1
|
Yan R, Chen L, Cai Z, Tang J, Zhu Y, Li Y, Wang X, Ruan Y, Han Q. NIPSNAP3A regulates cellular homeostasis by modulating mitochondrial dynamics. Gene 2025; 933:148976. [PMID: 39362349 DOI: 10.1016/j.gene.2024.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Mitochondria are essential for cell metabolism and survival as they produce the majority of cellular ATP through oxidative phosphorylation as well as regulate critical processes such as cell proliferation and apoptosis. NIPSNAP family of proteins are predominantly mitochondrial matrix proteins. However, the molecular and cellular functions of the NIPSNAPs, particularly NIPSNAP3A, have remained elusive. Here, we demonstrated that NIPSNAP3A knockdown in HeLa cells inhibited their proliferation and migration and attenuated apoptosis induced by Actinomycin D (Act-D). These findings suggested a complex relationship between cellular processes and mitochondrial functions, mediated by NIPSNAP3A. Further investigations revealed that NIPSNAP3A knockdown not only inhibited mitochondrial fission through reduction of DRP1-S616, but also suppressed cytochrome c release in apoptosis. Collectively, our findings highlight the critical role of NIPSNAP3A in coordinating cellular processes, likely through its influence on mitochondrial dynamics.
Collapse
Affiliation(s)
- Run Yan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimu Cai
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiyao Tang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanlin Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xuemin Wang
- Department of Emergency and Critical Disease, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| | - Yu Ruan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Minarrieta L, Annis MG, Audet-Delage Y, Kuasne H, Pacis A, St-Louis C, Nowakowski A, Biondini M, Khacho M, Park M, Siegel PM, St-Pierre J. Mitochondrial elongation impairs breast cancer metastasis. SCIENCE ADVANCES 2024; 10:eadm8212. [PMID: 39504368 PMCID: PMC11540020 DOI: 10.1126/sciadv.adm8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Mitochondrial dynamics orchestrate many essential cellular functions, including metabolism, which is instrumental in promoting cancer growth and metastatic progression. However, how mitochondrial dynamics influences metastatic progression remains poorly understood. Here, we show that breast cancer cells with low metastatic potential exhibit a more fused mitochondrial network compared to highly metastatic cells. To study the impact of mitochondrial dynamics on metastasis, we promoted mitochondrial elongation in metastatic breast cancer cells by individual genetic deletion of three key regulators of mitochondrial fission (Drp1, Fis1, Mff) or by pharmacological intervention with leflunomide. Omics analyses revealed that mitochondrial elongation causes substantial alterations in metabolic pathways and processes related to cell adhesion. In vivo, enhanced mitochondrial elongation by loss of mitochondrial fission mediators or treatment with leflunomide notably reduced metastasis formation. Furthermore, the transcriptomic signature associated with elongated mitochondria correlated with improved clinical outcome in patients with breast cancer. Overall, our findings highlight mitochondrial dynamics as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Yannick Audet-Delage
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Alain Pacis
- McGill Genome Centre, Montréal, QC, Canada
- Canadian Centre for Computational Genomics (C3G), McGill University, Montréal, QC, Canada
| | - Catherine St-Louis
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marco Biondini
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mireille Khacho
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Julie St-Pierre
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Kinoshita M, Saito Y, Otani K, Uehara Y, Nagasawa S, Nakagawa M, Yamada A, Kamimura S, Moritake H. Mitochondrial dynamics as a potential therapeutic target in acute myeloid leukemia. Int J Hematol 2024; 120:601-612. [PMID: 39283580 DOI: 10.1007/s12185-024-03843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024]
Abstract
Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation and the mitochondrial dynamics regulated by fusion-related genes MFN1, MFN2, and OPA1 and fission-related genes DNM1L and MFF. An analysis of previously published gene expression datasets showed that high expression of MFF was significantly associated with poor prognosis in patients with AML. Based on this finding, we investigated the impact of mitochondrial dynamics in AML. Transduction of shRNA against fission-related genes, DNM1L and MFF, inhibited growth and increased the mitochondrial area in AML cell lines. Extracellular flux analysis showed that deletion of mitochondrial dynamic regulators reduced mitochondrial respiration without significantly affecting glycolysis, except in shDNM1L-transfected cells. Immunodeficient NOG mice transplanted with DNM1L- or MFF-knockdown AML cells survived significantly longer than controls. Treatment of AML cell lines with Mdivi-1, which inhibits the DRP1 encoded by DNM1L, inhibited cell proliferation and oxidative phosphorylation. Our results show that mitochondrial dynamics play an important role in AML, and provide novel biological insights. The inhibition of mitochondrial dynamics induces unique mitochondrial alterations, which may be explored as a potential therapeutic target in AML.
Collapse
Affiliation(s)
- Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Yusuke Saito
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kento Otani
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yuya Uehara
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shun Nagasawa
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Midori Nakagawa
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
4
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Huerta H, Puebla A, Quezada C, Morgado-Cáceres P, Casanova-Canelo C, Smith-Cortinez N, Podunavac M, Oyarce C, Lladser A, Farias P, Lovy A, Molgó J, Torres VA, Zakarian A, Cárdenas JC. The IP 3R inhibitor desmethylxestospongin B reduces tumor cell migration, invasion and metastasis by impairing lysosome acidification and β1-integrin recycling. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167557. [PMID: 39486657 DOI: 10.1016/j.bbadis.2024.167557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cancer is the second leading cause of death worldwide. >90 % of cancer-related deaths are due to metastasis, a process that depends on the ability of cancer cells to leave the primary tumor, migrate, and colonize different tissues. Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays an essential role in maintaining the homeostasis of cancer cells and the sustained proliferation. Desmethylxestospongin B (dmXeB) is a specific inhibitor of the IP3R that selectively arrests cell proliferation and promotes cancer cell death at high concentrations. However, whether migration, invasion and metastasis can be affected by this drug is unknown. Here, by using the highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231, we demonstrate that a prolonged inhibition of IP3R-mediated Ca2+ signals with dmXeB significantly reduces cell migration and invasion in vitro and metastasis in vivo. We found that this phenomenon was independent of the bioenergetic control of IP3R over the mitochondria and AMPK activation. Furthermore, employing a tandem LC3-GFP-mcherry assay, we found that prolonged inhibition of IP3R with dmXeB leads to diminished autophagic flux. This reduction can be attributed to impaired lysosomal acidification, as evidenced by assessments using DQ-BSA and pHrodo. Since cell migration requires appropriate assembly and disassembly of focal adhesions, along with the internalization and recycling of integrins via autophagy, we explored the dependency of integrin recycling from autophagosomes, finding that IP3R inhibition with dmXeB impaired the recycling of β1-integrins, which accumulated within autophagosomes. Our findings reveal an unexpected effect of IP3R inhibition with dmXeB in cancer cells that could represent a novel therapeutic strategy for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile
| | - Hernán Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Andrea Puebla
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Camila Quezada
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Pablo Morgado-Cáceres
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - César Casanova-Canelo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Natalia Smith-Cortinez
- Department of Gastroenterology and Hepatology, UMCG, University of Groningen, Netherlands
| | - Maša Podunavac
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cesar Oyarce
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alvaro Lladser
- Centro Cientifico y Tecnologico de Excelencia Ciencia & Vida, Fundación Ciencia and Vida, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Equipe Mixte de Recherche CNRS 9004, F-91191 Gif-sur-Yvette, France
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380453, Chile; Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - J César Cárdenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile; Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
5
|
Kalb RC, Nyabuto GO, Morran MP, Maity S, Justinger JS, Nestor-Kalinoski AL, Vestal DJ. The Large GTPase Guanylate-Binding Protein-1 (GBP-1) Promotes Mitochondrial Fission in Glioblastoma. Int J Mol Sci 2024; 25:11236. [PMID: 39457021 PMCID: PMC11508455 DOI: 10.3390/ijms252011236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastomas (aka Glioblastoma multiformes (GBMs)) are the most deadly of the adult brain tumors. Even with aggressive treatment, the prognosis is extremely poor. The large GTPase Guanylate-Binding Protein-1 (GBP-1) contributes to the poor prognosis of GBM by promoting migration and invasion. GBP-1 is substantially localized to the cytosolic side of the outer membrane of mitochondria in GBM cells. Because mitochondrial dynamics, particularly mitochondrial fission, can drive cell migration and invasion, the potential interactions between GBP-1 and mitochondrial dynamin-related protein 1 (Drp1) were explored. Drp1 is the major driver of mitochondrial fission. While GBP-1 and Drp1 both had punctate distributions within the cytoplasm and localized to regions of the cytoplasmic side of the plasma membrane of GBM cells, the proteins were only molecularly co-localized at the mitochondria. Subcellular fractionation showed that the presence of elevated GBP-1 promoted the movement of Drp1 from the cytosol to the mitochondria. The migration of U251 cells treated with the Drp1 inhibitor, Mdivi-1, was less inhibited in the cells with elevated GBP-1. Elevated GBP-1 in GBM cells resulted in shorter and wider mitochondria, most likely from mitochondrial fission. Mitochondrial fission can drive several important cellular processes, including cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Ryan C. Kalb
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA; (R.C.K.); (G.O.N.); (S.M.); (J.S.J.)
| | - Geoffrey O. Nyabuto
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA; (R.C.K.); (G.O.N.); (S.M.); (J.S.J.)
| | - Michael P. Morran
- Department of Surgery, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA; (M.P.M.); (A.L.N.-K.)
| | - Swagata Maity
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA; (R.C.K.); (G.O.N.); (S.M.); (J.S.J.)
| | - Jacob S. Justinger
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA; (R.C.K.); (G.O.N.); (S.M.); (J.S.J.)
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA; (M.P.M.); (A.L.N.-K.)
| | - Deborah J. Vestal
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA; (R.C.K.); (G.O.N.); (S.M.); (J.S.J.)
| |
Collapse
|
6
|
Chiu CF, Guerrero JJG, Regalado RRH, Zamora MJB, Zhou J, Notarte KI, Lu YW, Encarnacion PC, Carles CDD, Octavo EM, Limbaroc DCI, Saengboonmee C, Huang SY. Insights into Metabolic Reprogramming in Tumor Evolution and Therapy. Cancers (Basel) 2024; 16:3513. [PMID: 39456607 PMCID: PMC11506062 DOI: 10.3390/cancers16203513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer remains a global health challenge, characterized not just by uncontrolled cell proliferation but also by the complex metabolic reprogramming that underlies its development and progression. Objectives: This review delves into the intricate relationship between cancer and its metabolic alterations, drawing an innovative comparison with the cosmological concepts of dark matter and dark energy to highlight the pivotal yet often overlooked role of metabolic reprogramming in tumor evolution. Methods: It scrutinizes the Warburg effect and other metabolic adaptations, such as shifts in lipid synthesis, amino acid turnover, and mitochondrial function, driven by mutations in key regulatory genes. Results: This review emphasizes the significance of targeting these metabolic pathways for therapeutic intervention, outlining the potential to disrupt cancer's energy supply and signaling mechanisms. It calls for an interdisciplinary research approach to fully understand and exploit the intricacies of cancer metabolism, pointing toward metabolic reprogramming as a promising frontier for developing more effective cancer treatments. Conclusion: By equating cancer's metabolic complexity with the enigmatic nature of dark matter and energy, this review underscores the critical need for innovative strategies in oncology, highlighting the importance of unveiling and targeting the "dark energy" within cancer cells to revolutionize future therapy and research.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Jonathan Jaime G. Guerrero
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Ric Ryan H. Regalado
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines; (R.R.H.R.); (M.J.B.Z.)
| | - Ma. Joy B. Zamora
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines; (R.R.H.R.); (M.J.B.Z.)
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yu-Wei Lu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
| | - Paolo C. Encarnacion
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 32003, Taiwan
| | - Cidne Danielle D. Carles
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Edrian M. Octavo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
| | - Dan Christopher I. Limbaroc
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
7
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
8
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
9
|
Huang L, Wang J, Wang X, Zheng S, Liang K, Kang YE, Chang JW, Koo BS, Liu L, Gal A, Shan Y. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation. Cancer Lett 2024; 601:217145. [PMID: 39084455 DOI: 10.1016/j.canlet.2024.217145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.
Collapse
Affiliation(s)
- Lei Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Jiaxin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sicong Zheng
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kailin Liang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yea Eun Kang
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, 35015, Republic of Korea
| | - Lihua Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom.
| | - Yujuan Shan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Li X, Tie J, Sun Y, Gong C, Deng S, Chen X, Li S, Wang Y, Wang Z, Wu F, Liu H, Wu Y, Zhang G, Guo Q, Yang Y, Wang Y. Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling. J Exp Clin Cancer Res 2024; 43:273. [PMID: 39350223 PMCID: PMC11440692 DOI: 10.1186/s13046-024-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The dynamics of mitochondrial respiratory cristae (MRC) and its impact on oxidative phosphorylation (OXPHOS) play a crucial role in driving the progression of high-grade glioma (HGG). However, the underlying mechanism remains unclear. METHODS In the present study, we employed machine learning-based transmission electron microscopy analysis of 7141 mitochondria from 54 resected glioma patients. Additionally, we conducted bioinformatics analysis and multiplex immunohistochemical (mIHC) staining of clinical glioma microarrays to identify key molecules involved in glioma. Subsequently, we modulated the expression levels of mitochondrial dynamic-1-like protein (DNM1L/DRP1), and its two receptors, mitochondrial fission protein 1 (FIS1) and mitochondrial fission factor (MFF), via lentiviral transfection to further investigate the central role of these molecules in the dynamics of glioblastoma (GBM) cells and glioma stem cells (GSCs). We then evaluated the potential impact of DNM1L/DRP1, FIS1, and MFF on the proliferation and progression of GBM cells and GSCs using a combination of CCK-8 assay, Transwell assay, Wound Healing assay, tumor spheroid formation assay and cell derived xenograft assay employing NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mouse model. Subsequently, we validated the ability of the DNM1L/DRP1-FIS1 axis to remodel MRC structure through mitophagy by utilizing Seahorse XF analysis technology, mitochondrial function detection, MRC abundance detection and monitoring dynamic changes in mitophagy. RESULTS Our findings revealed that compared to low-grade glioma (LGG), HGG exhibited more integrated MRC structures. Further research revealed that DNM1L/DRP1, FIS1, and MFF played pivotal roles in governing mitochondrial fission and remodeling MRC in HGG. The subsequent validation demonstrated that DNM1L/DRP1 exerts a positive regulatory effect on FIS1, whereas the interaction between MFF and FIS1 demonstrates a competitive inhibition relationship. The down-regulation of the DNM1L/DRP1-FIS1 axis significantly impaired mitophagy, thereby hindering the remodeling of MRC and inhibiting OXPHOS function in glioma, ultimately leading to the inhibition of its aggressive progression. In contrast, MFF exerts a contrasting effect on MRC integrity, OXPHOS activity, and glioma progression. CONCLUSIONS This study highlights that the DNM1L/DRP1-FIS1 axis stabilizes MRC structures through mitophagy in HGG cells while driving their OXPHOS activity ultimately leading to robust disease progression. The inhibition of the DNM1L/DRP1-FIS1 axis hinders MRC remodeling and suppresses GBM progression. We propose that down-regulation of the DNM1L/DRP1-FIS1 axis could be a potential therapeutic strategy for treating HGG.
Collapse
Affiliation(s)
- Xiaodong Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Tie
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan'an University, Yan'an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chengrong Gong
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shizhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shujiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yaoliang Wang
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenhua Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Feifei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yousheng Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guopeng Zhang
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qingdong Guo
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
12
|
Khan AH, Gu X, Patel RJ, Chuphal P, Viana MP, Brown AI, Zid BM, Tsuboi T. Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence. Nat Commun 2024; 15:8274. [PMID: 39333462 PMCID: PMC11437024 DOI: 10.1038/s41467-024-52183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
A decline in mitochondrial function is a hallmark of aging and neurodegenerative diseases. It has been proposed that changes in mitochondrial morphology, including fragmentation of the tubular mitochondrial network, can lead to mitochondrial dysfunction, yet the mechanism of this loss of function is unclear. Most proteins contained within mitochondria are nuclear-encoded and must be properly targeted to the mitochondria. Here, we report that sustained mRNA localization and co-translational protein delivery leads to a heterogeneous protein distribution across fragmented mitochondria. We find that age-induced mitochondrial fragmentation drives a substantial increase in protein expression noise across fragments. Using a translational kinetic and molecular diffusion model, we find that protein expression noise is explained by the nature of stochastic compartmentalization and that co-translational protein delivery is the main contributor to increased heterogeneity. We observed that cells primarily reduce the variability in protein distribution by utilizing mitochondrial fission-fusion processes rather than relying on the mitophagy pathway. Furthermore, we are able to reduce the heterogeneity of the protein distribution by inhibiting co-translational protein targeting. This research lays the framework for a better understanding of the detrimental impact of mitochondrial fragmentation on the physiology of cells in aging and disease.
Collapse
Affiliation(s)
- Abdul Haseeb Khan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuefang Gu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Rutvik J Patel
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Prabha Chuphal
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | | | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Tatsuhisa Tsuboi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Tsinghua-SIGS & Jilin Fuyuan Guan Food Group Joint Research Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024:10.1007/s10555-024-10211-9. [PMID: 39307891 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Berner MJ, Beasley HK, Vue Z, Lane A, Vang L, Baek ML, Marshall AG, Killion M, Zeleke F, Shao B, Parker D, Peterson A, Rhoades JS, Scudese E, Dobrolecki LE, Lewis MT, Hinton A, Echeverria GV. Three-dimensional analysis of mitochondria in a patient-derived xenograft model of triple negative breast cancer reveals mitochondrial network remodeling following chemotherapy treatments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611245. [PMID: 39314272 PMCID: PMC11419075 DOI: 10.1101/2024.09.09.611245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mitochondria are hubs of metabolism and signaling and play an important role in tumorigenesis, therapeutic resistance, and metastasis in many cancer types. Various laboratory models of cancer demonstrate the extraordinary dynamics of mitochondrial structure, but little is known about the role of mitochondrial structure in resistance to anticancer therapy. We previously demonstrated the importance of mitochondrial structure and oxidative phosphorylation in the survival of chemotherapy-refractory triple negative breast cancer (TNBC) cells. As TNBC is a highly aggressive breast cancer subtype with few targeted therapy options, conventional chemotherapies remain the backbone of early TNBC treatment. Unfortunately, approximately 45% of TNBC patients retain substantial residual tumor burden following chemotherapy, associated with abysmal prognoses. Using an orthotopic patient-derived xenograft mouse model of human TNBC, we compared mitochondrial structures between treatment-naïve tumors and residual tumors after conventional chemotherapeutics were administered singly or in combination. We reconstructed 1,750 mitochondria in three dimensions from serial block-face scanning electron micrographs, providing unprecedented insights into the complexity and intra-tumoral heterogeneity of mitochondria in TNBC. Following exposure to carboplatin or docetaxel given individually, residual tumor mitochondria exhibited significant increases in mitochondrial complexity index, area, volume, perimeter, width, and length relative to treatment-naïve tumor mitochondria. In contrast, residual tumors exposed to those chemotherapies given in combination exhibited diminished mitochondrial structure changes. Further, we document extensive intra-tumoral heterogeneity of mitochondrial structure, especially prior to chemotherapeutic exposure. These results highlight the potential for structure-based monitoring of chemotherapeutic responses and reveal potential molecular mechanisms that underlie chemotherapeutic resistance in TNBC.
Collapse
Affiliation(s)
- Mariah J. Berner
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Lane
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mokryun L. Baek
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominque Parker
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Autumn Peterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julie Sterling Rhoades
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Lee M, Yoo JH, Kim I, Kang S, Lee W, Kim S, Han KS. The compartment-specific manipulation of the NAD +/NADH ratio affects the metabolome and the function of glioblastoma. Sci Rep 2024; 14:20575. [PMID: 39232046 PMCID: PMC11375122 DOI: 10.1038/s41598-024-71462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of cancer in the brain and has an inferior prognosis because of the lack of suitable medicine, largely due to its tremendous invasion. GBM has selfish metabolic pathways to promote migration, invasion, and proliferation compared to normal cells. Among various metabolic pathways, NAD (nicotinamide adenine dinucleotide) is essential in generating ATP and is used as a resource for cancer cells. LbNOX (Lactobacillus brevis NADH oxidase) is an enzyme that can directly manipulate the NAD+/NADH ratio. In this study, we found that an increased NAD+/NADH ratio by LbNOX or mitoLbNOX reduced intracellular glutamate and calcium responses and reduced invasion capacity in GBM. However, the invasion was not affected in GBM by rotenone, an ETC (Electron Transport Chain) complex I inhibitor, or nicotinamide riboside, a NAD+ precursor, suggesting that the crucial factor is the NAD+/NADH ratio rather than the absolute quantity of ATP or NAD+ for the invasion of GBM. To develop a more accurate and effective GBM treatment, our findings highlight the importance of developing a new medicine that targets the regulation of the NAD+/NADH ratio, given the current lack of effective treatment options for this brain cancer.
Collapse
Affiliation(s)
- Myunghoon Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Inseo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sinbeom Kang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sungjin Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
16
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
17
|
Kuang J, Liu H, Feng L, Xue Y, Tang H, Xu P. How mitochondrial dynamics imbalance affects the progression of breast cancer:a mini review. Med Oncol 2024; 41:238. [PMID: 39218840 PMCID: PMC11366726 DOI: 10.1007/s12032-024-02479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Despite the high incidence of breast cancer in women worldwide, there are still great challenges in the treatment process. Mitochondria are highly dynamic organelles, and their dynamics involve cellular energy conversion, signal conduction and other processes. In recent years, an increasing number of studies have affirmed the dynamics of mitochondria as the basis for cancer progression and metastasis; that is, an imbalance between mitochondrial fission and fusion may lead to the progression and metastasis of breast cancer. Here, we review the latest insights into mitochondrial dynamics in the progression of breast cancer and emphasize the clinical value of mitochondrial dynamics in diagnosis and prognosis, as well as important advances in clinical research.
Collapse
Affiliation(s)
- Jingwen Kuang
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Hao Liu
- He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Linlin Feng
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yuan Xue
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Huiyi Tang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, People's Republic of China.
| | - Pengcheng Xu
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China.
| |
Collapse
|
18
|
Ghosh S, Goswami D, Dutta R, Ghatak D, De R. A Comprehensive Pan-Cancer Analysis of Cytochrome C Oxidase Assembly Factor 1 (COA1) Reveals Instrumental Role of Mitochondrial Protein Assembly in Cancer that Modulates Disease Progression and Prognostic Outcome. Cell Biochem Biophys 2024; 82:2533-2555. [PMID: 38907941 DOI: 10.1007/s12013-024-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Cytochrome c oxidase assembly factor 1 (COA1), a mitochondrial respiratory chain complex assembly factor protein of inner mitochondrial membrane (IMM), is involved in translating many mitochondrial components and assembling nuclear-encoded components within mitochondria. Given the lack of extensive research on COA1 in cancer, this study undertakes a comprehensive pan-cancer analysis of COA1, which is overexpressed across various cancer types, shedding light on its multifaceted role in tumorigenesis, prognosis, and tumor microenvironment (TME) modulation. Leveraging bioinformatics tools and public databases, we elucidated its potential as a diagnostic cancer biomarker as well as a target for novel anti-cancer therapeutics. Gene expression analysis using "TIMER2.0", "UALCAN" and "GEPIA2" platforms, supported by protein expression data, revealed a significant correlation between COA1 upregulation and poor prognosis in Kaplan-Meir analysis, underscoring its clinical relevance. Additionally, genetic mutation analysis of COA1 with the help of "cBioPortal" warrants further exploration into its functional significance. Moreover, our investigation of the tumor microenvironment unveiled the interplay of COA1 with fibroblast and T cell infiltration implicating the role of COA1 in the tumor immune microenvironment. Furthermore, COA1-related gene enrichment study in "GeneMANIA" and pathway cross-talk analysis with Gene Ontology (GO) gene sets established comprehensive clarifications about the molecular pathways and protein networks associated with COA1 deregulation. Overall, this study lays a sturdy foundation to support future research endeavors targeting COA1, unraveling the molecular mechanisms underlying COA1 deregulation, and exploring its therapeutic potential in cancer.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
19
|
Sami Alkafaas S, Obeid OK, Ali Radwan M, Elsalahaty MI, Samy ElKafas S, Hafez W, Janković N, Hessien M. Novel insight into mitochondrial dynamin-related protein-1 as a new chemo-sensitizing target in resistant cancer cells. Bioorg Chem 2024; 150:107574. [PMID: 38936049 DOI: 10.1016/j.bioorg.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Mitochondrial dynamics have pillar roles in several diseases including cancer. Cancer cell survival is monitored by mitochondria which impacts several cellular functions such as cell metabolism, calcium signaling, and ROS production. The equilibrium of death and survival rate of mitochondria is important for healthy cellular processes. Whereas inhibition of mitochondrial metabolism and dynamics can have crucial regulatory decisions between cell survival and death. The steady rate of physiological flux of both mitochondrial fission and fusion is strongly related to the preservation of cellular bioenergetics. Dysregulation of mitochondrial dynamics including fission and fusion is a critical machinery in cells accompanied by crosstalk in cancer progression and resistance. Many cancer cells express high levels of Drp-1 to induce cancer cell invasion, metastasis and chemoresistance including breast cancer, liver cancer, pancreatic cancer, and colon cancer. Targeting Drp-1 by inhibitors such as Midivi-1 helps to enhance the responsiveness of cancer cells towards chemotherapy. The review showed Drp-1 linked processes such as mitochondrial dynamics and relationship with cancer, invasion, and chemoresistance along with computational assessing of all publicly available Drp-1 inhibitors. Drp1-IN-1, Dynole 34-2, trimethyloctadecylammonium bromide, and Schaftoside showed potential inhibitory effects on Drp-1 as compared to standard Mdivi- 1. This emerging approach may have extensive strength in the context of cancer development and chemoresistance and further work is needed to aid in more effective cancer management.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt.
| | - Omar K Obeid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sara Samy ElKafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, Khalifa, Abu Dhabi 35233, United Arab Emirates; Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| |
Collapse
|
20
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
21
|
Wu X, Chen H, Ge Z, Luo B, Pan H, Shen Y, Xie Z, Zhou C. A novel mitochondria-related algorithm for predicting the survival outcomes and drug sensitivity of patients with lung adenocarcinoma. Front Mol Biosci 2024; 11:1397281. [PMID: 39184152 PMCID: PMC11342398 DOI: 10.3389/fmolb.2024.1397281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Mitochondria have always been considered too be closely related to the occurrence and development of malignant tumors. However, the bioinformatic analysis of mitochondria in lung adenocarcinoma (LUAD) has not been reported yet. Methods In the present study, we constructed a novel and reliable algorithm, comprising a consensus cluster analysis and risk assessment model, to predict the survival outcomes and tumor immunity for patients with terminal LUAD. Results Patients with LUAD were classified into three clusters, and patients in cluster 1 exhibited the best survival outcomes. The patients in cluster 3 had the highest expression of PDL1 (encoding programmed cell death 1 ligand 11) and HAVCR2 (encoding Hepatitis A virus cellular receptor 2), and the highest tumor mutation burden (TMB). In the risk assessment model, patients in the low-risk group tended to have a significantly better survival outcome. Furthermore, the risk score combined with stage could act as a reliable independent prognostic indicator for patients with LUAD. The prognostic signature is a novel and effective biomarker to select anti-tumor drugs. Low-risk patients tended to have a higher expression of CTLA4 (encoding cytotoxic T-lymphocyte associated protein 4) and HAVCR2. Moreover, patients in the high-risk group were more sensitive to Cisplatin, Docetaxel, Erlotinib, Gemcitabine, and Paclitaxel, while low-risk patients would probably benefit more from Gefitinib. Conclusion We constructed a novel and reliable algorithm comprising a consensus cluster analysis and risk assessment model to predict survival outcomes, which functions as a reliable guideline for anti-tumor drug treatment for patients with terminal LUAD.
Collapse
Affiliation(s)
- Xianqiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hang Chen
- Department of Thoracic Surgery, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Zhen Ge
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Binyu Luo
- Department of Thoracic Surgery, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Hanbo Pan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Shen
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Zuorun Xie
- Department of Thoracic Surgery, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
23
|
Malla S, Nyinawabera A, Neupane R, Pathak R, Lee D, Abou-Dahech M, Kumari S, Sinha S, Tang Y, Ray A, Ashby CR, Yang MQ, Babu RJ, Tiwari AK. Novel Thienopyrimidine-Hydrazinyl Compounds Induce DRP1-Mediated Non-Apoptotic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2024; 16:2621. [PMID: 39123351 PMCID: PMC11311031 DOI: 10.3390/cancers16152621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.
Collapse
Affiliation(s)
- Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rajiv Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Donghyun Lee
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Mariam Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India;
| | - Yuan Tang
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Aniruddha Ray
- Department of Physics, College of Math’s and Natural Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11439, USA;
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program of University of Arkansas at Little Rock, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
24
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024:10.1038/s41401-024-01335-3. [PMID: 39009651 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
25
|
Qin X, Hu J, Ma S, Wu M. Estimation of multiple networks with common structures in heterogeneous subgroups. J MULTIVARIATE ANAL 2024; 202:105298. [PMID: 38433779 PMCID: PMC10907012 DOI: 10.1016/j.jmva.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Network estimation has been a critical component of high-dimensional data analysis and can provide an understanding of the underlying complex dependence structures. Among the existing studies, Gaussian graphical models have been highly popular. However, they still have limitations due to the homogeneous distribution assumption and the fact that they are only applicable to small-scale data. For example, cancers have various levels of unknown heterogeneity, and biological networks, which include thousands of molecular components, often differ across subgroups while also sharing some commonalities. In this article, we propose a new joint estimation approach for multiple networks with unknown sample heterogeneity, by decomposing the Gaussian graphical model (GGM) into a collection of sparse regression problems. A reparameterization technique and a composite minimax concave penalty are introduced to effectively accommodate the specific and common information across the networks of multiple subgroups, making the proposed estimator significantly advancing from the existing heterogeneity network analysis based on the regularized likelihood of GGM directly and enjoying scale-invariant, tuning-insensitive, and optimization convexity properties. The proposed analysis can be effectively realized using parallel computing. The estimation and selection consistency properties are rigorously established. The proposed approach allows the theoretical studies to focus on independent network estimation only and has the significant advantage of being both theoretically and computationally applicable to large-scale data. Extensive numerical experiments with simulated data and the TCGA breast cancer data demonstrate the prominent performance of the proposed approach in both subgroup and network identifications.
Collapse
Affiliation(s)
- Xing Qin
- School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, China
| | - Jianhua Hu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, USA
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
26
|
Yu S, Cao Z, Cai F, Yao Y, Chang X, Wang X, Zhuang H, Hua ZC. ADT-OH exhibits anti-metastatic activity on triple-negative breast cancer by combinatorial targeting of autophagy and mitochondrial fission. Cell Death Dis 2024; 15:463. [PMID: 38942765 PMCID: PMC11213877 DOI: 10.1038/s41419-024-06829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
High basal autophagy and enhanced mitochondrial fission in triple-negative breast cancer (TNBC) cells support cell migration and promote plasticity of cancer cell metabolism. Here, we suggest a novel combination therapy approach for the treatment of TNBC that targets Drp1-mediated mitochondrial fission and autophagy pathways. Hydrogen sulfide (H2S) mediates a myriad of biological processes, including autophagy and mitochondrial function. In this study, we demonstrated that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most widely utilized sustained-release H2S donors, effectively suppresses metastasis of TNBC cells in the absence of proliferation inhibition in vitro and in vivo. ADT-OH treatment ameliorated autophagy flux by suppressing autophagosome formation and induced mitochondrial elongation through decreasing expression of dynamin-related protein 1 (Drp1) and increasing expression of mitochondrial fusion protein (Mfn2). At the same time, ADT-OH downregulated mitophagy flux and inhibited mitochondrial function, eventually leading to the inhibition of migration and invasion in TNBC cells. In vivo, intraperitoneal administration of ADT-OH revealed a potent anti-metastatic activity in three different animal models, the MDA-MB-231 orthotopic xenograft model, the 4T1-Luci orthotopic model and the 4T1-Luci tail vein metastasis model. However, ADT-OH has an extremely low water solubility, which is a significant barrier to its effectiveness. Thus, we demonstrated that the solubility of ADT-OH in water can be improved significantly by absorption with hydroxypropyl-β-cyclodextrin (CD). Remarkably, the obtained CD-ADT-OH demonstrated superior anti-cancer effect to ADT-OH in vivo. Altogether, this study describes a novel regulator of mammalian mitochondrial fission and autophagy, with potential utility as an experimental therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P. R. China.
| |
Collapse
|
27
|
Baumgartner V, Schaer D, Moch H, Salemi S, Eberli D. Mitochondrial Elongation and ROS-Mediated Apoptosis in Prostate Cancer Cells under Therapy with Apalutamide and Complex I Inhibitor. Int J Mol Sci 2024; 25:6939. [PMID: 39000047 PMCID: PMC11241170 DOI: 10.3390/ijms25136939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic reprogramming and mitochondrial dynamics are pivotal in prostate cancer (PCa) progression and treatment resistance, making them essential targets for therapeutic intervention. In this study, we investigated the effects of the androgen receptor antagonist apalutamide (ARN) and the mitochondrial electron transport chain complex I inhibitor IACS-010759 (IACS) on the mitochondrial network architecture and dynamics in PCa cells. Treatment with ARN and/or IACS induced significant changes in mitochondrial morphology, particularly elongation, in androgen-sensitive PCa cells. Additionally, ARN and IACS modulated the mitochondrial fission and fusion processes, indicating a convergence of metabolic and androgen-signaling pathways in shaping mitochondrial function. Notably, the combination treatment with ARN and IACS resulted in increased apoptotic cell death and mitochondrial oxidative stress selectively in the androgen-sensitive PCa cells. Our findings highlight the therapeutic potential of targeting mitochondrial metabolism in prostate cancer and emphasize the need for further mechanistic understanding to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Valentin Baumgartner
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Dominik Schaer
- Division of Internal Medicine, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| |
Collapse
|
28
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Lunova M, Jirsa M, Dejneka A, Sullivan GJ, Lunov O. Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100093. [PMID: 38585282 PMCID: PMC10992729 DOI: 10.1016/j.bbiosy.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| | | | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| |
Collapse
|
30
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
31
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
32
|
Lhuissier C, Desquiret-Dumas V, Girona A, Alban J, Faure J, Cassereau J, Codron P, Lenaers G, Baris OR, Gueguen N, Chevrollier A. Mitochondrial F0F1-ATP synthase governs the induction of mitochondrial fission. iScience 2024; 27:109808. [PMID: 38741710 PMCID: PMC11089353 DOI: 10.1016/j.isci.2024.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondrial dynamics is a process that balances fusion and fission events, the latter providing a mechanism for segregating dysfunctional mitochondria. Fission is controlled by the mitochondrial membrane potential (ΔΨm), optic atrophy 1 (OPA1) cleavage, and DRP1 recruitment. It is thought that this process is closely linked to the activity of the mitochondrial respiratory chain (MRC). However, we report here that MRC inhibition does not decrease ΔΨm nor increase fission, as evidenced by hyperconnected mitochondria. Conversely, blocking F0F1-ATP synthase activity induces fragmentation. We show that the F0F1-ATP synthase is sensing the inhibition of MRC activity by immediately promoting its reverse mode of action to hydrolyze matrix ATP and restoring ΔΨm, thus preventing fission. While this reverse mode is expected to be inhibited by the ATPase inhibitor ATPIF1, we show that this sensing is independent of this factor. We have unraveled an unexpected role of F0F1-ATP synthase in controlling the induction of fission by sensing and maintaining ΔΨm.
Collapse
Affiliation(s)
- Charlène Lhuissier
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France
| | - Anaïs Girona
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Jennifer Alban
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France
| | - Justine Faure
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France
| | - Julien Cassereau
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
- Department of Neurology, Angers University Hospital, Angers, France
| | - Philippe Codron
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
- Department of Neurology, Angers University Hospital, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
- Department of Neurology, Angers University Hospital, Angers, France
| | - Olivier R. Baris
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Naïg Gueguen
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France
| | - Arnaud Chevrollier
- University Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| |
Collapse
|
33
|
Lee J, Han Y, Kim S, Jo H, Wang W, Cho U, Kim SI, Kim B, Song YS. Mitochondrial fission enhances IL-6-induced metastatic potential in ovarian cancer via ERK1/2 activation. Cancer Sci 2024; 115:1536-1550. [PMID: 38433313 PMCID: PMC11093201 DOI: 10.1111/cas.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 03/05/2024] Open
Abstract
Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis. Here, we investigate the effect of IL-6 on mitochondrial dynamics in ovarian cancer cells (OVCs) and its impact on metastatic potential. Treatment with IL-6 on ovarian cancer cell lines (SKOV3 and PA-1) led to an elevation in the metastatic potential of OVCs. Interestingly, a positive association was observed between dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, and IL-6R in metastatic ovarian cancer tissues. Additionally, IL-6 treatment on OVCs was linked to the activation of Drp1, with a notable increase in the ratio of the inhibitory form p-Drp1(S637) to the active form p-Drp1(S616), indicating enhanced mitochondrial fission. Moreover, IL-6 treatment triggered the activation of ERK1/2, and inhibiting ERK1/2 mitigated IL-6-induced mitochondrial fission. Suppressing mitochondrial fission through siRNA transfection and a pharmacological inhibitor reduced the IL-6-induced migration and invasion of OVCs. This was further supported by 3D invasion assays using patient-derived spheroids. Altogether, our study suggests the role of mitochondrial fission in the metastatic potential of OVCs induced by IL-6. The inhibition of mitochondrial fission could be a potential therapeutic approach to suppress the metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Juwon Lee
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Youngjin Han
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Soochi Kim
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Paul F. Glenn Laboratories for the Biology of AgingStanford University School of MedicineStanfordCaliforniaUSA
| | - HyunA Jo
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Wenyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Untack Cho
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| | - Boyun Kim
- Department of SmartBio, College of Life and Health ScienceKyungsung UniversityBusanKorea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| |
Collapse
|
34
|
Schneegans S, Löptien J, Mojzisch A, Loreth D, Kretz O, Raschdorf C, Hanssen A, Gocke A, Siebels B, Gunasekaran K, Ding Y, Oliveira-Ferrer L, Brylka L, Schinke T, Schlüter H, Paatero I, Voß H, Werner S, Pantel K, Wikman H. HERC5 downregulation in non-small cell lung cancer is associated with altered energy metabolism and metastasis. J Exp Clin Cancer Res 2024; 43:110. [PMID: 38605423 PMCID: PMC11008035 DOI: 10.1186/s13046-024-03020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jana Löptien
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Angelika Mojzisch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Desirée Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Raschdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Annkathrin Hanssen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Antonia Gocke
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karthikeyan Gunasekaran
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hannah Voß
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
35
|
Aspenström P. Miro GTPases at the Crossroads of Cytoskeletal Dynamics and Mitochondrial Trafficking. Cells 2024; 13:647. [PMID: 38607086 PMCID: PMC11012113 DOI: 10.3390/cells13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE 751 85 Uppsala, Sweden
| |
Collapse
|
36
|
Wang Z, Wang Q, Cao H, Wang Z, Wang D, Liu J, Gao T, Ren C, Liu J. Mitochondrial Localized In Situ Self-Assembly Reprogramming Tumor Immune and Metabolic Microenvironment for Enhanced Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311043. [PMID: 38190762 DOI: 10.1002/adma.202311043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
The inherent immune and metabolic tumor microenvironment (TME) of most solid tumors adversely affect the antitumor efficacy of various treatments, which is an urgent issue to be solved in clinical cancer therapy. In this study, a mitochondrial localized in situ self-assembly system is constructed to remodel the TME by improving immunogenicity and disrupting the metabolic plasticity of cancer cells. The peptide-based drug delivery system can be pre-assembled into nanomicelles in vitro and form functional nanofibers on mitochondria through a cascade-responsive process involving reductive release, targeted enrichment, and in situ self-assembly. The organelle-specific in situ self-assemblyeffectively switches the role of mitophagy from pro-survival to pro-death, which finally induces intense endoplasmic reticulum stress and atypical type II immunogenic cell death. Disintegration of the mitochondrial ultrastructure also impedes the metabolic plasticity of tumor cells, which greatly promotes the immunosuppresive TME remodeling into an immunostimulatory TME. Ultimately, the mitochondrial localized in situ self-assembly system effectively suppresses tumor metastases, and converts cold tumors into hot tumors with enhanced sensitivity to radiotherapy and immune checkpoint blockade therapy. This study offers a universal strategy for spatiotemporally controlling supramolecular self-assembly on sub-organelles to determine cancer cell fate and enhance cancer therapy.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qian Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Tongxin Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
37
|
Huang ZJ, Li YJ, Yang J, Huang L, Zhao Q, Lu YF, Hu Y, Zhang WX, Liang JZ, Pan J, Pan YL, He QY, Wang Y. PTPLAD1 Regulates PHB-Raf Interaction to Orchestrate Epithelial-Mesenchymal and Mitofusion-Fission Transitions in Colorectal Cancer. Int J Biol Sci 2024; 20:2202-2218. [PMID: 38617530 PMCID: PMC11008263 DOI: 10.7150/ijbs.82361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/22/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The poor prognosis of this malignancy is attributed mainly to the persistent activation of cancer signaling for metastasis. Here, we showed that protein tyrosine phosphatase-like A domain containing 1 (PTPLAD1) is down-regulated in highly metastatic CRC cells and negatively associated with poor survival of CRC patients. Systematic analysis reveals that epithelial-to-mesenchymal transition (EMT) and mitochondrial fusion-to-fission (MFT) transition are two critical features for CRC patients with low expression of PTPLAD1. PTPLAD1 overexpression suppresses the metastasis of CRC in vivo and in vitro by inhibiting the Raf/ERK signaling-mediated EMT and mitofission. Mechanically, PTPLAD1 binds with PHB via its middle fragment (141-178 amino acids) and induces dephosphorylation of PHB-Y259 to disrupt the interaction of PHB-Raf, resulting in the inactivation of Raf/ERK signaling. Our results unveil a novel mechanism in which Raf/ERK signaling activated in metastatic CRC induces EMT and mitochondrial fission simultaneously, which can be suppressed by PTPLAD1. This finding may provide a new paradigm for developing more effective treatment strategies for CRC.
Collapse
Affiliation(s)
- Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Yang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Fan Lu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Mitaishvili E, Feinsod H, David Z, Shpigel J, Fernandez C, Sauane M, de la Parra C. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium. FRONT BIOSCI-LANDMRK 2024; 29:99. [PMID: 38538285 PMCID: PMC10999756 DOI: 10.31083/j.fbl2903099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 04/10/2024]
Abstract
Altered metabolism represents a fundamental difference between cancer cells and normal cells. Cancer cells have a unique ability to reprogram their metabolism by deviating their reliance from primarily oxidative phosphorylation (OXPHOS) to glycolysis, in order to support their survival. This metabolic phenotype is referred to as the "Warburg effect" and is associated with an increase in glucose uptake, and a diversion of glycolytic intermediates to alternative pathways that support anabolic processes. These processes include synthesis of nucleic acids, lipids, and proteins, necessary for the rapidly dividing cancer cells, sustaining their growth, proliferation, and capacity for successful metastasis. Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with the poorest patient outcome due to its high rate of metastasis. TNBC is characterized by elevated glycolysis and in certain instances, low OXPHOS. This metabolic dysregulation is linked to chemotherapeutic resistance in TNBC research models and patient samples. There is more than a single mechanism by which this metabolic switch occurs and here, we review the current knowledge of relevant molecular mechanisms involved in advanced breast cancer metabolism, focusing on TNBC. These mechanisms include the Warburg effect, glycolytic adaptations, microRNA regulation, mitochondrial involvement, mitochondrial calcium signaling, and a more recent player in metabolic regulation, JAK/STAT signaling. In addition, we explore some of the drugs and compounds targeting cancer metabolic reprogramming. Research on these mechanisms is highly promising and could ultimately offer new opportunities for the development of innovative therapies to treat advanced breast cancer characterized by dysregulated metabolism.
Collapse
Affiliation(s)
- Erna Mitaishvili
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Hanna Feinsod
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zachary David
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Jessica Shpigel
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Chelsea Fernandez
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Moira Sauane
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
39
|
Tian T, Pang H, Li X, Ma K, Liu T, Li J, Luo Z, Li M, Hou Q, Hao H, Dong J, Du H, Liu X, Sun Z, Zhao C, Song X, Jin M. The role of DRP1 mediated mitophagy in HT22 cells apoptosis induced by silica nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116050. [PMID: 38325272 DOI: 10.1016/j.ecoenv.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.
Collapse
Affiliation(s)
- Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jiali Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhixuan Luo
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jianfei Dong
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaomei Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
40
|
Bhadane D, Kamble D, Deval M, Das S, Sitasawad S. NOX4 alleviates breast cancer cell aggressiveness by co-ordinating mitochondrial turnover through PGC1α/Drp1 axis. Cell Signal 2024; 115:111008. [PMID: 38092301 DOI: 10.1016/j.cellsig.2023.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Triple Negative Breast Cancer (TNBC) is a highly aggressive form of breast cancer, with few treatment options. This study investigates the complex molecular mechanism by which NADPH oxidase 4 (NOX4), a major ROS producer in mitochondria, affects the aggressiveness of luminal and triple-negative breast cancer cells (TNBCs). We found that NOX4 expression was differentially regulated in luminal and TNBC cells, with a positive correlation to their epithelial characteristics. Time dependent analysis revealed that TNBCs exhibits higher steady-state ROS levels than luminal cells, but NOX4 silencing increased ROS levels in luminal breast cancer cells and enhanced their ability to migrate and invade. In contrast, NOX4 over expression in TNBCs had the opposite effect. The mouse tail-vein experiment showed that the group injected with NOX4 silenced luminal cells had a higher number of lung metastases compared to the control group. Mechanistically, NOX4 enhanced PGC1α dependent mitochondrial biogenesis and attenuated Drp1-mediated mitochondrial fission in luminal breast cancer cells, leading to an increased mitochondrial mass and elongated mitochondrial morphology. Interestingly, NOX4 silencing increased mitochondrial ROS (mtROS) levels without affecting mitochondrial (Δψm) and cellular integrity. Inhibition of Drp1-dependent fission with Mdivi1 reversed the effect of NOX4-dependent mitochondrial biogenesis, dynamics, and migration of breast cancer cells. Our findings suggest that NOX4 expression diminishes from luminal to a triple negative state, accompanied by elevated ROS levels, which may modulate mitochondrial turnover to attain an aggressive phenotype. The study provides potential insights for targeted therapies for TNBCs.
Collapse
Affiliation(s)
- Deepali Bhadane
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India
| | - Dinisha Kamble
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India
| | - Mangesh Deval
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India
| | - Subhajit Das
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India
| | - Sandhya Sitasawad
- Redox Biology Laboratory, National Centre for Cell Science (NCCS), Pune 411007, India.
| |
Collapse
|
41
|
Fan A, Gao M, Tang X, Jiao M, Wang C, Wei Y, Gong Q, Zhong J. HMGB1/RAGE axis in tumor development: unraveling its significance. Front Oncol 2024; 14:1336191. [PMID: 38529373 PMCID: PMC10962444 DOI: 10.3389/fonc.2024.1336191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.
Collapse
Affiliation(s)
- Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Veilleux V, Pichaud N, Boudreau LH, Robichaud GA. Mitochondria Transfer by Platelet-Derived Microparticles Regulates Breast Cancer Bioenergetic States and Malignant Features. Mol Cancer Res 2024; 22:268-281. [PMID: 38085263 DOI: 10.1158/1541-7786.mcr-23-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024]
Abstract
An increasing number of studies show that platelets as well as platelet-derived microparticles (PMP) play significant roles in cancer malignancy and disease progression. Particularly, PMPs have the capacity to interact and internalize within target cells resulting in the transfer of their bioactive cargo, which can modulate the signaling and activation processes of recipient cells. We recently identified a new subpopulation of these vesicles (termed mitoMPs), which contain functional mitochondria. Given the predominant role of mitochondria in cancer cell metabolism and disease progression, we set out to investigate the impact of mitoMPs on breast cancer metabolic reprograming and phenotypic processes leading to malignancy. Interestingly, we observed that recipient cell permeability to PMP internalization varied among the breast cancer cell types evaluated in our study. Specifically, cells permissive to mitoMPs acquire mitochondrial-dependent functions, which stimulate increased cellular oxygen consumption rates and intracellular ATP levels. In addition, cancer cells co-incubated with PMPs display enhanced malignant features in terms of migration and invasion. Most importantly, the cancer aggressive processes and notable metabolic plasticity induced by PMPs were highly dependent on the functional status of the mitoMP-packaged mitochondria. These findings characterize a new mechanism by which breast cancer cells acquire foreign mitochondria resulting in the gain of metabolic processes and malignant features. A better understanding of these mechanisms may provide therapeutic opportunities through PMP blockade to deprive cancer cells from resources vital in disease progression. IMPLICATIONS We show that the transfer of foreign mitochondria by microparticles modulates recipient cancer cell metabolic plasticity, leading to greater malignant processes.
Collapse
Affiliation(s)
- Vanessa Veilleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Moncton, New Brunswick, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Moncton, New Brunswick, Canada
| | - Gilles A Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
43
|
He J, Liu K, Fu C. Recent insights into the control of mitochondrial fission. Biochem Soc Trans 2024; 52:99-110. [PMID: 38288744 DOI: 10.1042/bst20230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Mitochondria are the powerhouse of the cell. They undergo fission and fusion to maintain cellular homeostasis. In this review, we explore the intricate regulation of mitochondrial fission at various levels, including the protein level, the post-translational modification level, and the organelle level. Malfunctions in mitochondrial fission can have detrimental effects on cells. Therefore, we also examine the association between mitochondrial fission with diseases such as breast cancer and cardiovascular disorders. We anticipate that a comprehensive investigation into the control of mitochondrial fission will pave the way for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jiajia He
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology and Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology and Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology and Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
44
|
Yuan H, Fang R, Fu C, Wang S, Tong X, Feng D, Wei X, Hu X, Wang Y. ATIP/ATIP1 regulates prostate cancer metastasis through mitochondrial dynamic-dependent signaling. Acta Biochim Biophys Sin (Shanghai) 2024; 56:304-314. [PMID: 38282475 PMCID: PMC10984865 DOI: 10.3724/abbs.2024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondria play a fundamental role in cell survival and motility. Abnormalities in mitochondria are associated with carcinogenesis, especially with tumor metastasis. In this study, we explore the biological function of ATIP1, which is a mitochondrial-located isoform of angiotensin II AT2 receptor interacting proteins (ATIPs) in prostate cancer cells. The results showed that ATIP is downregulated in prostate cancer tissues and is negatively correlated with the disease-free survival rate of prostate cancer patients. Silencing of ATIP promotes mitochondrial fission and enhances tumor cell migration and invasion. Reconstitution of ATIP1 in ATIP-deficient cells significantly attenuates mitochondrial trafficking and tumor cell movement. Therefore, ATIP1 is a negative regulator of mitochondrial dynamics and tumor cell motility and is also a potential biomarker for predicting prostate cancer malignancy.
Collapse
Affiliation(s)
- Haokun Yuan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Ruiqin Fang
- The School of Life ScienceUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Chi Fu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Shuo Wang
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiaoqin Tong
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Deyi Feng
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Xiaoqing Wei
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xirong Hu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
45
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. An integral role of mitochondrial function in the pathophysiology of preeclampsia. Mol Biol Rep 2024; 51:330. [PMID: 38393449 DOI: 10.1007/s11033-024-09285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Preeclampsia (PE) is associated with high maternal and perinatal morbidity and mortality. The development of effective treatment strategies remains a major challenge due to the limited understanding of the pathogenesis. In this review, we summarize the current understanding of PE research, focusing on the molecular basis of mitochondrial function in normal and PE placentas, and discuss perspectives on future research directions. Mitochondria integrate numerous physiological processes such as energy production, cellular redox homeostasis, mitochondrial dynamics, and mitophagy, a selective autophagic clearance of damaged or dysfunctional mitochondria. Normal placental mitochondria have evolved innovative survival strategies to cope with uncertain environments (e.g., hypoxia and nutrient starvation). Cytotrophoblasts, extravillous trophoblast cells, and syncytiotrophoblasts all have distinct mitochondrial morphology and function. Recent advances in molecular studies on the spatial and temporal changes in normal mitochondrial function are providing valuable insight into PE pathogenesis. In PE placentas, hypoxia-mediated mitochondrial fission may induce activation of mitophagy machinery, leading to increased mitochondrial fragmentation and placental tissue damage over time. Repair mechanisms in mitochondrial function restore placental function, but disruption of compensatory mechanisms can induce apoptotic death of trophoblast cells. Additionally, molecular markers associated with repair or compensatory mechanisms that may influence the development and progression of PE are beginning to be identified. However, contradictory results have been obtained regarding some of the molecules that control mitochondrial biogenesis, dynamics, and mitophagy in PE placentas. In conclusion, understanding how the mitochondrial morphology and function influence cell fate decisions of trophoblast cells is an important issue in normal as well as pathological placentation biology. Research focusing on mitochondrial function will become increasingly important for elucidating the pathogenesis and effective treatment strategies of PE.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara, 634- 0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| |
Collapse
|
46
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
47
|
Liu L, Xiao H, Yang G. SPARC Controls Migration and Invasion of Hepatocellular Carcinoma Cells Via Regulating GPD2-Mediated Mitochondrial Respiration. Biochem Genet 2024:10.1007/s10528-024-10682-z. [PMID: 38334876 DOI: 10.1007/s10528-024-10682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial respiration and metabolism play a pivotal role in facilitating the migratory and invasive capacities of cancer cells. In this study, we aimed to explore the potential influence of glycoprotein SPARC on mitochondrial respiration and its subsequent influence on the migration and invasion of hepatocellular carcinoma (HCC) cells. Lentivirus-mediated shRNA delivery was employed to deplete SPARC in HCC cell lines. The mitochondria localization of SPARC was validated using cellular fractionation followed by Western blot analysis, as well as immunofluorescence staining and Proteinase K protection assay. Co-immunoprecipitation was employed to investigate the interaction between SPARC and GPD2. Seahorse XF Cell Mito Stress Test was conducted to assess the mitochondrial respiration and functionality of HCC cells. Our study identifies an active pool of SPARC within the mitochondria of HCC cells, with the mitochondrial subset proving crucial for the regulation of migration and invasion. The mitochondrial SPARC interacts with GPD2, influencing its expression levels and subsequently modulating GPD2-mediated mitochondrial respiration. This regulatory mechanism orchestrates the migratory and invasive phenotypes of HCC cells. Notably, SPARC and GPD2 exhibit upregulated expression in HCC tissues compared to normal liver tissues. High expression levels of both SPARC and GPD2 in HCC patients are associated with a poorer prognosis. Our study unveils a novel role for SPARC in governing HCC cell migration and invasion through regulating GPD2-mediated mitochondrial respiration. These findings underscore the importance of mitochondrial processes in cancer progression and propose the SPARC/GPD2 axis as a promising target for HCC interventions.
Collapse
Affiliation(s)
- Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guiqing Yang
- Department of Medical Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
48
|
Karnan S, Hanamura I, Ota A, Vu LQ, Uchino K, Horio T, Murakami S, Mizuno S, Rahman ML, Wahiduzzaman M, Hasan MN, Biswas M, Hyodo T, Ito H, Suzuki A, Konishi H, Tsuzuki S, Hosokawa Y, Takami A. ARK5 enhances cell survival associated with mitochondrial morphological dynamics from fusion to fission in human multiple myeloma cells. Cell Death Discov 2024; 10:56. [PMID: 38282096 PMCID: PMC10822851 DOI: 10.1038/s41420-024-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.
Collapse
Grants
- 19K08825, 22K08516[Hanamura] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K09292, 22K08985 [Karnan] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K08426 [Ota] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satsuki Murakami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Wahiduzzaman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY, 11501, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mrityunjoy Biswas
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsushi Suzuki
- Hematology Medical Franchise, Department of Medical Affairs, Novartis Japan, Tokyo, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
49
|
Ding Y, Lv Z, Cao W, Shi W, He Q, Gao K. Phosphorylation of INF2 by AMPK promotes mitochondrial fission and oncogenic function in endometrial cancer. Cell Death Dis 2024; 15:65. [PMID: 38233384 PMCID: PMC10794193 DOI: 10.1038/s41419-024-06431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Mitochondria are highly dynamic organelles capable of altering their sizes and shapes to maintain metabolic balance through coordinated fission and fusion processes. In various cancer types, mitochondrial hyperfragmentation has been frequently observed, contributing to the progression of cancer toward metastasis. Inverted formin 2 (INF2), which resides in the endoplasmic reticulum (ER), has been found to accelerate actin polymerization and drive mitochondrial fission. In this study, we demonstrate that INF2 expression is significantly upregulated in endometrial cancer (EC) and is associated with a poor prognosis in EC patients. INF2 promotes anchorage-dependent and independent EC cell growth in part by facilitating mitochondrial fission. Furthermore, in conditions of energy stress, AMP-activated protein kinase (AMPK) phosphorylates INF2 at Ser1077, leading to increased localization of INF2 to the ER and enhanced recruitment of the dynamin-related protein 1 (DRP1) to mitochondria. This AMPK-mediated phosphorylation of INF2 at Ser1077 facilitates mitochondrial division and promotes EC cell growth. Pathological examination using immunohistochemical analyses revealed a positive correlation between AMPK activity and phosphorylated INF2 (Ser1077) in EC specimens. Collectively, our findings uncover novel molecular mechanisms involving the AMPK-INF2 axis, which regulates mitochondrial dynamics and malignant cell growth in EC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
50
|
García-Miranda A, Montes-Alvarado JB, Sarmiento-Salinas FL, Vallejo-Ruiz V, Castañeda-Saucedo E, Navarro-Tito N, Maycotte P. Regulation of mitochondrial metabolism by autophagy supports leptin-induced cell migration. Sci Rep 2024; 14:1408. [PMID: 38228661 PMCID: PMC10791685 DOI: 10.1038/s41598-024-51406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Leptin is an adipokine secreted by adipose tissue, which promotes tumor progression by activating canonical signaling pathways such as MAPK/ERK. Recent studies have shown that leptin induces autophagy, and this process is involved in leptin-induced characteristics of malignancy. Autophagy is an intracellular degradation process associated with different hallmarks of cancer, such as cell survival, migration, and metabolic reprogramming. However, its relationship with metabolic reprogramming has not been clearly described. The purpose of this study was to determine the role of leptin-induced autophagy in cancer cell metabolism and its association with cellular proliferation and migration in breast cancer cells. We used ER+/PR+ and triple-negative breast cancer cell lines treated with leptin, autophagy inhibition, or mitochondrial metabolism inhibitors. Our results show that leptin induces autophagy, increases proliferation, mitochondrial ATP production and mitochondrial function in ER+/PR+ cells. Importantly, autophagy was required to maintain metabolic changes and cell proliferation driven by leptin. In triple-negative cells, leptin did not induce autophagy or cell proliferation but increased glycolytic and mitochondrial ATP production, mitochondrial function, and cell migration. In triple negative cells, autophagy was required to support metabolic changes and cell migration, and autophagy inhibition decreased cellular migration similar to mitochondrial inhibitors. In conclusion, leptin-induced autophagy supports mitochondrial metabolism in breast cancer cells as well as glycolysis in triple negative cells. Importantly, leptin-induced mitochondrial metabolism promoted cancer cell migration.
Collapse
Affiliation(s)
- Alin García-Miranda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, 39090, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Benito Montes-Alvarado
- Laboratorio de Bioquímica Metabólica, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360, Atlixco, Puebla, Mexico
| | - Fabiola Lilí Sarmiento-Salinas
- Laboratorio de Bioquímica Metabólica, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360, Atlixco, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, 03940, Ciudad de México, Mexico
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360, Atlixco, Puebla, México
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, 39090, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, 39090, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Paola Maycotte
- Laboratorio de Bioquímica Metabólica, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360, Atlixco, Puebla, Mexico.
| |
Collapse
|