1
|
Chitadze L, Meparishvili M, Lagani V, Khuchua Z, McCabe BJ, Solomonia R. Src-NADH dehydrogenase subunit 2 complex and recognition memory of imprinting in domestic chicks. PLoS One 2024; 19:e0297166. [PMID: 38285689 PMCID: PMC10824410 DOI: 10.1371/journal.pone.0297166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024] Open
Abstract
Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.
Collapse
Affiliation(s)
- Lela Chitadze
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Maia Meparishvili
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zaza Khuchua
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Brian J. McCabe
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Revaz Solomonia
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Iv. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
2
|
Jin Y, Ding Y, Richards M, Kaakinen M, Giese W, Baumann E, Szymborska A, Rosa A, Nordling S, Schimmel L, Akmeriç EB, Pena A, Nwadozi E, Jamalpour M, Holstein K, Sáinz-Jaspeado M, Bernabeu MO, Welsh M, Gordon E, Franco CA, Vestweber D, Eklund L, Gerhardt H, Claesson-Welsh L. Tyrosine-protein kinase Yes controls endothelial junctional plasticity and barrier integrity by regulating VE-cadherin phosphorylation and endocytosis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1156-1173. [PMID: 37936984 PMCID: PMC7615285 DOI: 10.1038/s44161-022-00172-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2023]
Abstract
Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src-deficiency, VE-cadherin internalization is maintained, and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.
Collapse
Affiliation(s)
- Yi Jin
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Yindi Ding
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Mika Kaakinen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - André Rosa
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Sofia Nordling
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Lilian Schimmel
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology, The University of Queensland, Brisbane QLD, Australia
| | - Emir Bora Akmeriç
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia Pena
- Instituto de Medicina Molecular - Joao lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katrin Holstein
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Miguel Sáinz-Jaspeado
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, UK
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Emma Gordon
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology, The University of Queensland, Brisbane QLD, Australia
| | - Claudio A. Franco
- Instituto de Medicina Molecular - Joao lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Portugal
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| |
Collapse
|
3
|
Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene 2022; 41:4917-4928. [PMID: 36217026 PMCID: PMC9630107 DOI: 10.1038/s41388-022-02487-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
Metabolism must be tightly regulated to fulfil the dynamic requirements of cancer cells during proliferation, migration, stemness and differentiation. Src is a node of several signals involved in many of these biological processes, and it is also an important regulator of cell metabolism. Glucose uptake, glycolysis, the pentose-phosphate pathway and oxidative phosphorylation are among the metabolic pathways that can be regulated by Src. Therefore, this oncoprotein is in an excellent position to coordinate and finely tune cell metabolism to fuel the different cancer cell activities. Here, we provide an up-to-date summary of recent progress made in determining the role of Src in glucose metabolism as well as the link of this role with cancer cell metabolic plasticity and tumour progression. We also discuss the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
4
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|
5
|
Alfonzo-Méndez MA, Sochacki KA, Strub MP, Taraska JW. Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nat Commun 2022; 13:905. [PMID: 35173166 PMCID: PMC8850434 DOI: 10.1038/s41467-022-28373-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor β5-integrin. We show that ligand-activated EGFR, Grb2, Src, and β5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and β5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/β5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Hassan G, Seno M. ERBB Signaling Pathway in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:65-81. [PMID: 36587302 DOI: 10.1007/978-3-031-12974-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) was first tyrosine kinase receptor linked to human cancers. EGFR or ERBB1 is a member of ERBB subfamily, which consists of four type I transmembrane receptor tyrosine kinases, ERBB1, 2, 3 and 4. ERBBs form homo/heterodimers after ligand binding except ERBB2 and consequently becomes activated. Different signal pathways, such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), RAS/RAF/MEK/ERK, phospholipase Cγ and JAK-STAT, are triggered by ERBB activation. Since ERBBs, through these pathways, regulate stemness and differentiation of cancer stem cells (CSCs), their roles in CSC tumorigenicity have extensively been investigated. The hyperactivation of ERBBs and its downstream pathways stimulated by either genetic and/or epigenetic factors are frequently described in many types of human cancers. Their dysregulations make cells acquiring CSC characters such as survival, tumorigenicity and stemness. Because of the roles in tumor growth and progress, ERBBs are considered to be one of the drug targets as cancer treatment strategy. In this chapter, we will summarize the structure, function and roles of ERBB subfamily along with their relative pathways regulating the stemness and tumorigenicity of CSCs. Finally, we will discuss the targeting therapy strategies of cancer along with ERBBs in addition to some challenges and future perspectives.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Natural Food and Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
7
|
Mo Q, Wan L, Schell MJ, Jim H, Tworoger SS, Peng G. Integrative Analysis Identifies Multi-Omics Signatures That Drive Molecular Classification of Uveal Melanoma. Cancers (Basel) 2021; 13:6168. [PMID: 34944787 PMCID: PMC8699355 DOI: 10.3390/cancers13246168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
By iCluster analysis, we found that the integrative molecular classification of the UM was primarily driven by DNA copy number variation on chromosomes 3, 6 and 8, differential methylation and expression of genes involved in the immune system, cell morphogenesis, movement and migration, and differential mutation of genes including GNA11, BAP1, EIF1AX, SF3B1 and GNAQ. Integrative analysis revealed that pathways including IL6/JAK/STAT3 signaling, angiogenesis, allograft rejection, inflammatory response and interferon gamma response were hypomethylated and up-regulated in the M3 iSubtype, which was associated with a worse overall survival, compared to the D3 iSubtype. Using two independent gene expression datasets, we demonstrated that the subtype-driving genes had an excellent prognostic power in classifying UM into high- or low-risk groups for metastasis. Integrative analysis of UM multi-omics data provided a comprehensive view of UM biology for understanding the underlying mechanism leading to UM metastasis. The concordant molecular alterations at multi-omics levels revealed by our integrative analysis could be used for patient stratification towards personalized management and surveillance.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Michael J. Schell
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Heather Jim
- Department of Health Outcomes & Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Chia J, Wang SC, Wee S, Gill DJ, Tay F, Kannan S, Verma CS, Gunaratne J, Bard FA. Src activates retrograde membrane traffic through phosphorylation of GBF1. eLife 2021; 10:68678. [PMID: 34870592 PMCID: PMC8727025 DOI: 10.7554/elife.68678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022] Open
Abstract
The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP exchange factor (GEF) GBF1 and small GTPase Arf1. Here, we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898, are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation, and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and widespread mechanism.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shyi-Chyi Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Institute of Bioengineering and Bioimaging, Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Frederic A Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
9
|
Waters AM, Khatib TO, Papke B, Goodwin CM, Hobbs GA, Diehl JN, Yang R, Edwards AC, Walsh KH, Sulahian R, McFarland JM, Kapner KS, Gilbert TSK, Stalnecker CA, Javaid S, Barkovskaya A, Grover KR, Hibshman PS, Blake DR, Schaefer A, Nowak KM, Klomp JE, Hayes TK, Kassner M, Tang N, Tanaseichuk O, Chen K, Zhou Y, Kalkat M, Herring LE, Graves LM, Penn LZ, Yin HH, Aguirre AJ, Hahn WC, Cox AD, Der CJ. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Rep 2021; 35:109291. [PMID: 34192548 PMCID: PMC8340308 DOI: 10.1016/j.celrep.2021.109291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-β-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the βIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.
Collapse
Affiliation(s)
- Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tala O Khatib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A Cole Edwards
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Rita Sulahian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kevin S Kapner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sehrish Javaid
- Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna Barkovskaya
- Institute for Cancer Research, Oslo University Hospital, Oslo 0379, Norway
| | - Kajal R Grover
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine M Nowak
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle Kassner
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Nanyun Tang
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Olga Tanaseichuk
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kaisheng Chen
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Hongwei H Yin
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Ma H, Zhang J, Zhou L, Wen S, Tang HY, Jiang B, Zhang F, Suleman M, Sun D, Chen A, Zhao W, Lin F, Tsau MT, Shih LM, Xie C, Li X, Lin D, Hung LM, Cheng ML, Li Q. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Cell Rep 2021; 30:4235-4249.e6. [PMID: 32209481 DOI: 10.1016/j.celrep.2020.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of glucose metabolism is a key event in tumorigenesis and progression. Here, we show that active c-Src stimulates glycolysis by phosphorylating (Tyr194) and activating PFKFB3, a key enzyme that boosts glycolysis by producing fructose-2,6-bisphosphate and activating PFK1. Increased glycolysis intermediates replenish non-oxidative pentose phosphate pathway (PPP) and serine pathway for biosynthesis of cancer cells. PFKFB3 knockout (KO) cells and their counterpart reconstituted with PFKFB3-Y194F show comparably impaired abilities for proliferation, migration, and xenograft formation. Furthermore, PFKFB3-Y194F knockin mice show impaired glycolysis and, mating of these mice with APCmin/+ mice attenuates spontaneous colon cancer formation in APCmin/+ mice. In summary, we identify a specific mechanism by which c-Src mediates glucose metabolism to meet cancer cells' requirements for maximal biosynthesis and proliferation. The PFKFB3-Tyr194 phosphorylation level highly correlates with c-Src activity in clinical tumor samples, indicating its potential as an evaluation for tumor prognosis.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ai Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming-Tong Tsau
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Lu-Min Shih
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaotong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Center for Healthy and Aging Research, Chang Gung University, Taoyuan City 33302, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan.
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene 2019; 38:7002-7016. [DOI: 10.1038/s41388-019-0948-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
12
|
Tripathi BK, Anderman MF, Qian X, Zhou M, Wang D, Papageorge AG, Lowy DR. SRC and ERK cooperatively phosphorylate DLC1 and attenuate its Rho-GAP and tumor suppressor functions. J Cell Biol 2019; 218:3060-3076. [PMID: 31308216 PMCID: PMC6719442 DOI: 10.1083/jcb.201810098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/24/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
DLC1 controls focal adhesion dynamics and other processes that suppress tumorigenesis; therefore, it is unclear why some cancers maintain high levels of DLC1. Tripathi et al. show that phosphorylation of DLC1 by SRC and ERK mitigates DLC1’s tumor suppressor activities but these can be reactivated by kinase inhibition as a potential cancer treatment. SRC and ERK kinases control many cell biological processes that promote tumorigenesis by altering the activity of oncogenic and tumor suppressor proteins. We identify here a physiological interaction between DLC1, a focal adhesion protein and tumor suppressor, with SRC and ERK. The tumor suppressor function of DLC1 is attenuated by phosphorylation of tyrosines Y451 and Y701 by SRC, which down-regulates DLC1’s tensin-binding and Rho-GAP activities. ERK1/2 phosphorylate DLC1 on serine S129, which increases both the binding of SRC to DLC1 and SRC-dependent phosphorylation of DLC1. SRC inhibitors exhibit potent antitumor activity in a DLC1-positive transgenic cancer model and a DLC1-positive tumor xenograft model, due to reactivation of the tumor suppressor activities of DLC1. Combined treatment of DLC1-positive tumors with SRC plus AKT inhibitors has even greater antitumor activity. Together, these findings indicate cooperation between the SRC, ERK1/2, and AKT kinases to reduce DLC1 Rho-GAP and tumor suppressor activities in cancer cells, which can be reactivated by the kinase inhibitors.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Meghan F Anderman
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Ma X, Zhang L, Song J, Nguyen E, Lee RS, Rodgers SJ, Li F, Huang C, Schittenhelm RB, Chan H, Chheang C, Wu J, Brown KK, Mitchell CA, Simpson KJ, Daly RJ. Characterization of the Src-regulated kinome identifies SGK1 as a key mediator of Src-induced transformation. Nat Commun 2019; 10:296. [PMID: 30655532 PMCID: PMC6336867 DOI: 10.1038/s41467-018-08154-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies. The systemic understanding of oncogenic kinase signalling is still limited. Here, the authors combine chemical proteomics with functional screens to assess the impact of oncogenic Src on the expressed kinome and identify SGK1 as a critical mediator of Src-induced cell transformation.
Collapse
Affiliation(s)
- Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fuyi Li
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Chanly Chheang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kristin K Brown
- Cancer Therapeutics Program and Cancer Metabolism Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christina A Mitchell
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
14
|
Peng L, Guo JC, Long L, Pan F, Zhao JM, Xu LY, Li EM. A Novel Clinical Six-Flavoprotein-Gene Signature Predicts Prognosis in Esophageal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3869825. [PMID: 31815134 PMCID: PMC6878914 DOI: 10.1155/2019/3869825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
Abstract
Flavoproteins and their interacting proteins play important roles in mitochondrial electron transport, fatty acid degradation, and redox regulation. However, their clinical significance and function in esophageal squamous cell carcinoma (ESCC) are little known. Here, using survival analysis and machine learning, we mined 179 patient expression profiles with ESCC in GSE53625 from the Gene Expression Omnibus (GEO) database and constructed a signature consisting of two flavoprotein genes (GPD2 and PYROXD2) and four flavoprotein interacting protein genes (CTTN, GGH, SRC, and SYNJ2BP). Kaplan-Meier analysis revealed the signature was significantly associated with the survival of ESCC patients (mean survival time: 26.77 months in the high-risk group vs. 54.97 months in the low-risk group, P < 0.001, n = 179), and time-dependent ROC analysis demonstrated that the six-gene signature had good predictive ability for six-year survival for ESCC (AUC = 0.86, 95% CI: 0.81-0.90). We then validated its prediction performance in an independent set by RT-PCR (mean survival: 15.73 months in the high-risk group vs. 21.1 months in the low-risk group, P=0.032, n = 121). Furthermore, RNAi-mediated knockdown of genes in the flavoprotein signature led to decreased proliferation and migration of ESCC cells. Taken together, CTTN, GGH, GPD2, PYROXD2, SRC, and SYNJ2BP have an important clinical significance for prognosis of ESCC patients, suggesting they are efficient prognostic markers and potential targets for ESCC therapy.
Collapse
Affiliation(s)
- Liu Peng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lin Long
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Feng Pan
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jian-Mei Zhao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
15
|
Dülk M, Szeder B, Glatz G, Merő BL, Koprivanacz K, Kudlik G, Vas V, Sipeki S, Cserkaszky A, Radnai L, Buday L. EGF Regulates the Interaction of Tks4 with Src through Its SH2 and SH3 Domains. Biochemistry 2018; 57:4186-4196. [PMID: 29928795 DOI: 10.1021/acs.biochem.8b00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonreceptor tyrosine kinase Src is a central component of the epidermal growth factor (EGF) signaling pathway. Our group recently showed that the Frank-ter Haar syndrome protein Tks4 (tyrosine kinase substrate with four Src homology 3 domains) is also involved in EGF signaling. Here we demonstrate that Tks4 and Src bind directly to each other and elucidate the details of the molecular mechanism of this complex formation. Results of GST pull-down and fluorescence polarization assays show that both a proline-rich SH3 binding motif (PSRPLPDAP, residues 466-474) and an adjacent phosphotyrosine-containing SH2 binding motif (pYEEI, residues 508-511) in Tks4 are responsible for Src binding. These motifs interact with the SH3 and SH2 domains of Src, respectively, leading to a synergistic enhancement of binding strength and a highly stable, "bidentate"-type of interaction. In agreement with these results, we found that the association of Src with Tks4 is permanent and the complex lasts at least 3 h in living cells. We conclude that the interaction of Tks4 with Src may result in the long term stabilization of the kinase in its active conformation, leading to prolonged Src activity following EGF stimulation.
Collapse
Affiliation(s)
- Metta Dülk
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology , Eötvös Loránd University , 1117 Budapest , Hungary
| | - Balázs L Merő
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Kitti Koprivanacz
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Szabolcs Sipeki
- Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| | - Anna Cserkaszky
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Radnai
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary.,Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| |
Collapse
|
16
|
Chen Z, Morales JE, Guerrero PA, Sun H, McCarty JH. PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells. Cancer Res 2018; 78:3809-3822. [PMID: 29743287 DOI: 10.1158/0008-5472.can-18-0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/03/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an invasive brain cancer with tumor cells that disperse from the primary mass, escaping surgical resection and invariably giving rise to lethal recurrent lesions. Here we report that PTP-PEST, a cytoplasmic protein tyrosine phosphatase, controls GBM cell invasion by physically bridging the focal adhesion protein Crk-associated substrate (Cas) to valosin-containing protein (Vcp), an ATP-dependent protein segregase that selectively extracts ubiquitinated proteins from multiprotein complexes and targets them for degradation via the ubiquitin proteasome system. Both Cas and Vcp are substrates for PTP-PEST, with the phosphorylation status of tyrosine 805 (Y805) in Vcp impacting affinity for Cas in focal adhesions and controlling ubiquitination levels and protein stability. Perturbing PTP-PEST-mediated phosphorylation of Cas and Vcp led to alterations in GBM cell-invasive growth in vitro and in preclinical mouse models. Collectively, these data reveal a novel regulatory mechanism involving PTP-PEST, Vcp, and Cas that dynamically balances phosphorylation-dependent ubiquitination of key focal proteins involved in GBM cell invasion.Significance: PTP-PEST balances GBM cell growth and invasion by interacting with the ATP-dependent ubiquitin segregase Vcp/p97 and regulating phosphorylation and stability of the focal adhesion protein p130Cas.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3809/F1.large.jpg Cancer Res; 78(14); 3809-22. ©2018 AACR.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John E Morales
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola A Guerrero
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huandong Sun
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph H McCarty
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne PH, Kim ES, Shohet JM. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget 2018; 7:24018-26. [PMID: 26993602 PMCID: PMC5029681 DOI: 10.18632/oncotarget.8116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
(NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rajib Ghosh
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Zaowen Chen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anna Lakoma
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Preethi H Gunaratne
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Eugene S Kim
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Surgery, Division of Pediatric Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Honda T, Morii M, Nakayama Y, Suzuki K, Yamaguchi N, Yamaguchi N. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling. Sci Rep 2018; 8:1063. [PMID: 29348492 PMCID: PMC5773541 DOI: 10.1038/s41598-018-19599-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Collapse
Affiliation(s)
- Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Mariko Morii
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Ko Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
19
|
Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation. Oncotarget 2018; 7:25113-24. [PMID: 26848621 PMCID: PMC5041892 DOI: 10.18632/oncotarget.7159] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 01/21/2023] Open
Abstract
The Warburg effect, which reflects cancer cells' preference for aerobic glycolysis over glucose oxidation, contributes to tumor growth, progression and therapy resistance. The restraint on pyruvate flux into mitochondrial oxidative metabolism in cancer cells is in part attributed to the inhibition of pyruvate dehydrogenase (PDH) complex. Src is a prominent oncogenic non-receptor tyrosine kinase that promotes cancer cell proliferation, invasion, metastasis and resistance to conventional and targeted therapies. However, the potential role of Src in tumor metabolism remained unclear. Here we report that activation of Src attenuated PDH activity and generation of reactive oxygen species (ROS). Conversely, Src inhibitors activated PDH and increased cellular ROS levels. Src inactivated PDH through direct phosphorylation of tyrosine-289 of PDH E1α subunit (PDHA1). Indeed, Src was the main kinase responsible for PDHA1 tyrosine phosphorylation in cancer cells. Expression of a tyrosine-289 non-phosphorable PDHA1 mutant in Src-hyperactivated cancer cells restored PDH activity, increased mitochondrial respiration and oxidative stress, decreased experimental metastasis, and sensitized cancer cells to pro-oxidant treatment. The results suggest that Src contributes to the Warburg phenotype by inactivating PDH through tyrosine phosphorylation, and the metabolic effect of Src is essential for Src-driven malignancy and therapy resistance. Combination therapies consisting of both Src inhibitors and pro-oxidants may improve anticancer efficacy.
Collapse
|
20
|
Young AI, Timpson P, Gallego-Ortega D, Ormandy CJ, Oakes SR. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adh Migr 2017; 12:513-523. [PMID: 29166822 PMCID: PMC6363037 DOI: 10.1080/19336918.2017.1393591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Adelaide Ij Young
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia
| | - Paul Timpson
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - David Gallego-Ortega
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Christopher J Ormandy
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Samantha R Oakes
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| |
Collapse
|
21
|
Jessen TN, Jessen JR. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. Exp Cell Res 2017; 361:265-276. [PMID: 29097183 DOI: 10.1016/j.yexcr.2017.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA.
| |
Collapse
|
22
|
Swamynathan S, Loughner CL, Swamynathan SK. Inhibition of HUVEC tube formation via suppression of NFκB suggests an anti-angiogenic role for SLURP1 in the transparent cornea. Exp Eye Res 2017; 164:118-128. [PMID: 28803936 DOI: 10.1016/j.exer.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Previously, we have reported that the Secreted Ly6/uPAR related protein-1 (SLURP1) serves an important immunomodulatory function in the ocular surface. Here, we examine the involvement of SLURP1 in regulating corneal angiogenic privilege. Slurp1 expression detected by QPCR, immunoblots and immunofluorescent stain, was significantly decreased in mouse corneas subjected to alkali burn-induced corneal neovascularization (CNV). Addition of exogenous SLURP1 (6XHis-tagged, E. coli expressed and partially purified using Ni-ion columns) significantly suppressed the tumor necrosis factor-α (TNF-α)-stimulated human umbilical cord vascular endothelial cell (HUVEC) tube formation. SLURP1 suppressed the HUVEC tube length, tube area and number of branch points, without affecting their viability and/or proliferation. Exogenous SLURP1 in HUVEC also suppressed the TNF-α-induced (i) interleukin-8 (IL-8) and TNF-α production, (ii) adhesion to different components of the extracellular matrix, (iii) migration, and (iv) nuclear localization of NFκB. Together, these results demonstrate that SLURP1 suppresses HUVEC tube formation by blocking nuclear translocation of NFκB, and suggest a potential role for SLURP1 in promoting corneal angiogenic privilege.
Collapse
Affiliation(s)
- Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chelsea L Loughner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| |
Collapse
|
23
|
Role of Forkhead Box Class O proteins in cancer progression and metastasis. Semin Cancer Biol 2017; 50:142-151. [PMID: 28774834 DOI: 10.1016/j.semcancer.2017.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023]
Abstract
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Collapse
|
24
|
Nakashima K, Uekita T, Yano S, Kikuchi JI, Nakanishi R, Sakamoto N, Fukumoto K, Nomoto A, Kawamoto K, Shibahara T, Yamaguchi H, Sakai R. Novel small molecule inhibiting CDCP1-PKCδ pathway reduces tumor metastasis and proliferation. Cancer Sci 2017; 108:1049-1057. [PMID: 28256037 PMCID: PMC5448658 DOI: 10.1111/cas.13218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
CUB domain‐containing protein‐1 (CDCP1) is a trans‐membrane protein predominantly expressed in various cancer cells and involved in tumor progression. CDCP1 is phosphorylated at tyrosine residues in the intracellular domain by Src family kinases and recruits PKCδ to the plasma membrane through tyrosine phosphorylation‐dependent association with the C2 domain of PKCδ, which in turn induces a survival signal in an anchorage‐independent condition. In this study, we used our cell‐free screening system to identify a small compound, glycoconjugated palladium complex (Pd‐Oqn), which significantly inhibited the interaction between the C2 domain of PKCδ and phosphorylated CDCP1. Immunoprecipitation assays demonstrated that Pd‐Oqn hindered the intercellular interaction of phosphorylated CDCP1 with PKCδ and also suppressed the phosphorylation of PKCδ but not that of ERK or AKT. In addition, Pd‐Oqn inhibited the colony formation of gastric adenocarcinoma 44As3 cells in soft agar as well as their invasion. In mouse models, Pd‐Oqn markedly reduced the peritoneal dissemination of gastric adenocarcinoma cells and the tumor growth of pancreatic cancer orthotopic xenografts. These results suggest that the novel compound Pd‐Oqn reduces tumor metastasis and growth by inhibiting the association between CDCP1 and PKCδ, thus potentially representing a promising candidate among therapeutic reagents targeting protein–protein interaction.
Collapse
Affiliation(s)
- Katsuhiko Nakashima
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Japan
| | - Shigenobu Yano
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Ruri Nakanishi
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Nozomi Sakamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Keisuke Fukumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Keisuke Kawamoto
- Department of Chemistry, Graduate School of Natural Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Shibahara
- Department of Chemistry, Okayama University of Science, Okayama, Japan
| | - Hideki Yamaguchi
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuichi Sakai
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Tokyo, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
25
|
Zhao Y, Yang Y, Xu Y, Lu S, Jian H. AZD0530 sensitizes drug-resistant ALK-positive lung cancer cells by inhibiting SRC signaling. FEBS Open Bio 2017; 7:472-476. [PMID: 28396832 PMCID: PMC5377386 DOI: 10.1002/2211-5463.12162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
Most tumors develop resistance to targeted cancer drugs, even though these drugs have produced substantial clinical responses. Here we established anaplastic lymphoma kinase (ALK)‐positive drug‐resistant lung cancer cell lines, which are resistant to ceritinib (LDK378). We found that ceritinib treatment resulted in robust upregulation of SRC activity, as measured by the phosphorylation of the SRC substrate paxillin. Knockdown of SRC alone with siRNA effectively sensitized ceritinib resistance in ALK‐positive cells. Furthermore, SRC inhibition by AZD0530 was effective in ALK‐resistant cancer cells. Thus, ALK inhibition by ceritinib may lead to upregulation of SRC signaling, and AZD0530 could serve as a potential drug in the clinic to treat ALK‐resistant lung cancer patients.
Collapse
Affiliation(s)
- Yi Zhao
- Shanghai Lung Tumor Clinical Medical Center Shanghai Chest Hospital Shanghai Jiao Tong University China
| | - Yi Yang
- Shanghai Lung Tumor Clinical Medical Center Shanghai Chest Hospital Shanghai Jiao Tong University China
| | - Yunhua Xu
- Shanghai Lung Tumor Clinical Medical Center Shanghai Chest Hospital Shanghai Jiao Tong University China
| | - Shun Lu
- Shanghai Lung Tumor Clinical Medical Center Shanghai Chest Hospital Shanghai Jiao Tong University China
| | - Hong Jian
- Shanghai Lung Tumor Clinical Medical Center Shanghai Chest Hospital Shanghai Jiao Tong University China
| |
Collapse
|
26
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
27
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
28
|
Weir ME, Mann JE, Corwin T, Fulton ZW, Hao JM, Maniscalco JF, Kenney MC, Roman Roque KM, Chapdelaine EF, Stelzl U, Deming PB, Ballif BA, Hinkle KL. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity. FEBS Lett 2016; 590:1042-52. [PMID: 27001024 DOI: 10.1002/1873-3468.12144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/18/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023]
Abstract
Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain.
Collapse
Affiliation(s)
- Marion E Weir
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Jacqueline E Mann
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT, USA
| | - Thomas Corwin
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary W Fulton
- Department of Biology, University of Vermont, Burlington, VT, USA.,Department of Biology and Physical Education, Norwich University, Northfield, VT, USA
| | - Jennifer M Hao
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Marie C Kenney
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Elizabeth F Chapdelaine
- Department of Biology, University of Vermont, Burlington, VT, USA.,Department of Biology and Physical Education, Norwich University, Northfield, VT, USA
| | - Ulrich Stelzl
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paula B Deming
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Karen L Hinkle
- Department of Biology, University of Vermont, Burlington, VT, USA.,Department of Biology and Physical Education, Norwich University, Northfield, VT, USA
| |
Collapse
|
29
|
Liu W, Yue F, Zheng M, Merlot A, Bae DH, Huang M, Lane D, Jansson P, Lui GYL, Richardson V, Sahni S, Kalinowski D, Kovacevic Z, Richardson DR. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 2016; 6:8851-74. [PMID: 25860930 PMCID: PMC4496188 DOI: 10.18632/oncotarget.3316] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Angelica Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goldie Yuan Lam Lui
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Wang Z, Fu S. An overview of tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Investig Drugs 2015; 25:15-30. [PMID: 26560712 DOI: 10.1517/13543784.2016.1117071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the fifth most common cause of cancer-related deaths in women. Initial treatment with surgery and chemotherapy has improved survival significantly. However, the disease progresses or recurs in most patients. Thus, there is an urgent need to develop more effective treatment strategies. AREAS COVERED This article provides an overview of tyrosine kinase inhibitors (TKIs) for the treatment of EOC, which is based on English peer-reviewed articles on MEDLINE and related abstracts presented at major conferences. The authors highlight the data from the published clinical trials in EOC patients who were treated with TKIs or TKI-based regimens. EXPERT OPINION EOC is responsive to most chemotherapeutic drugs and/or biological agents and represents an ideal disease model for investigating novel anti-cancer agents. Numerous small-molecule TKIs targeting the VEGFR, PARP, PI3K-AKT-mTOR, MAPK, Src, PKC, Wee1 and HER1/2 signaling pathways are currently being tested in clinical trials. Research is needed for devising regimens combining TKIs with other agents in an optimal timing schedule and for identifying potential biomarkers predictive of response and survival.
Collapse
Affiliation(s)
- Zhijie Wang
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA.,b Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital & Beijing Institute for Cancer Research , Beijing , China
| | - Siqing Fu
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA
| |
Collapse
|
31
|
Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 2015; 415:133-42. [PMID: 26296907 DOI: 10.1016/j.mce.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
Src kinases are non-receptor tyrosine kinases that phosphorylate diverse substrates, which control processes such as cell proliferation, differentiation and survival; cell adhesion; and cell motility. c-Src, the prototypical member of this protein family, is widely expressed by several organs that include the testis. In the seminiferous epithelium of the adult rat testis, c-Src is highest at the tubule lumen during the release of mature spermatids. Other studies show that testosterone regulates spermatid adhesion to Sertoli cells via c-Src, indicating Src phosphorylates key substrates that prompt the disassembly of Sertoli cell-spermatid junctions. A more recent in vitro study reveals that c-Src participates in the internalization of proteins that constitute the blood-testis barrier, which is present between Sertoli cells, suggesting a similar mechanism of junction disassembly is at play during spermiation. In this review, we discuss recent findings on c-Src, with an emphasis on its role in spermatogenesis in the mammalian testis.
Collapse
Affiliation(s)
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
32
|
Sirvent A, Urbach S, Roche S. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Proteomics 2015; 15:232-44. [PMID: 25403792 DOI: 10.1002/pmic.201400162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/30/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023]
Abstract
The membrane-anchored, non-receptor tyrosine kinase (non-RTK) SRC is a critical regulator of signal transduction induced by a large variety of cell-surface receptors, including RTKs that bind to growth factors to control cell growth and migration. When deregulated, SRC shows strong oncogenic activity, probably because of its capacity to promote RTK-mediated downstream signaling even in the absence of extracellular stimuli. Accordingly, SRC is frequently deregulated in human cancer and is thought to play important roles during tumorigenesis. However, our knowledge on the molecular mechanism by which SRC controls signaling is incomplete due to the limited number of key substrates identified so far. Here, we review how phosphoproteomic methods have changed our understanding of the mechanisms underlying SRC signaling in normal and tumor cells and discuss how these novel findings can be used to improve therapeutic strategies aimed at targeting SRC signaling in human cancer.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, University Montpellier 1 and 2, CRBM, Montpellier, France
| | | | | |
Collapse
|
33
|
Mohr CF, Gross C, Bros M, Reske-Kunz AB, Biesinger B, Thoma-Kress AK. Regulation of the tumor marker Fascin by the viral oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) depends on promoter activation and on a promoter-independent mechanism. Virology 2015; 485:481-91. [PMID: 26363219 DOI: 10.1016/j.virol.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/24/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023]
Abstract
Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis.
Collapse
Affiliation(s)
- Caroline F Mohr
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
34
|
Kubota S, Morii M, Yuki R, Yamaguchi N, Yamaguchi H, Aoyama K, Kuga T, Tomonaga T, Yamaguchi N. Role for Tyrosine Phosphorylation of A-kinase Anchoring Protein 8 (AKAP8) in Its Dissociation from Chromatin and the Nuclear Matrix. J Biol Chem 2015; 290:10891-904. [PMID: 25770215 PMCID: PMC4409252 DOI: 10.1074/jbc.m115.643882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation.
Collapse
Affiliation(s)
- Sho Kubota
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Mariko Morii
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Ryuzaburo Yuki
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Noritaka Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hiromi Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Kazumasa Aoyama
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Naoto Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| |
Collapse
|
35
|
Takahashi K, Matafonov A, Sumarriva K, Ito H, Lauhan C, Zemel D, Tsuboi N, Chen J, Reynolds A, Takahashi T. CD148 tyrosine phosphatase promotes cadherin cell adhesion. PLoS One 2014; 9:e112753. [PMID: 25386896 PMCID: PMC4227875 DOI: 10.1371/journal.pone.0112753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/14/2014] [Indexed: 01/06/2023] Open
Abstract
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.
Collapse
Affiliation(s)
- Keiko Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Anton Matafonov
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Katherine Sumarriva
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Hideyuki Ito
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Colette Lauhan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dana Zemel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Nobuo Tsuboi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jin Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Takamune Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cunnick JM, Kim S, Hadsell J, Collins S, Cerra C, Reiser P, Flynn DC, Cho Y. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene 2014; 34:2640-9. [PMID: 25043309 PMCID: PMC4302073 DOI: 10.1038/onc.2014.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Actin filament-associated protein 1 (AFAP1) is an adaptor protein of cSrc that binds to filamentous actin and regulates the activity of this tyrosine kinase to affect changes to the organization of the actin cytoskeleton. In breast and prostate cancer cells, AFAP1 has been shown to regulate cellular responses requiring actin cytoskeletal changes such as adhesion, invadopodia formation and invasion. However, a normal physiologic role for AFAP1 has remained elusive. In this study, we generated an AFAP1 knockout mouse model that establishes a novel physiologic role for AFAP1 in lactation. Specifically, these animals displayed a defect in lactation that resulted in an inability to nurse efficiently. Histologically, the mammary glands of the lactating knockout mice were distinguished by the accumulation of large cytoplasmic lipid droplets in the alveolar epithelial cells. There was a reduction in lipid synthesis and the expression of lipogenic genes without a corresponding reduction in the production of β-casein, a milk protein. Furthermore, these defects were associated with histologic and biochemical signs of precocious involution. This study also demonstrated that AFAP1 responds to prolactin, a lactogenic hormone, by forming a complex with cSrc and becoming tyrosine phosphorylated. Taken together, these observations pointed to a defect in secretory activation. Certain characteristics of this phenotype mirrored the defect in secretory activation in the cSrc knockout mouse, but most importantly, the activity of cSrc in the mammary gland was reduced during early lactation in the AFAP1-null mouse and the localization of active cSrc at the apical surface of luminal epithelial cells during lactation was selectively lost in the absence of AFAP1. These data define, for the first time, the requirement of AFAP1 for the spatial and temporal regulation of cSrc activity in the normal breast, specifically for milk production.
Collapse
Affiliation(s)
- J M Cunnick
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - S Kim
- Graduate School of Medicine, The Commonwealth Medical College, Scranton, PA, USA
| | - J Hadsell
- Fortis Institute Scranton, Scranton, PA, USA
| | - S Collins
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - C Cerra
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - P Reiser
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - D C Flynn
- College of Health Science, University of Delaware, Newark, DE, USA
| | - Y Cho
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
37
|
Yang Q, Zhang F, Ding Y, Huang J, Chen S, Wu Q, Wang Z, Wang Z, Chen C. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer. Br J Cancer 2014; 110:1288-97. [PMID: 24448360 PMCID: PMC3950870 DOI: 10.1038/bjc.2014.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/09/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND CXC chemokine receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) have important roles in promoting tumour growth and metastasis. Therefore, targeting CXCR4 could be a promising strategy for treatment of human cancer. METHODS To achieve this goal, we developed a highly purified recombination polypeptide (GST-NT21MP), which is a synthetic 21-mer peptide antagonist of CXCR4 (NT21MP) derived from the viral macrophage inflammatory protein II by fermentation technology, affinity chromatography and fast protein liquid chromatography. In this study, we used multiple methods such as MTT assay, FACS, invasion assay, RT-PCR and western blot to explore the efficacy and mechanism by which GST-NT21MP inhibits cell growth, migration and invasion of breast cancer in vitro and in vivo. RESULTS We found that blockade of CXCR4 pathway by GST-NT21MP decreased SDF-1-induced cell growth, adhesion and migration capacities in breast cancer cells. Moreover, GST-NT21MP significantly retarded pulmonary metastasis in vivo. Furthermore, GST-NT21MP-mediated antitumour activity was found to be associated with reduced phosphorylated Src, Akt, FAK and ERK1/2 as well as decreased Bcl-2. CONCLUSIONS Our results suggest that GST-NT21MP could be a potential anticancer agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - F Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - Y Ding
- Branch of Tumour of the Center Hospital of Bengbu, Anhui 233000, China
| | - J Huang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - S Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Q Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Z Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - Z Wang
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2] Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - C Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| |
Collapse
|