links human squamous proliferation with differentiation. J Cell Biol 2020; 219:152154. [PMID: 33007086 PMCID: PMC7534927 DOI: 10.1083/jcb.202001063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
How rapid cell multiplication leads to cell differentiation in developing tissues is still enigmatic. This question is central to morphogenesis, cell number control, and homeostasis. Self-renewal epidermoid epithelia are continuously exposed to mutagens and are the most common target of cancer. Unknown mechanisms commit rapidly proliferating cells to post-mitotic terminal differentiation. We have over-activated or inhibited the endogenous DNA damage response (DDR) pathways by combinations of activating TopBP1 protein, specific shRNAs, or chemical inhibitors for ATR, ATM, and/or DNA-PK. The results dissect and demonstrate that these signals control keratinocyte differentiation in proliferating cells independently of actual DNA damage. The DDR limits keratinocyte multiplication upon hyperproliferative stimuli. Moreover, knocking down H2AX, a common target of the DDR pathways, inhibits the epidermoid phenotype. The results altogether show that the DDR is required to maintain the balance proliferation differentiation and suggest that is part of the squamous program. We propose a homeostatic model where genetic damage is automatically and continuously cleansed by cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla, Santander, Spain
| | - Lizbeth Contreras
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla, Santander, Spain
| | - Juan R Sanz
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla, Santander, Spain.,Plastic Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Plastic Surgery Department, Universidad de Cantabria, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla, Santander, Spain.,Institut National de la Santé et de la Recherche Médicale, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
12
|
de Pedro I, Galán-Vidal J, Freije A, de Diego E, Gandarillas A. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene 2020; 40:152-162. [PMID: 33097856 DOI: 10.1038/s41388-020-01520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The control of cell fate is critical to homeostasis and cancer. Cell cycle cdk inhibitor p21CIP1 has a central and paradoxical role in the regulatory crossroads leading to senescence, apoptosis, or differentiation. p21 is an essential target of tumor suppressor p53, but it also is regulated independently. In squamous self-renewal epithelia continuously exposed to mutagenesis, p21 controls cell fate by mechanisms still intriguing. We previously identified a novel epidermoid DNA damage-differentiation response. We here show that p21 intervenes in the mitosis block that is required for the squamous differentiation response to cell cycle deregulation and replication stress. The inactivation of endogenous p21 in human primary keratinocytes alleviated the differentiation response to oncogenic loss of p53 or overexpression of the DNA replication major regulator Cyclin E. The bypass of p21-induced mitotic block involving upregulation of Cyclin B allowed DNA damaged cells to escape differentiation and continue to proliferate. In addition, loss of p21 drove keratinocytes from differentiation to apoptosis upon moderate UV irradiation. The results show that p21 is required to drive keratinocytes towards differentiation in response to genomic stress and shed light into its dual and paradoxical role in carcinogenesis.
Collapse
Affiliation(s)
- Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ernesto de Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Paediatric Surgery, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
13
|
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, Gandarillas A. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ 2020; 27:2451-2467. [PMID: 32080348 PMCID: PMC7370216 DOI: 10.1038/s41418-020-0515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
| | - David Santamaría
- CNIO, Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- INSERM U1218, ACTION Laboratory, IECB, University of Bordeaux, Pessac, France
| | - Marcos Malumbres
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
14
|
Richardson A, Powell AK, Sexton DW, Parsons JL, Reynolds NJ, Ross K. microRNA‐184 is induced by store‐operated calcium entry and regulates early keratinocyte differentiation. J Cell Physiol 2020; 235:6854-6861. [DOI: 10.1002/jcp.29579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Adam Richardson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Andrew K. Powell
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, Cancer Research CentreUniversity of Liverpool Liverpool UK
| | - Nick J. Reynolds
- Dermatological Sciences, Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
- Department of Dermatology, Royal Victoria InfirmaryNewcastle Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| |
Collapse
|
15
|
Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Sci Rep 2019; 9:736. [PMID: 30679581 PMCID: PMC6346103 DOI: 10.1038/s41598-018-36859-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in ADNP have been recently associated with intellectual disability and autism spectrum disorder. However, the clinical features of patients with this syndrome are not fully identified, and no treatment currently exists for these patients. Here, we extended the ADNP syndrome phenotype describing skin abnormalities in both a patient with ADNP syndrome and an Adnp haploinsufficient mice. The patient displayed thin dermis, hyperkeratotic lesions in periarticular areas and delayed wound healing. Patient-derived skin keratinocytes showed reduced proliferation and increased differentiation. Additionally, detection of cell cycle markers indicated that mutant cells exhibited impaired cell cycle progression. Treatment of ADNP-deficient keratinocytes with the ADNP-derived NAP peptide significantly reduced the expression of differentiation markers. Sonography and immunofluorescence staining of epidermal layers revealed that the dermis was thinner in the patient than in a healthy control. Adnp haploinsufficient mice (Adnp+/−) mimicked the human condition showing reduced dermal thickness. Intranasal administration of NAP significantly increased dermal thickness and normalized the levels of cell cycle and differentiation markers. Our observations provide a novel activity of the autism-linked ADNP in the skin that may serve to define the clinical phenotype of patients with ADNP syndrome and provide an attractive therapeutic option for skin alterations in these patients.
Collapse
|
16
|
Gandarillas A, Sanz-Gómez N, Freije A. Polyploidy and the mitosis path to epidermal cell fate. Cell Cycle 2019; 18:359-362. [PMID: 30636498 DOI: 10.1080/15384101.2019.1568766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Alberto Gandarillas
- a Cell Cycle, Stem Cell Fate and Cancer Laboratory , Institute for Research Marqués de Valdecilla (IDIVAL) , Santander , Spain.,b INSERM, Languedoc-Roussillon , Montpellier , France
| | - Natalia Sanz-Gómez
- a Cell Cycle, Stem Cell Fate and Cancer Laboratory , Institute for Research Marqués de Valdecilla (IDIVAL) , Santander , Spain
| | - Ana Freije
- a Cell Cycle, Stem Cell Fate and Cancer Laboratory , Institute for Research Marqués de Valdecilla (IDIVAL) , Santander , Spain
| |
Collapse
|
17
|
Abstract
Keratinocytes are hard to transfect. Viral vectors are a good alternative to genetically modify primary keratinocytes. A classical method is the use of retroviral vectors by co-culture of keratinocytes with virus-producer cells. This method is efficient in high-calcium conditions with feeder cells. However, sometimes co-culture is not possible and is more laborious as producer cells need to be replaced by feeder cells. Our solution is the use of lentiviral vectors, far more efficient as supernatant on keratinocytes. In this chapter we describe improved detailed protocols for stable genetic modification of human primary keratinocytes of the skin or head and neck, in both low- and high-calcium conditions by lentiviral vectors.
Collapse
|
18
|
Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death Dis 2018; 9:1094. [PMID: 30361544 PMCID: PMC6202398 DOI: 10.1038/s41419-018-1130-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
The epidermis is a self-renewal epithelium continuously exposed to the genotoxic effects of ultraviolet (UV) light, the main cause of skin cancer. Therefore, it needs robust self-protective mechanisms facing genomic damage. p53 has been shown to mediate apoptosis in sunburn cells of the epidermis. However, epidermal cells daily receive sublethal mutagenic doses of UV and massive apoptosis would be deleterious. We have recently unravelled an anti-oncogenic keratinocyte DNA damage-differentiation response to cell cycle stress. We now have studied this response to high or moderate single doses of UV irradiation. Whereas, as expected, high levels of UV induced p53-dependent apoptosis, moderate levels triggered squamous differentiation. UV-induced differentiation was not mediated by endogenous p53. Overexpression of the mitosis global regulator FOXM1 alleviated the proliferative loss caused by UV. Conversely, knocking-down the mitotic checkpoint protein Wee1 drove UV-induced differentiation into apoptosis. Therefore, the results indicate that mitosis checkpoints determine the response to UV irradiation. The differentiation response was also found in cells of head and neck epithelia thus uncovering a common regulation in squamous tissues upon chronic exposure to mutagens, with implications into homeostasis and disease.
Collapse
|
19
|
Sanz-Gómez N, Freije A, Ceballos L, Obeso S, Sanz JR, García-Reija F, Morales-Angulo C, Gandarillas A. Response of head and neck epithelial cells to a DNA damage-differentiation checkpoint involving polyploidization. Head Neck 2018; 40:2487-2497. [PMID: 30311985 DOI: 10.1002/hed.25376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/03/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Squamous epithelia of the head and neck undergo continuous cell renewal and are continuously exposed to mutagenic hazard, the main cause of cancer. How they maintain homeostasis upon cell cycle deregulation is unclear. METHODS To elucidate how head and neck epithelia respond to cell cycle stress, we studied human keratinocytes from various locations (oral mucosa, tonsil, pharynx, larynx, and trachea). We made use of genotoxic or mitotic drugs (doxorubicin [DOXO], paclitaxel, and nocodazole), or chemical inhibitors of the mitotic checkpoint kinases, Aurora B and polo-like-1. We further tested the response to inactivation of p53, ectopic cyclin E, or to the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). RESULTS All treatments provoked DNA damage or mitosis impairment and strikingly triggered squamous differentiation and polyploidization, resulting in irreversible loss of clonogenic capacity. CONCLUSION Keratinocytes from head and neck epithelia share a cell-autonomous squamous DNA damage-differentiation response that is common to the epidermis and might continuously protect them from cancer.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Sergio Obeso
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Otorhinolaryngology Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - J Ramón Sanz
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Plastic Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Fe García-Reija
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Oral and Maxillofacial Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Carmelo Morales-Angulo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Otorhinolaryngology Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
20
|
Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death Differ 2018; 25:471-476. [PMID: 29352263 PMCID: PMC5864232 DOI: 10.1038/s41418-017-0040-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023] Open
Abstract
Among the most intriguing and relevant questions in physiology is how developing tissues correctly coordinate proliferation with differentiation. Endoreplication, in a broad sense, is a consequence of a cell division block in the presence of an active cell cycle, and it typically occurs as cells differentiate terminally to fulfill a specialised function. Until recently, endoreplication was thought to be a rare variation of the cell cycle in mammals, more common in invertebrates and plants. However, in the last years, endoreplication has been uncovered in various tissues in mammalian organisms, including human. A recent report showing that cells in the mammary gland become binucleate at lactation sheds new insight into the importance of mammalian polyploidisation. We here propose that endoreplication is a widespread phenomenon in mammalian developing tissues that results from an automatic, robust and simple self-limiting mechanism coordinating cell multiplication with differentiation. This mechanism might act as a developmental timer. The model has implications for homeostasis control and carcinogenesis.
Collapse
|
21
|
Alonso-Lecue P, de Pedro I, Coulon V, Molinuevo R, Lorz C, Segrelles C, Ceballos L, López-Aventín D, García-Valtuille A, Bernal JM, Mazorra F, Pujol RM, Paramio J, Ramón Sanz J, Freije A, Toll A, Gandarillas A. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells. Cell Death Dis 2017; 8:e2901. [PMID: 28661481 PMCID: PMC5520915 DOI: 10.1038/cddis.2017.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022]
Abstract
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy.
Collapse
Affiliation(s)
- Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Vincent Coulon
- Institut de Genétique Moléculaire de Montpellier, CNRS/UM2, Montpellier, France
| | - Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Corina Lorz
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | | | | | - José M Bernal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Department of Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Francisco Mazorra
- Clínica Mompía, Mompía, Spain.,Department of Pathology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jesús Paramio
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - J Ramón Sanz
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Clínica Mompía, Mompía, Spain.,Department of Plastic Surgery, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
22
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
23
|
Molinuevo R, Freije A, de Pedro I, Stoll SW, Elder JT, Gandarillas A. FOXM1 allows human keratinocytes to bypass the oncogene-induced differentiation checkpoint in response to gain of MYC or loss of p53. Oncogene 2017; 36:956-965. [PMID: 27452522 PMCID: PMC5318665 DOI: 10.1038/onc.2016.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Tumour suppressor p53 or proto-oncogene MYC is frequently altered in squamous carcinomas, but this is insufficient to drive carcinogenesis. We have shown that overactivation of MYC or loss of p53 via DNA damage triggers an anti-oncogenic differentiation-mitosis checkpoint in human epidermal keratinocytes, resulting in impaired cell division and squamous differentiation. Forkhead box M1 (FOXM1) is a transcription factor recently proposed to govern the expression of a set of mitotic genes. Deregulation of FOXM1 occurs in a wide variety of epithelial malignancies. We have ectopically expressed FOXM1 in keratinocytes of the skin after overexpression of MYC or inactivation of endogenous p53. Ectopic FOXM1 rescues the proliferative capacity of MYC- or p53-mutant cells in spite of higher genetic damage and a larger cell size typical of differentiation. As a consequence, differentiation induced by loss of p53 or MYC is converted into increased proliferation and keratinocytes displaying genomic instability are maintained within the proliferative compartment. The results demonstrate that keratinocyte oncogene-induced differentiation is caused by mitosis control and provide new insight into the mechanisms driving malignant progression in squamous cancer.
Collapse
Affiliation(s)
- R Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - A Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - I de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - S W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Ann Arbor Veterans Affairs Health System, Ann Arbor, MI, USA
| | - A Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
- INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
24
|
Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, Gormley AC, Yuspa SH, Morasso MI. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ 2017; 24:717-730. [PMID: 28186503 PMCID: PMC5384032 DOI: 10.1038/cdd.2017.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/16/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
Collapse
Affiliation(s)
| | | | | | - Paul W Bible
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | | | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Anna C Gormley
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, MD 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Shahbazi MN, Peña-Jimenez D, Antonucci F, Drosten M, Perez-Moreno M. Clasp2 ensures mitotic fidelity and prevents differentiation of epidermal keratinocytes. J Cell Sci 2017; 130:683-688. [PMID: 28069833 PMCID: PMC5339885 DOI: 10.1242/jcs.194787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022] Open
Abstract
Epidermal homeostasis is tightly controlled by a balancing act of self-renewal or terminal differentiation of proliferating basal keratinocytes. An increase in DNA content as a consequence of a mitotic block is a recognized mechanism underlying keratinocyte differentiation, but the molecular mechanisms involved in this process are not yet fully understood. Using cultured primary keratinocytes, here we report that the expression of the mammalian microtubule and kinetochore-associated protein Clasp2 is intimately associated with the basal proliferative makeup of keratinocytes, and its deficiency leads to premature differentiation. Clasp2-deficient keratinocytes exhibit increased centrosomal numbers and numerous mitotic alterations, including multipolar spindles and chromosomal misalignments that overall result in mitotic stress and a high DNA content. Such mitotic block prompts premature keratinocyte differentiation in a p53-dependent manner in the absence of cell death. Our findings reveal a new role for Clasp2 in governing keratinocyte undifferentiated features and highlight the presence of surveillance mechanisms that prevent cell cycle entry in cells that have alterations in the DNA content.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Daniel Peña-Jimenez
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Francesca Antonucci
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Programme, Spanish Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
26
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Stoll SW, Stuart PE, Lambert S, Gandarillas A, Rittié L, Johnston A, Elder JT. Membrane-Tethered Intracellular Domain of Amphiregulin Promotes Keratinocyte Proliferation. J Invest Dermatol 2016; 136:444-452. [PMID: 26802239 DOI: 10.1016/j.jid.2015.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) and its ligands are essential regulators of epithelial biology, which are often amplified in cancer cells. We have previously shown that shRNA-mediated silencing of one of these ligands, amphiregulin (AREG), results in keratinocyte growth arrest that cannot be rescued by soluble extracellular EGFR ligands. To further explore the functional importance of specific AREG domains, we stably transduced keratinocytes expressing tetracycline-inducible AREG-targeted shRNA with lentiviruses expressing silencing-proof, membrane-tethered AREG cytoplasmic and extracellular domains (AREG-CTD and AREG-ECD), as well as full-length AREG precursor (proAREG). Here we show that growth arrest of AREG-silenced keratinocytes occurs in G2/M and is significantly restored by proAREG and AREG-CTD but not by AREG-ECD. Moreover, the AREG-CTD was sufficient to normalize cell cycle distribution profiles and expression of mitosis-related genes. Our findings uncover an important role of the AREG-CTD in regulating cell division, which may be relevant to tumor resistance to EGFR-directed therapies.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Gandarillas
- Cell Cycle, Stem Cells and Cancer Lab, Instituto de Investigación Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Stoll SW, Stuart PE, Swindell WR, Tsoi LC, Li B, Gandarillas A, Lambert S, Johnston A, Nair RP, Elder JT. The EGF receptor ligand amphiregulin controls cell division via FoxM1. Oncogene 2016; 35:2075-86. [PMID: 26234682 PMCID: PMC4788585 DOI: 10.1038/onc.2015.269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 12/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) is central to epithelial cell physiology, and deregulated EGFR signaling has an important role in a variety of human carcinomas. Here we show that silencing of the EGF-related factor amphiregulin (AREG) markedly inhibits the expansion of human keratinocytes through mitotic failure and accumulation of cells with ⩾ 4n DNA content. RNA-sequencing-based transcriptome analysis revealed that tetracycline-mediated AREG silencing significantly altered the expression of 2331 genes, 623 of which were not normalized by treatment with EGF. Interestingly, genes irreversibly upregulated by suppression of AREG overlapped with genes involved in keratinocyte differentiation. Moreover, a significant proportion of the irreversibly downregulated genes featured upstream binding sites recognized by forkhead box protein M1 (FoxM1), a key transcription factor in the control of mitosis that is widely dysregulated in cancer. The downregulation of FoxM1 and its target genes preceded mitotic arrest. Constitutive expression of FoxM1 in AREG knockdown cells normalized cell proliferation, reduced the number of cells with ⩾ 4n DNA content and rescued expression of FoxM1 target genes. These results demonstrate that AREG controls G2/M progression and cytokinesis in keratinocytes via activation of a FoxM1-dependent transcriptional program, suggesting new avenues for treatment of epithelial cancer.
Collapse
Affiliation(s)
- Stefan W. Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Lam C. Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Bingshan Li
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alberto Gandarillas
- Cell Cycle, Stem Cells and Cancer Lab, Instituto de Investigación Marques de Valdecilla-IDIVAL), Santander, Spain
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Ann Arbor Veterans Affairs Health System, Ann Arbor, MI
| |
Collapse
|
29
|
Huang G, Li L, Zhou W. USP14 activation promotes tumor progression in hepatocellular carcinoma. Oncol Rep 2015; 34:2917-24. [PMID: 26397990 DOI: 10.3892/or.2015.4296] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To elucidate the molecular mechanisms underlying the pathogenesis and treatment of human primary hepatocellular carcinoma (HCC), it is important to explore novel HCC-associated genes. In the present study, we examined the expression of ubiquitin-specific peptidase 14 (USP14) in patients with HCC using quantitative PCR and immunohistochemical techniques. The expression of USP14 in tumor tissues of patients with HCC was significantly higher than that in adjacent non-cancerous and normal liver tissues. It was also determined whether the expression profile of USP14 was associated with the clinical characteristics of HCC. Increased USP14 expression was associated with some clinicopatho-logical variables, such as advancing tumor stage. A Kaplan-Meier curve analysis demonstrated that patients with HCC having a high USP14 expression had a significantly poorer prognosis after surgery than patients with lower USP14 expression levels. Knockdown of USP14 with the lentiviral vector delivery of shRNA in human hepatocarcinoma SMMC7721 cells suppressed cell proliferation, altered the cell cycle and induced cell apoptosis. Additionally, the Wnt/β-catenin pathway was activated in HCC patients with USP14 overexpression. These findings strongly suggested that USP14 activation plays an oncogenic role in promoting tumor progression in HCC. Thus, our findings suggested that USP14 is involved in the progression of HCC and may be a useful therapeutic target in HCC. These findings likely reflect the key role that USP14 plays in the pathogenesis of HCC. Therefore, the identification of USP14 and USP14-driven genes may promote the investigation of its functional role to develop more effective therapies for HCC, especially advanced HCC.
Collapse
Affiliation(s)
- Gang Huang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Limei Li
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, P.R. China
| | - Weiping Zhou
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
30
|
Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ 2015; 22:1764-74. [PMID: 26434982 DOI: 10.1038/cdd.2015.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Aging is the single biggest risk factor for malignant transformation. Among the most common age-associated malignancies are non-melanoma skin cancers, comprising the most common types of human cancer. Here we show that mutant H-Ras activation in mouse epidermis, a frequent event in cutaneous squamous cell carcinoma (SCC), elicits a differential outcome in aged versus young mice. Whereas H-Ras activation in the young skin results in hyperplasia that is mainly accompanied by rapid hair growth, H-Ras activation in the aged skin results in more dysplasia and gradual progression to in situ SCC. Progression is associated with increased inflammation, pronounced accumulation of immune cells including T cells, macrophages and mast cells as well as excessive cell senescence. We found not only an age-dependent increase in expression of several pro-inflammatory mediators, but also activation of a strong anti-inflammatory response involving enhanced IL4/IL10 expression and immune skewing toward a Th2 response. In addition, we observed an age-dependent increase in the expression of Pdl1, encoding an immune suppressive ligand that promotes cancer immune evasion. Moreover, upon switching off oncogenic H-Ras activity, young but not aged skin regenerates successfully, suggesting a failure of the aged epidermal stem cells to repair damaged tissue. Our findings support an age-dependent link between accumulation of senescent cells, immune infiltration and cancer progression, which may contribute to the increased cancer risk associated with old age.
Collapse
|
31
|
Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, Menendez P, Aberdam D, De Diego E, Gandarillas A. Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage. Cell Rep 2014; 9:1349-60. [PMID: 25453755 DOI: 10.1016/j.celrep.2014.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/14/2014] [Accepted: 10/03/2014] [Indexed: 11/28/2022] Open
Abstract
Tumor suppressor p53 is a major cellular guardian of genome integrity, and its inactivation is the most frequent genetic alteration in cancer, rising up to 80% in squamous cell carcinoma (SCC). By adapting the small hairpin RNA (shRNA) technology, we inactivated endogenous p53 in primary epithelial cells from the epidermis of human skin. We show that either loss of endogenous p53 or overexpression of a temperature-sensitive dominant-negative conformation triggers a self-protective differentiation response, resulting in cell stratification and expulsion. These effects follow DNA damage and exit from mitosis without cell division. p53 preserves the proliferative potential of the stem cell compartment and limits the power of proto-oncogene MYC to drive cell cycle stress and differentiation. The results provide insight into the role of p53 in self-renewal homeostasis and help explain why p53 mutations do not initiate skin cancer but increase the likelihood that cancer cells will appear.
Collapse
Affiliation(s)
- Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Marta Cagigas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - René Rodriguez
- Lab 2-ORL, Instituto Universitario de Oncología de Asturias (IUOPA) Hospital Universitario Central de Asturias (HUCA), Oviedo 33006, Spain
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Avenida Lluis Companys, Barcelona 08010, Spain
| | - Daniel Aberdam
- INSERM UMR-S976, University Paris Didero, Hôpital Saint-Louis, Equerre Bazin, Paris 75475, France
| | - Ernesto De Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; Paediatric Surgery, Hospital Universitario Marqués de Valdecilla (HUMV), Santander 39011, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; INSERM, Languedoc-Roussillon, Montpellier 34394, France.
| |
Collapse
|
32
|
Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlenther Onkol 2014; 190:839-46. [PMID: 24715240 DOI: 10.1007/s00066-014-0605-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. METHODS Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. RESULTS HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. CONCLUSIONS The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair.
Collapse
|
33
|
Trakala M, Malumbres M. The functional relevance of polyploidization in the skin. Exp Dermatol 2013; 23:92-3. [PMID: 24330335 DOI: 10.1111/exd.12305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 12/19/2022]
Abstract
Cell proliferation and differentiation are tightly coupled through the regulation of the cell division cycle. To preserve specific functional properties in differentiated cells, distinct variants of the basic mitotic cell cycle are used in various mammalian tissues, leading to the formation of polyploid cells. In this issue of Experimental Dermatology, Gandarillas and Freije discuss the evidences for polyploidization in keratinocytes, a process whose physiological relevance is now becoming evident. A better evaluation of these unconventional cell cycles is required not only to improve our understanding of the development and structure of the epidermis but also for future therapies against skin diseases.
Collapse
Affiliation(s)
- Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
34
|
Gandarillas A, Freije A. Cycling up the epidermis: reconciling 100 years of debate. Exp Dermatol 2013; 23:87-91. [PMID: 24261570 DOI: 10.1111/exd.12287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
There is likely general consensus within the skin research community that cell cycle control is critical to epidermal homeostasis and disease. The current predominant model proposes that keratinocytes switch off DNA replication and undergo cell cycle and cell growth arrest as they initiate terminal differentiation. However, this model cannot explain key physiological features of the skin, mainly why squamous differentiation prevails over proliferation in benign hyperproliferative disorders. In recent years, we have proposed an alternative model that involves mitotic slippage and endoreplication. This new model is controversial and has encountered resistance within the field. However, looking back at history, the epidermal cell cycle has been a matter of controversy and debate for around 100 years now. The accumulated data are confusing and contradictory. Our present model can explain and reconcile both old and new paradoxical observations. Here, we explain and discuss the endoreplicative cell cycle, the evidence for and against its existence in human epidermis and the important implications for skin homeostasis and disease. We show that regardless of the strengths or weaknesses of the Endoreplication Model, the existing evidence in support of the Cell Cycle Arrest Model is very weak.
Collapse
Affiliation(s)
- Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain; Institut National de la Santé et de la Recherche Médicale (INSERM), Languedoc-Roussillon, France
| | | |
Collapse
|
35
|
Yoo YA, Son J, Mehta FF, DeMayo FJ, Lydon JP, Chung SH. Progesterone signaling inhibits cervical carcinogenesis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1679-1687. [PMID: 24012679 DOI: 10.1016/j.ajpath.2013.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/25/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Abstract
Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo.
Collapse
Affiliation(s)
- Young A Yoo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jieun Son
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Fabiola F Mehta
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
36
|
Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology 2013; 443:11-9. [PMID: 23725693 DOI: 10.1016/j.virol.2013.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/15/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPVs) are the causative agents of cervical and other cancers. The oncoprotein E7 activates the cell cycle and makes possible replication of the viral genome in differentiating epithelia. The HPV16 late promoter is activated upon cellular differentiation and regulates late gene expression. We investigated the effect of E7 on the late promoter and found that E7 was able to activate the promoter. In contrast, the other known viral transcriptional regulator, E2, had no effect on the late promoter. Promoter activation by E7 occurred despite inhibition of promoter activity by factors involved in the cell cycle, such as cyclin dependent kinases and E2F transcription factors, and by the ability of E7 to disrupt several aspects of cellular differentiation. These results suggest a new role for E7 in the context of the viral life cycle and shed light on the complex regulation of viral gene expression in infected, differentiating epithelia.
Collapse
|
37
|
Gandarillas A. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 2012; 11:4507-16. [PMID: 23114621 PMCID: PMC3562294 DOI: 10.4161/cc.22529] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation.
Collapse
Affiliation(s)
- Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain.
| |
Collapse
|
38
|
Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A. A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7:e39371. [PMID: 22724006 PMCID: PMC3378572 DOI: 10.1371/journal.pone.0039371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/19/2012] [Indexed: 11/19/2022] Open
Abstract
CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - Cristina Abraira
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
- Institut National de la Santé et de la Recherche Médicale, ADR Languedoc-Roussillon, Montpellier, France
| |
Collapse
|