1
|
Chamba C, Jennings D, Shungu R, Christopher H, Josephat E, Howard K, Dreau H, Burns A, Mawalla W, Mapendo P, Mnango L, Legason I, Elias E, Achola C, Cutts A, Balandya E, Schuh A. Targeted Next-Generation Sequencing of Cell-Free DNA to Detect MYC-Immunoglobulin Translocation and Epstein-Barr Virus DNA in Plasma of Burkitt Lymphoma Patients in East Africa. JCO Glob Oncol 2025; 11:e2400210. [PMID: 39787450 DOI: 10.1200/go.24.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) affects children in sub-Saharan Africa, but diagnosis via tissue biopsy is challenging. We explored a liquid biopsy approach using targeted next-generation sequencing to detect the MYC-immunoglobulin (MYC-Ig) translocation and EBV DNA, assessing its potential for minimally invasive BL diagnosis. MATERIALS AND METHODS The panel included targets for the characteristic MYC-Ig translocation, mutations in intron 1 of MYC, mutations in exon 2 of MYC, and three EBV genes: EBV-encoded RNA (EBER)1, EBER2, and EBV nuclear antigen 2. It was first tested in a small derivation cohort of four precharacterized BL-derived cell lines with known translocation status and eight precharacterized plasma samples with known EBV DNA status by quantitative polymerase chain reaction (qPCR). These different data modalities were combined to assess the accuracy of this approach in the diagnosis of BL in 20 patient plasma samples in Tanzania and Uganda. RESULTS The next-generation sequencing panel detected three of four MYC-Ig translocations in the BL-derived cell lines. EBV viral load by targeted sequencing correlated strongly with qPCR results (Spearman's rho = 0.94) in precharacterized plasma samples. Using the patient plasma samples, mutations in MYC intron 1 were associated with the presence of a MYC translocation with 25 or more mutations being predictive of a translocation with AUC, sensitivity, and specificity of 1. Overall, liquid biopsy parameters associated with a diagnosis of BL (P < .05) included cell-free DNA concentration, circulating tumor DNA concentration, MYC intron 1 mutations, MYC-Ig translocation, and autosome entropy. Integrating these parameters into a diagnostic model demonstrated excellent performance with an AUC of 0.95, sensitivity of 0.9, and specificity of 1. CONCLUSION This analysis demonstrates the potential of liquid biopsy to improve BL diagnosis in settings with limited pathology resources. Validation of our approach in a larger data set is needed.
Collapse
Affiliation(s)
- Clara Chamba
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Rehema Shungu
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Emmanuel Josephat
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | | | - Adam Burns
- University of Oxford, Oxford, United Kingdom
| | - William Mawalla
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Leah Mnango
- Muhimbili National Hospital, Dar es Salaam, Tanzania
| | | | | | | | | | - Emmanuel Balandya
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Anna Schuh
- University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Shen W, Cai J, Li J, Li W, Shi P, Zhao X, Feng S. Regulation of MicroRNAs After Spinal Cord Injury in Adult Zebrafish. J Mol Neurosci 2024; 74:66. [PMID: 38990400 DOI: 10.1007/s12031-024-02242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Spinal cord injury (SCI) is a central nerve injury that often leads to loss of motor and sensory functions at or below the level of the injury. Zebrafish have a strong ability to repair after SCI, but the role of microRNAs (miRNAs) after SCI remains unclear. Locomotor behavior analysis showed that adult zebrafish recovered about 30% of their motor ability at 2 weeks and 55% at 3 weeks after SCI, reflecting their strong ability to repair SCI. Through miRNA sequencing, mRNA sequencing, RT-qPCR experiment verification, and bioinformatics predictive analysis, the key miRNAs and related genes in the repair of SCI were screened. A total of 38 miRNAs were significantly different, the top ten miRNAs were verified by RT-qPCR. The prediction target genes were verified by the mRNAs sequencing results at the same time point. Finally, 182 target genes were identified as likely to be networked regulated by the 38 different miRNAs. GO and KEGG enrichment analysis found that miRNAs targeted gene regulation of many key pathways, such as membrane tissue transport, ribosome function, lipid binding, and peroxidase activity. The PPI network analysis showed that miRNAs were involved in SCI repair through complex network regulation, among which dre-miR-21 may enhance cell reversibility through nop56, and that dre-miR-125c regulates axon growth through kpnb1 to repair SCI.
Collapse
Affiliation(s)
- Wenyuan Shen
- Department of Orthopedics, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Jinze Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Wenchang Li
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Pengcheng Shi
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Xiumei Zhao
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Shiqing Feng
- Department of Orthopedics, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res 2023; 29:1610884. [PMID: 36741964 PMCID: PMC9892063 DOI: 10.3389/pore.2023.1610884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
NOP56 is a highly conserved nucleolar protein. Amplification of the intron GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is significantly abnormally expressed in a number of malignant tumors, and its mechanism is different in different tumors, but its regulatory mechanism in most tumors has not been fully explored. NOP56 promotes tumorigenesis in some cancers and inhibits tumorigenesis in others. In addition, NOP56 is associated with methylation in some tumors, suggesting that NOP56 has the potential to become a tumor-specific marker. This review focuses on the structure, function, related signaling pathways, and role of NOP56 in the progression of various malignancies, and discusses the progression of NOP56 in neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Shimin Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongdong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Jun Huang,
| |
Collapse
|
4
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
5
|
A nop56 Zebrafish Loss-of-Function Model Exhibits a Severe Neurodegenerative Phenotype. Biomedicines 2022; 10:biomedicines10081814. [PMID: 36009362 PMCID: PMC9404972 DOI: 10.3390/biomedicines10081814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
NOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in NOP56 gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of NOP56. We studied a zebrafish loss-of-function model of the nop56 gene which shows 70% homology with the human gene. We observed a severe neurodegenerative phenotype in nop56 mutants, characterized mainly by absence of cerebellum, reduced numbers of spinal cord neurons, high levels of apoptosis in the central nervous system (CNS) and impaired movement, resulting in death before 7 days post-fertilization. Gene expression of genes related to C/D box complex, balance and CNS development was impaired in nop56 mutants. In our study, we characterized the first NOP56 loss-of-function vertebrate model, which is important to further understand the role of NOP56 in CNS function and development.
Collapse
|
6
|
Jin L, Zhang Z, Wang Z, Tan X, Wang Z, Shen L, Long C, Wei G, He D. Novel piRNA MW557525 regulates the growth of Piwil2-iCSCs and maintains their stem cell pluripotency. Mol Biol Rep 2022; 49:6957-6969. [PMID: 35411481 DOI: 10.1007/s11033-022-07443-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/01/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND CSCs play an important role in tumor development. Some studies have demonstrated that piRNAs participate in the progression of various cancers. However, the detailed function of piRNAs in CSCs requires further investigation. This study aimed to investigate the significance of novel piRNA MW557525, one of the top five up-regulated piRNAs screened by gene chip and it has been verified by RT-q-PCR that it is indeed the most obvious up-regulated expression in Piwil2-iCSCs. METHODS AND RESULTS Differentially expressed piRNAs in Piwil2-iCSCs were screened by gene chip. Target genes were predicted by the miRanda algorithm and subjected to GO and KEGG analysis. One of the differential piRNAs, novel piRNA MW557525, was transfected and its target gene NOP56 was silenced in Piwil2-iCSCs, respectively. RT-qPCR, western blot (WB) and dual luciferase reporter assay were used to investigate the interaction of piRNA MW557525 and NOP56. We identified the effect of piRNA MW557525 and NOP56 knockdown on cell proliferation, migration, invasion, and apoptosis via CCK-8, transwell assay, and flow cytometry. The expressions of CD24, CD133, KLF4, and SOX2 were detected via WB. The results showed that piRNA MW557525 was negatively correlated with NOP56, and it promoted the proliferation, migration, invasion, and inhibited apoptosis in Piwil2-iCSCs, and it also promoted the expressions of CD24, CD133, KLF4, and SOX2, while NOP56 showed the opposite effect. CONCLUSIONS These findings suggested that novel piRNA MW557525 might be a novel therapeutic target in Piwil2-iCSCs.
Collapse
Affiliation(s)
- Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Xiaojun Tan
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Zhaoying Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China.
- China International Science and Technology Cooperation Base of Child Development and Critical, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, ChongqingChongqing, 400014, China.
| |
Collapse
|
7
|
Metabolic synthetic lethality by targeting NOP56 and mTOR in KRAS-mutant lung cancer. J Exp Clin Cancer Res 2022; 41:25. [PMID: 35039048 PMCID: PMC8762933 DOI: 10.1186/s13046-022-02240-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Oncogenic KRAS mutations are prevalent in human cancers, but effective treatment of KRAS-mutant malignancies remains a major challenge in the clinic. Increasing evidence suggests that aberrant metabolism plays a central role in KRAS-driven oncogenic transformation. The aim of this study is to identify selective metabolic dependency induced by mutant KRAS and to exploit it for the treatment of the disease. Method We performed an integrated analysis of RNAi- and CRISPR-based functional genomic datasets (n = 5) to identify novel genes selectively required for KRAS-mutant cancer. We further screened a customized library of chemical inhibitors for candidates that are synthetic lethal with NOP56 depletion. Functional studies were carried out by genetic knockdown using siRNAs and shRNAs, knockout using CRISPR/Cas9, and/or pharmacological inhibition, followed by cell viability and apoptotic assays. Protein expression was determined by Western blot. Metabolic ROS was measured by flow cytometry-based quantification. Results We demonstrated that nucleolar protein 5A (NOP56), a core component of small nucleolar ribonucleoprotein complexes (snoRNPs) with an essential role in ribosome biogenesis, confers a metabolic dependency by regulating ROS homeostasis in KRAS-mutant lung cancer cells and that NOP56 depletion causes synthetic lethal susceptibility to inhibition of mTOR. Mechanistically, cancer cells with reduced NOP56 are subjected to higher levels of ROS and rely on mTOR signaling to balance oxidative stress and survive. We also discovered that IRE1α-mediated unfolded protein response (UPR) regulates this process by activating mTOR through p38 MAPK. Consequently, co-targeting of NOP56 and mTOR profoundly enhances KRAS-mutant tumor cell death in vitro and in vivo. Conclusions Our findings reveal a previously unrecognized mechanism in which NOP56 and mTOR cooperate to play a homeostatic role in the response to oxidative stress and suggest a new rationale for the treatment of KRAS-mutant cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02240-5.
Collapse
|
8
|
Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival. Int J Mol Sci 2022; 23:ijms23020626. [PMID: 35054812 PMCID: PMC8775816 DOI: 10.3390/ijms23020626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. "Immortality" of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies.
Collapse
|
9
|
Ren X, Zhang H, Yan X, Sun Y, Xu T. NOP56 negatively regulates MyD88-mediated NF-κB signaling in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 120:75-81. [PMID: 34774735 DOI: 10.1016/j.fsi.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
MyD88 is a critical adaptor in the TLRs signaling pathway, which can activate NF-κB signaling pathway and promote proinflammatory cytokines production. However, the molecular mechanisms that modulate MyD88 expression, especially in teleost, remain largely unknown. In this study, we showed that NOP56 serve as a negative regulator of the MyD88-mediated NF-κB signaling pathway. NOP56 overexpression inhibited the protein expression of MyD88. Whereas, siRNA knockdown of NOP56 had opposite effect. Furthermore, we found that the NOSIC domain is responsible for the suppressive effect of NOP56 in MyD88 expression at protein level. Therefore, we identified NOP56 as a negative regulator of MyD88-mediated NF-κB signaling by inhibiting MyD88 expression and provided new insight into the regulation mechanism in teleost fish.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Han Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
10
|
Differential Transcriptional Reprogramming by Wild Type and Lymphoma-Associated Mutant MYC Proteins as B-Cells Convert to a Lymphoma Phenotype. Cancers (Basel) 2021; 13:cancers13236093. [PMID: 34885204 PMCID: PMC8657136 DOI: 10.3390/cancers13236093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The MYC transcription factor regulates a vast number of genes and is implicated in many human malignancies. In some hematological malignancies, MYC is frequently subject to missense mutations that enhance its transformation activity. Here, we use a novel murine cell system to (i) characterize the transcriptional effects of progressively increasing MYC levels as normal primary B-cells transform to lymphoma cells and (ii) determine how this gene regulation program is modified by lymphoma-associated MYC mutations (T58A and T58I) that enhance its transformation activity. Unlike many previous studies, the cell system exploits primary B-cells that are transduced to allow regulated MYC expression under circumstances where apoptosis and senescence pathways are abrogated by the over-expression of the Bcl-xL and BMI1 proteins. In such cells, transition from a normal to a lymphoma phenotype is directly dependent on the MYC expression level, without a requirement for secondary events that are normally required during MYC-driven oncogenic transformation. A generalized linear model approach allowed an integrated analysis of RNA sequencing data to identify regulated genes in relation to both progressively increasing MYC level and wild type or mutant status. Using this design, a total of 7569 regulated genes were identified, of which the majority (n = 7263) were regulated in response to progressively increased levels of wild type MYC, while a smaller number of genes (n = 917) were differentially regulated, compared to wild type MYC, in T58A MYC- and/or T58I MYC-expressing cells. Unlike most genes that are similarly regulated by both wild type and mutant MYC genes, the set of 917 genes did not significantly overlap with known lipopolysaccharide regulated genes, which represent genes regulated by MYC in normal B cells. The genes that were differently regulated in cells expressing mutant MYC proteins were significantly enriched in DNA replication and G2 phase to mitosis transition genes. Thus, mutants affecting MYC proteins may augment quantitative oncogenic effects on the expression of normal MYC-target genes with qualitative oncogenic effects, by which sets of cell cycle genes are abnormally targeted by MYC as B cells transition into lymphoma cells. The T58A and T58I mutations augment MYC-driven transformation by distinct mechanisms.
Collapse
|
11
|
Luminescence complementation technology for the identification of MYC:TRRAP inhibitors. Oncotarget 2021; 12:2147-2157. [PMID: 34676047 PMCID: PMC8522838 DOI: 10.18632/oncotarget.28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
Mechanism-based targeted therapies have exhibited remarkable success in treating otherwise untreatable or unresectable cancers. Novel targeted therapies that correct dysregulated transcriptional programs in cancer are an unmet medical need. The transcription factor MYC is the most frequently amplified gene in human cancer and is overexpressed because of mutations in an array of oncogenic signaling pathways. The fact that many cancer cells cannot survive without MYC – a phenomenon termed “MYC addiction” – provides a compelling case for the development of MYC-specific targeted therapies. We propose a new strategy to inhibit MYC function by disrupting its essential interaction with TRRAP using small molecules. To achieve our goal, we developed a platform using luminescence complementation for identifying small molecules as inhibitors of the MYC:TRRAP interaction. Here we present validation of this assay by measuring the disruption of TRRAP binding caused by substitutions to the invariant and essential MYC homology 2 region of MYC.
Collapse
|
12
|
Bai M, Cui M, Li M, Yao X, Wu Y, Zheng L, Sun L, Song Q, Wang S, Liu L, Yu C, Huang Y. Discovery of a novel HDACi structure that inhibits the proliferation of ovarian cancer cells in vivo and in vitro. Int J Biol Sci 2021; 17:3493-3507. [PMID: 34512161 PMCID: PMC8416734 DOI: 10.7150/ijbs.62339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) exhibit increased expression in cancer and promote oncogenesis via the acetylation of or interactions with key transcriptional regulators. HDAC inhibitors (HDACis) decrease HDAC activity to selectively inhibit the occurrence and development of tumors. Our study screened and obtained a new HDACi structure. In vitro experiments have showed that among the leads, Z31216525 significantly inhibited the proliferation and induced the apoptosis of epithelial ovarian cancer (EOC) cells. In vivo experiments demonstrated that compared to the control, Z31216525 significantly inhibited tumor growth and showed very low toxicity. Further mechanistic studies revealed that Z31216525 may exert an antitumor effect by inhibiting the expression of the c-Myc gene. Collectively, our studies identified a novel HDACi that is expected to become a new potential therapeutic drug for EOC and has important value for the design of new HDACi structures.
Collapse
Affiliation(s)
- Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mengqi Cui
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xinlei Yao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qiuhang Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
13
|
Li Y, Xu X, Deng M, Zou X, Zhao Z, Huang S, Liu D, Liu G. Identification and Comparative Analysis of Long Non-coding RNAs in High- and Low-Fecundity Goat Ovaries During Estrus. Front Genet 2021; 12:648158. [PMID: 34249080 PMCID: PMC8267794 DOI: 10.3389/fgene.2021.648158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ovary is the most important reproductive organ in goats and directly affects the fecundity. Long non-coding RNAs (lncRNAs) are involved in the biological process of oocyte maturation. However, in the context of reproduction in goats, few studies have explored the regulation of lncRNAs. Therefore, we herein used the ovaries of high and low fecundity Leizhou black goats to identify differentially expressed lncRNAs (DElncRNAs) by high-throughput RNA sequencing; moreover, we analyzed the target genes of lncRNAs by functional annotation to explore the role of DElncRNAs in ovarian development. Twenty DElncRNAs were identified, of which six were significantly upregulated and 14 were significantly downregulated in high fecundity goats. Gene Ontology analyses suggested that MSTRG.3782 positively influences the expression of the corresponding gene API5, exerting regulative effects on the development of follicles, through which litter size might show variations. The target gene KRR1 of ENSCHIT00000001883 is significantly enriched in cell components, and ENSCHIT00000001883 may regulate cell growth and thus affect follicular development. Further, as per Kyoto Encyclopedia of Genes and Genomes pathway analyses, MSTRG.2938 was found to be significantly enriched, and we speculate that MSTRG.2938 could regulate ribosomal biogenesis in the pre-snoRNP complex as well as cell transformation in eukaryotes. Quantitative real-time PCR results were consistent with sequencing data. To conclude, our research results indicate that some lncRNAs play a key role in regulating follicle development and cell growth during goat’ s ovarian development.
Collapse
Affiliation(s)
- Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangping Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhifeng Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sixiu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Liang Q, Du X, Mao L, Wang G. Molecular characterization of colorectal cancer: A five-gene prognostic signature based on RNA-binding proteins. Saudi J Gastroenterol 2021; 27:223-233. [PMID: 34169901 PMCID: PMC8448017 DOI: 10.4103/sjg.sjg_530_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. RNA-binding proteins (RBPs) regulate essential biological processes and play essential roles in a variety of cancers. The present study screened differentially expressed RBPs, analyzed their function and constructed a prognostic model to predict the overall survival of patients with CRC. METHODS We downloaded CRC RNA-sequencing data from the Cancer Genome Atlas (TCGA) portal and screened differentially expressed RBPs. Then, functional analyses of these genes were performed, and a risk model was established by multivariate Cox regression. RESULTS We obtained 132 differentially expressed RBPs, including 66 upregulated and 66 downregulated RBPs. Functional analysis revealed that these genes were significantly enriched in RNA processing, modification and binding, ribosome biogenesis, post-transcriptional regulation, ribonuclease and nuclease activity. Additionally, some RBPs were significantly related to interferon (IFN)-alpha and IFN-beta biosynthetic processes and the Toll-like receptor signaling pathway. A prognostic model was constructed and included insulin like growth factor 2 messenger ribonucleic acid binding protein 3 (IGF2BP3), poly (A) binding protein cytoplasmic 1 like (PABPC1L), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARGC1A), peptidyl- transfer ribonucleic acid hydrolase 1 homolog (PTRH1) and tudor domain containing 7 (TDRD7). The model is an independent risk factor for clinicopathological characteristics. CONCLUSION Our study provided novel insights into the pathogenesis of CRC and constructed a prognostic gene model, which may be helpful for determining the prognosis of CRC.
Collapse
Affiliation(s)
- Qiankun Liang
- Gansu University of Chinese Medicine, Lanzhou, China,Address for correspondence: Dr. Qiankun Liang, Gansu University of Chinese Medicine, Lanzhou 730020, China. E-mail:
| | - Xiaojuan Du
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lanfang Mao
- Gansu University of Chinese Medicine, Lanzhou, China,Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | | |
Collapse
|
15
|
Pettini F, Visibelli A, Cicaloni V, Iovinelli D, Spiga O. Multi-Omics Model Applied to Cancer Genetics. Int J Mol Sci 2021; 22:ijms22115751. [PMID: 34072237 PMCID: PMC8199287 DOI: 10.3390/ijms22115751] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
In this review, we focus on bioinformatic oncology as an integrative discipline that incorporates knowledge from the mathematical, physical, and computational fields to further the biomedical understanding of cancer. Before providing a deeper insight into the bioinformatics approach and utilities involved in oncology, we must understand what is a system biology framework and the genetic connection, because of the high heterogenicity of the backgrounds of people approaching precision medicine. In fact, it is essential to providing general theoretical information on genomics, epigenomics, and transcriptomics to understand the phases of multi-omics approach. We consider how to create a multi-omics model. In the last section, we describe the new frontiers and future perspectives of this field.
Collapse
Affiliation(s)
- Francesco Pettini
- Department of Medical Biotechnology, University of Siena, Via M. Bracci 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-3755461426
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| | - Vittoria Cicaloni
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy;
| | - Daniele Iovinelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| |
Collapse
|
16
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. RNA (NEW YORK, N.Y.) 2021; 27:496-512. [PMID: 33483369 PMCID: PMC7962484 DOI: 10.1261/rna.077396.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Crystallography, X-Ray
- Gene Expression
- Methylation
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pyrococcus furiosus/genetics
- Pyrococcus furiosus/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Simone Höfler
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, D-38124 Braunschweig, Germany
| |
Collapse
|
17
|
Zhang Z, Wang Z, Jin L, Tan X, Wang Z, Shen L, Wei G, He D. [Effect of piRNA NU13 in regulating biological behaviors of human Wilms tumor cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:184-192. [PMID: 33624590 DOI: 10.12122/j.issn.1673-4254.2021.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of the differential piRNA NU13 derived from piwil2-induced cancer stem-like cells (piwil2-iCSCs) in regulating biological behaviors of Wilms tumor cells (G401). OBJECTIVE The expressions of piRNA NU13 and NOP56 were detected in Wilms tumor cell line G401 using RT-qPCR. G401 cells were transfected with piRNA NU13 mimics and inhibitor for its over-expression and inhibition, and the transfection efficiency was verified with RT-qPCR. The changes in proliferation of G401 cells after transfection were detected using CCK8 assay, and cell apoptosis was analyzed using flow cytometry. Wound healing assay and Transwell assay were performed to examine the changes in migration and invasion abilities of the transfected cells. The binding of NOP56 and piRNA NU13 was detected using dual luciferase experiment. The protein expressions of MMP2, MMP9, BAX, Bcl2, and NOP56 in the cells were detected with Western blotting. OBJECTIVE RTqPCR showed that the expression of piRNA NU13 decreased significantly in human Wilms tumor G401 cells as compared with that in renal tubular epithelial cell line HK2 (P < 0.05), and NOP56 was highly expressed in G401 cells and Wilms tumor tissues (P < 0.05). Over-expression of piRNA NU13 significantly suppressed the proliferation, migration and invasion of G401 cells, promoted cell apoptosis (P < 0.05), inhibited the expression of MMP2, MMP9 and Bcl2, and enhanced the expression of BAX (P < 0.05). The results of dual luciferase experiment showed that piRNA NU13 did not bind to NOP56 directly but regulated the expression of NOP56 in an indirect manner. OBJECTIVE piRNA NU13 is down-regulated and NOP56 is highly expressed in Wilms tumor. piNU13 may regulate the expression of NOP56 indirectly to inhibit the proliferation, migration and invasion and promote apoptosis of Wilms tumor cells in vitro.
Collapse
Affiliation(s)
- Z Zhang
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Z Wang
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - L Jin
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - X Tan
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Z Wang
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - L Shen
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - G Wei
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - D He
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
18
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Krygier A, Szmajda-Krygier D, Sałagacka-Kubiak A, Jamroziak K, Żebrowska-Nawrocka M, Balcerczak E. Association between the CEBPA and c-MYC genes expression levels and acute myeloid leukemia pathogenesis and development. Med Oncol 2020; 37:109. [PMID: 33170359 PMCID: PMC7655568 DOI: 10.1007/s12032-020-01436-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
CEBPA and c-MYC genes belong to TF and play an essential role in hematologic malignancies development. Furthermore, these genes also co-regulate with RUNX1 and lead to bone marrow differentiation and may contribute to the leukemic transformation. Understanding the function and full characteristics of selected genes in the group of patients with AML can be helpful in assessing prognosis, and their usefulness as prognostic factors can be revealed. The aim of the study was to evaluate CEBPA and c-MYC mRNA expression level and to seek their association with demographical and clinical features of AML patients such as: age, gender, FAB classification, mortality or leukemia cell karyotype. Obtained results were also correlated with the expression level of the RUNX gene family. To assess of relative gene expression level the qPCR method was used. The expression levels of CEBPA and c-MYC gene varied among patients. Neither CEBPA nor c-MYC expression levels differed significantly between women and men (p=0.8325 and p=0.1698, respectively). No statistically significant correlation between age at the time of diagnosis and expression of CEBPA (p=0.4314) or c-MYC (p=0.9524) was stated. There were no significant associations between relative CEBPA (p=0.4247) or c-MYC (p=0.4655) expression level and FAB subtype and mortality among the enrolled patients (p=0.5858 and p=0.8437, respectively). However, it was observed that c-MYC and RUNX1 expression levels were significantly positively correlated (rS=0.328, p=0.0411). Overall, AML pathogenesis involves a complex interaction among CEBPA, c-MYC and RUNX family genes.
Collapse
Affiliation(s)
- Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Aleksandra Sałagacka-Kubiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Chocimska 5 Street, 00-791 Warsaw, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| |
Collapse
|
20
|
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer 2020; 20:555-572. [PMID: 32778778 DOI: 10.1038/s41568-020-0290-x] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Deu-Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Bonet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hanna Kranas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
21
|
Epitranscriptomics in Normal and Malignant Hematopoiesis. Int J Mol Sci 2020; 21:ijms21186578. [PMID: 32916783 PMCID: PMC7555315 DOI: 10.3390/ijms21186578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided.
Collapse
|
22
|
Tandon A, Birkenhagen J, Nagalla D, Kölker S, Sauer SW. ADP-dependent glucokinase as a novel onco-target for haematological malignancies. Sci Rep 2020; 10:13584. [PMID: 32788680 PMCID: PMC7423609 DOI: 10.1038/s41598-020-70014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
Warburg effect or aerobic glycolysis provides selective growth advantage to aggressive cancers. However, targeting oncogenic regulators of Warburg effect has always been challenging owing to the wide spectrum of roles of these molecules in multitude of cells. In this study, we present ADP-dependent glucokinase (ADPGK) as a novel glucose sensor and a potential onco-target in specifically high-proliferating cells in Burkitt’s lymphoma (BL). Previously, we had shown ADPGK to play a major role in T-cell activation and induction of Warburg effect. We now report ADPGK knock-out Ramos BL cells display abated in vitro and in vivo tumour aggressiveness, via tumour-macrophage co-culture, migration and Zebrafish xenograft studies. We observed perturbed glycolysis and visibly reduced markers of Warburg effect in ADPGK knock-out cells, finally leading to apoptosis. We found repression of MYC proto-oncogene, and up to four-fold reduction in accumulated mutations in translocated MYC in knock-out cells, signifying a successful targeting of the malignancy. Further, the activation induced differentiation capability of knock-out cells was impaired, owing to the inability to cope up with increased energy demands. The effects amplified greatly upon stimulation-based proliferation, thus providing a novel Burkitt’s lymphoma targeting mechanism originating from metabolic catastrophe induced in the cells by removal of ADPGK.
Collapse
Affiliation(s)
- Amol Tandon
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Jana Birkenhagen
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Deepthi Nagalla
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven Wolfgang Sauer
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Yoon J, Yun JW, Jung CW, Ju HY, Koo HH, Kim SH, Kim HJ. Molecular characteristics of terminal deoxynucleotidyl transferase negative precursor B-cell phenotype Burkitt leukemia with IGH-MYC rearrangement. Genes Chromosomes Cancer 2019; 59:255-260. [PMID: 31705772 DOI: 10.1002/gcc.22825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Precursor B cell phenotype Burkitt lymphoma/leukemia with IGH-MYC is a rare subtype of Burkitt lymphoma (BL). BL and B lymphoblastic leukemia/lymphoma (B-ALL/LBL) differ as regards treatment and the distinction between these two entities is crucial. Patients demonstrating a terminal deoxynucleotidyl transferase (TdT)-positive precursor B cell phenotype with IGH-MYC rearrangement have been reported to be molecularly distinct from BL and closer to B-ALL/LBL. We investigated the molecular characteristics of two cases of a rare but distinct TdT-negative precursor B cell phenotype BL. Both patients showed FAB L3 morphology with IGH-MYC translocation, but had precursor B cell immunophenotypes including dim to moderate expression of CD45 and absence of BCL6, CD20, monoclonal kappa, and lambda light chain expression. To characterize the molecular features, we performed exome sequencing and analyzed the breakpoint junction of the IGH-MYC rearrangement. We detected KMT2D mutations in both cases, a rarely acquired chromatin modifying gene mutation in BL. The breakpoint analysis revealed that the IGH-MYC rearrangement occurred due to an aberrant VDJ recombination in one case. The treatment protocols differed, including high-grade lymphoma treatment and standard B-ALL treatment. Complete remission was achieved in the patient who received B-ALL treatment. The degree of resemblance of BL and B-ALL differed between two cases, but the molecular pathogenesis and manifesting features of both TdT-negative precursor B cell phenotype BL case were distinct from classic BL, which indicates the need for a better understanding of this uncommon entity that does not fit in current diagnostic and classification categories.
Collapse
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae Won Yun
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chul Won Jung
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Cui K, Liu C, Li X, Zhang Q, Li Y. Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 2019; 39:786-800. [PMID: 31548613 DOI: 10.1038/s41388-019-1026-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Although rRNA metabolism-related genes have been reported to be associated with human cancer, a systematic assessment of rRNA metabolism-related genes across human cancers is lacking. Thus, we performed a Pan-cancer analysis of rRNA metabolism-related genes across 20 human cancers. Here, we examined mRNA expression, mutation, DNA methylation, copy number variation (CNV) and clinical landscape of rRNA metabolism-related genes in more than 8600 patients across 20 human cancers from The Cancer Genome Atlas (TCGA) dataset. Besides, ten independent Gene Expression Omnibus (GEO) datasets, Cancer Cell Line Encyclopedia (CCLE) dataset and Project Achilles dataset were used to verify our study. A landscape of rRNA metabolism-related genes was established across 20 human cancers. The results suggest that rRNA metabolism-related genes are upregulated in multiple cancers, particularly in digestive and respiratory system cancers. Most of the upregulated genes were driven by CNV gain rather than mutation or DNA hypomethylation. We systematically identified CNV-driven rRNA metabolism-related genes with clinical relevance, including EXOSC8. Finally, functional experiments confirmed the oncogenic roles of EXOSC8 in colorectal carcinoma. Our study highlights the important roles of rRNA metabolism-related genes in tumorigenesis as prognostic biomarkers.
Collapse
Affiliation(s)
- Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
25
|
Comprehensive Proteomic Analysis Reveals Intermediate Stage of Non-Lesional Psoriatic Skin and Points out the Importance of Proteins Outside this Trend. Sci Rep 2019; 9:11382. [PMID: 31388062 PMCID: PMC6684579 DOI: 10.1038/s41598-019-47774-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 11/15/2022] Open
Abstract
To better understand the pathomechanism of psoriasis, a comparative proteomic analysis was performed with non-lesional and lesional skin from psoriasis patients and skin from healthy individuals. Strikingly, 79.9% of the proteins that were differentially expressed in lesional and healthy skin exhibited expression levels in non-lesional skin that were within twofold of the levels observed in healthy and lesional skin, suggesting that non-lesional skin represents an intermediate stage. Proteins outside this trend were categorized into three groups: I. proteins in non-lesional skin exhibiting expression similar to lesional skin, which might be predisposing factors (i.e., CSE1L, GART, MYO18A and UGDH); II. proteins that were differentially expressed in non-lesional and lesional skin but not in healthy and lesional skin, which might be non-lesional characteristic alteration (i.e., CHCHD6, CHMP5, FLOT2, ITGA7, LEMD2, NOP56, PLVAP and RRAS); and III. proteins with contrasting differential expression in non-lesional and lesional skin compared to healthy skin, which might contribute to maintaining the non-lesional state (i.e., ITGA7, ITGA8, PLVAP, PSAPL1, SMARCA5 and XP32). Finally, proteins differentially expressed in lesions may indicate increased sensitivity to stimuli, peripheral nervous system alterations, furthermore MYBBP1A and PRKDC were identified as potential regulators of key pathomechanisms, including stress and immune response, proliferation and differentiation.
Collapse
|
26
|
Zirin J, Ni X, Sack LM, Yang-Zhou D, Hu Y, Brathwaite R, Bulyk ML, Elledge SJ, Perrimon N. Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. Proc Natl Acad Sci U S A 2019; 116:14614-14619. [PMID: 31262815 PMCID: PMC6642371 DOI: 10.1073/pnas.1821863116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant MYC oncogene activation is one of the most prevalent characteristics of cancer. By overlapping datasets of Drosophila genes that are insulin-responsive and also regulate nucleolus size, we enriched for Myc target genes required for cellular biosynthesis. Among these, we identified the aminoacyl tRNA synthetases (aaRSs) as essential mediators of Myc growth control in Drosophila and found that their pharmacologic inhibition is sufficient to kill MYC-overexpressing human cells, indicating that aaRS inhibitors might be used to selectively target MYC-driven cancers. We suggest a general principle in which oncogenic increases in cellular biosynthesis sensitize cells to disruption of protein homeostasis.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Xiaochun Ni
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Laura M Sack
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Martha L Bulyk
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
27
|
Tusup M, Kundig T, Pascolo S. Epitranscriptomics of cancer. World J Clin Oncol 2018; 9:42-55. [PMID: 29900123 PMCID: PMC5997933 DOI: 10.5306/wjco.v9.i3.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
The functional impact of modifications of cellular RNAs, including mRNAs, miRNAs and lncRNAs, is a field of intense study. The role of such modifications in cancer has started to be elucidated. Diverse and sometimes opposite effects of RNA modifications have been reported. Some RNA modifications promote, while others decrease the growth and invasiveness of cancer. The present manuscript reviews the current knowledge on the potential impacts of N6-Methyladenosine, Pseudouridine, Inosine, 2’O-methylation or methylcytidine in cancer’s RNA. It also highlights the remaining questions and provides hints on research avenues and potential therapeutic applications, whereby modulating dynamic RNA modifications may be a new method to treat cancer.
Collapse
Affiliation(s)
- Marina Tusup
- Department of Dermatology, University Hospital of Zürich, Zurich 8091, Switzerland
- Faculty of Medicine, University of Zurich, Zurich 8091, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital of Zürich, Zurich 8091, Switzerland
- Faculty of Medicine, University of Zurich, Zurich 8091, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zürich, Zurich 8091, Switzerland
- Faculty of Medicine, University of Zurich, Zurich 8091, Switzerland
| |
Collapse
|
28
|
Ciribilli Y, Singh P, Inga A, Borlak J. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma. Oncotarget 2018; 7:65514-65539. [PMID: 27602772 PMCID: PMC5323172 DOI: 10.18632/oncotarget.11804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus, providing a rationale for molecular targeted therapies in PLACs.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Prashant Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
29
|
Bustelo XR, Dosil M. Ribosome biogenesis and cancer: basic and translational challenges. Curr Opin Genet Dev 2018; 48:22-29. [DOI: 10.1016/j.gde.2017.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023]
|
30
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
31
|
Martins T, Eusebio N, Correia A, Marinho J, Casares F, Pereira PS. TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in Drosophila salivary glands. Open Biol 2017; 7:rsob.160258. [PMID: 28123053 PMCID: PMC5303274 DOI: 10.1098/rsob.160258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Signalling by TGFβ superfamily factors plays an important role in tissue growth and cell proliferation. In Drosophila, the activity of the TGFβ/Activin signalling branch has been linked to the regulation of cell growth and proliferation, but the cellular and molecular basis for these functions are not fully understood. In this study, we show that both the RII receptor Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue growth. Knocking down the expression of Put or Smad2 in salivary glands causes alterations in nucleolar structure and functions. Cells with decreased TGFβ/Activin signalling accumulate intermediate pre-rRNA transcripts containing internal transcribed spacer 1 regions accompanied by the nucleolar retention of ribosomal proteins. Thus, our results show that TGFβ/Activin signalling is required for ribosomal biogenesis, a key aspect of cellular growth control. Importantly, overexpression of Put enhanced cell growth induced by Drosophila Myc, a well-characterized inducer of nucleolar hypertrophy and ribosome biogenesis.
Collapse
Affiliation(s)
- Torcato Martins
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal.,Cell Cycle Development Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nadia Eusebio
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Andreia Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Joana Marinho
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-Universidad Pablo de Olavide. Ctra. de Utrera km1, Seville 41013, Spain
| | - Paulo S Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| |
Collapse
|
32
|
Matkar S, An C, Hua X. Kinase inhibitors of HER2/AKT pathway induce ERK phosphorylation via a FOXO-dependent feedback loop. Am J Cancer Res 2017; 7:1476-1485. [PMID: 28744398 PMCID: PMC5523029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 06/07/2023] Open
Abstract
Inhibitors of the HER2/PI3K/AKT pathway are being developed, and shown promise in clinical trials for various types of cancers. However, development of drug resistance is a challenging problem for therapy. Elucidating various adaptive pathways leading to resistance or reduced sensitivity to drugs targeting the HER2/PI3K/AKT pathway may provide new insights into countering the resistance. Epidermal growth factor receptor (EGFR, aka HER1), which can dimerize with HER2, can activate a cascade consisting of Ras/RAF/MEK/ERK, promoting tumorigenesis. Lapatinib inhibits the kinase activity of both HER1 and HER2. In the current study, we found that repeated treatment of HER2+ breast cancer cells with HER1/2 inhibitor Lapatinib led to increased phosphorylation of RAF, MEK, and ERK, while suppressing HER1 phosphorylation and reduced the active form of Ras, indicating existence of factor(s) activating RAF/MEK/ERK by bypassing RAS activation. Notably, the Lapatinib treatment-induced phosphorylation of ERK was dependent on FOXO transcription factors, which are also activated by Lapatinib-mediated suppression of AKT. Moreover, the Lapatinib-induced phosphorylation of RAF and ERK is inhibited by a pan-PKC inhibitor. Furthermore, the Lapatinib induced increased ERK phosphorylation is correlated with increased stability of c-Myc, which is known to be stabilized by ERK-mediated phosphorylation. Together, these results suggest that chronic inhibition of the HER1/2 by Lapatinib triggers a feedback loop to activate RAF/MEK/ERK pathway, in a FOXO dependent but Ras-independent manner.
Collapse
Affiliation(s)
- Smita Matkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, University of Pennsylvania412 Curie Blvd., Philadelphia, PA 19104, USA
| | - Chiying An
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, University of Pennsylvania412 Curie Blvd., Philadelphia, PA 19104, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, University of Pennsylvania412 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ. MYC Deregulation in Primary Human Cancers. Genes (Basel) 2017; 8:genes8060151. [PMID: 28587062 PMCID: PMC5485515 DOI: 10.3390/genes8060151] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Katherine Ashley Hickman
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Cornelia Redel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Diana Resetca
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Aaliya Tamachi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - William B Tu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
34
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
35
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
36
|
Admoni-Elisha L, Nakdimon I, Shteinfer A, Prezma T, Arif T, Arbel N, Melkov A, Zelichov O, Levi I, Shoshan-Barmatz V. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment. PLoS One 2016; 11:e0148500. [PMID: 27078856 PMCID: PMC4831809 DOI: 10.1371/journal.pone.0148500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Chromatography, Liquid
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukocytes, Mononuclear/metabolism
- Male
- Prognosis
- Proteome/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Melkov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ori Zelichov
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itai Levi
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
37
|
Kirkegaard MM, Coupland SE, Prause JU, Heegaard S. Malignant lymphoma of the conjunctiva. Surv Ophthalmol 2015; 60:444-58. [PMID: 26003619 DOI: 10.1016/j.survophthal.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
Abstract
Conjunctival lymphomas constitute 25% of all ocular adnexal lymphomas. The majority are B-cell non-Hodgkin lymphomas (NHLs) (98%), whereas conjunctival T-cell NHLs are rare (2%). The most frequent subtype of conjunctival B-cell lymphoma is extranodal marginal zone lymphoma (EMZL; 81%), followed by follicular lymphoma (8%), diffuse large B-cell lymphoma (3%), and mantle cell lymphoma (3%). Extranodal marginal zone lymphoma occurs slightly more often in women and, along with follicular lymphoma, presents late in the seventh decade of life, whereas diffuse large B-cell lymphoma and especially mantle cell lymphoma have a predilection for the male gender and typically present in the eighth decade. Extranodal marginal zone lymphoma and follicular lymphoma present most frequently in the forniceal and bulbar conjunctiva. Conjunctival diffuse large B-cell lymphoma, mantle cell lymphoma and T-cell NHLs are characterized by a short duration of symptoms before the first ophthalmologic consultation. External beam radiotherapy is the treatment of choice for extranodal marginal zone lymphoma and follicular lymphoma, whereas diffuse large B-cell lymphoma, mantle cell lymphoma, and T-cell NHLs are mainly treated with chemotherapy. Conjunctival T-cell NHLs are associated with a particularly poor prognosis, with 50% of patients having progression or recurrence during a 1-year follow-up period.
Collapse
Affiliation(s)
- Marina M Kirkegaard
- Department of Neuroscience and Pharmacology, Eye Pathology Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Jan U Prause
- Department of Neuroscience and Pharmacology, Eye Pathology Institute, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Neuroscience and Pharmacology, Eye Pathology Institute, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Rowe M, Fitzsimmons L, Bell AI. Epstein-Barr virus and Burkitt lymphoma. CHINESE JOURNAL OF CANCER 2014; 33:609-19. [PMID: 25418195 PMCID: PMC4308657 DOI: 10.5732/cjc.014.10190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022]
Abstract
In 1964, a new herpesvirus, Epstein-Barr virus (EBV), was discovered in cultured tumor cells derived from a Burkitt lymphoma (BL) biopsy taken from an African patient. This was a momentous event that reinvigorated research into viruses as a possible cause of human cancers. Subsequent studies demonstrated that EBV was a potent growth-transforming agent for primary B cells, and that all cases of BL carried characteristic chromosomal translocations resulting in constitutive activation of the c-MYC oncogene. These results hinted at simple oncogenic mechanisms that would make Burkitt lymphoma paradigmatic for cancers with viral etiology. In reality, the pathogenesis of this tumor is rather complicated with regard to both the contribution of the virus and the involvement of cellular oncogenes. Here, we review the current understanding of the roles of EBV and c-MYC in the pathogenesis of BL and the implications for new therapeutic strategies to treat this lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- School of Cancer Sciences, University of Bir-mingham CMDS, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|