1
|
Chen Z, Gao J, Li Z, Ma D, Wang Y, Cheng Q, Zhu J, Li Z. Integrative analysis reveals different feature of intrahepatic cholangiocarcinoma subtypes. Liver Int 2024; 44:2477-2493. [PMID: 38924592 DOI: 10.1111/liv.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) has two main histological subtypes: large and small duct-type iCCA, which are characterized by different clinicopathological features. This study was conducted with the purpose of expanding our understanding of their differences in molecular features and immune microenvironment. METHODS We selected 132 patients who underwent radical surgery at our department between 2015 and 2021 for clinical and survival analyses. Whole-exome sequencing was performed to analyse mutational landscapes. Bulk RNA sequencing and single-cell RNA sequencing data were used for pathway enrichment and immune infiltration analyses based on differentially expressed genes. The function of PPP1R1B was analysed both in vitro and in vivo and the gene mechanism was further investigated. RESULTS We found that large duct-type iCCA had worse overall survival and recurrence-free survival rates than small duct-type iCCA. Mutations in ARID1A, DOT1L and ELF3 usually occur in large duct-type iCCA, whereas mutations in IDH1 and BAP1 occur in small duct-type iCCA. Among the differentially expressed genes, we found that PPP1R1B was highly expressed in large duct-type iCCA tumour tissues. Expression of PPP1R1B promoted cell proliferation, migration and invasion and indicated a worse prognosis. A combination of USF2 with the promoter of PPP1R1B can enhance gene expression in iCCA, which may further affect the expression of genes such as AHNAK, C4BPA and activating the PI3K/AKT pathway. CONCLUSIONS Our findings extend our understanding of large and small duct-type iCCA. In addition, PPP1R1B may serve as a potential marker and therapeutic target for large duct-type iCCA.
Collapse
Affiliation(s)
- Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Firouzabadi ED, Allami M, Mohammed EJ, Barzegar H, Dastpak M, Alemohammad R, Moghimi V, Mahmoudian RA, Nasrabadi F, Arghiani N, Kitamura Y, Hosseini SA, Ghasemi A, Farshchian M. Detection of novel PPP1R1B::STARD3 fusion transcript in acute myeloid leukemia: a case report. J Med Case Rep 2024; 18:269. [PMID: 38835078 PMCID: PMC11151611 DOI: 10.1186/s13256-024-04536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.
Collapse
Affiliation(s)
- Elahe Dehghani Firouzabadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
- Department of Biology, Faculty of Science, Hakim Sabzevar University, Sabzevar, Iran
| | - Mohammed Allami
- Department of Dentistry, Al-Manara College for Medical Sciences, Maysan, Iraq
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Eman Jassim Mohammed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Hossein Barzegar
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Mahtab Dastpak
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Reza Alemohammad
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Vahid Moghimi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
- Department of Biology, Faculty of Science, Hakim Sabzevar University, Sabzevar, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Nasrabadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Nahid Arghiani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Ali Ghasemi
- Department of Pediatrics Hematology and Oncology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran.
| |
Collapse
|
3
|
He K, Xie CZ, Li Y, Chen ZZ, Xu SH, Huang SQ, Yang JG, Wei ZQ, Peng XD. Dopamine and cyclic adenosine monophosphate-regulated phosphoprotein with an apparent Mr of 32000 promotes colorectal cancer growth. World J Gastrointest Oncol 2023; 15:1936-1950. [DOI: 10.4251/wjgo.v15.i11.1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/29/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Dopamine and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein with an apparent Mr of 32000 (DARPP-32) is a protein that is involved in regulating dopamine and cAMP signaling pathways in the brain. However, recent studies have shown that DARPP-32 is also expressed in other tissues, including colorectal cancer (CRC), where its function is not well understood.
AIM To explore the effect of DARPP-32 on CRC progression.
METHODS The expression levels of DARPP-32 were assessed in CRC tissues using both quantitative polymerase chain reaction and immunohistochemistry assays. The proliferative capacity of CRC cell lines was evaluated with Cell Counting Kit-8 and 5-ethynyl-2’-deoxyuridine assays, while apoptosis was measured by flow cytometry. The migratory and invasive potential of CRC cell lines were determined using wound healing and transwell chamber assays. In vivo studies involved monitoring the growth rate of xenograft tumors. Finally, the underlying molecular mechanism of DARPP-32 was investigated through RNA-sequencing and western blot analyses.
RESULTS DARPP-32 was frequently upregulated in CRC and associated with abnormal clinicopathological features in CRC. Overexpression of DARPP-32 was shown to promote cancer cell proliferation, migration, and invasion and reduce apoptosis. DARPP-32 knockdown resulted in the opposite functional effects. Mechanistically, DARPP-32 may regulate the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in order to carry out its biological function.
CONCLUSION DARPP-32 promotes CRC progression via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kuan He
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Chao-Zheng Xie
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Ya Li
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Zhen-Zhou Chen
- Gastrointestinal Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Shi-Hao Xu
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Si-Qi Huang
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Jian-Guo Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Zheng-Qiang Wei
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Xu-Dong Peng
- Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
4
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
5
|
Zhang L, Wang D, Han X, Guo X, Cao Y, Xia Y, Gao D. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med 2022; 26:4686-4697. [PMID: 35894779 PMCID: PMC9443946 DOI: 10.1111/jcmm.17481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Dan Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xiao Han
- Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Cao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
7
|
Sun Y, Li H. Chimeric RNAs Discovered by RNA Sequencing and Their Roles in Cancer and Rare Genetic Diseases. Genes (Basel) 2022; 13:741. [PMID: 35627126 PMCID: PMC9140685 DOI: 10.3390/genes13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.
Collapse
Affiliation(s)
- Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
9
|
Asif K, Memeo L, Palazzolo S, Frión-Herrera Y, Parisi S, Caligiuri I, Canzonieri V, Granchi C, Tuccinardi T, Rizzolio F. STARD3: A Prospective Target for Cancer Therapy. Cancers (Basel) 2021; 13:4693. [PMID: 34572920 PMCID: PMC8472075 DOI: 10.3390/cancers13184693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of death in developed countries and current therapies are based on surgery, chemotherapeutic agents, and radiation. To overcome side effects induced by chemo- and radiotherapy, in recent decades, targeted therapies have been proposed in second and even first lines. Targeted drugs act on the essential pathways involved in tumor induction, progression, and metastasis, basically all the hallmark of cancers. Among emerging pathways, the cholesterol metabolic pathway is a strong candidate for this purpose. Cancer cells have an accelerated metabolic rate and require a continuous supply of cholesterol for cell division and membrane renewal. Steroidogenic acute regulatory related lipid transfer (START) proteins are a family of proteins involved in the transfer of lipids and some of them are important in non-vesicular cholesterol transportation within the cell. The alteration of their expression levels is implicated in several diseases, including cancers. In this review, we report the latest discoveries on StAR-related lipid transfer protein domain 3 (STARD3), a member of the START family, which has a potential role in cancer, focusing on the structural and biochemical characteristics and mechanisms that regulate its activity. The role of the STARD3 protein as a molecular target for the development of cancer therapies is also discussed. As STARD3 is a key protein in the cholesterol movement in cancer cells, it is of interest to identify inhibitors able to block its activity.
Collapse
Affiliation(s)
- Kanwal Asif
- Department of Molecular Sciences and Nanosystems, PhD School in Science and Technology of Bio and Nanomaterials, Ca’ Foscari University of Venice, 30172 Venice, Italy;
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Yahima Frión-Herrera
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| |
Collapse
|
10
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
11
|
Liu D, Zhou D, Sun Y, Zhu J, Ghoneim D, Wu C, Yao Q, Gamazon ER, Cox NJ, Wu L. A Transcriptome-Wide Association Study Identifies Candidate Susceptibility Genes for Pancreatic Cancer Risk. Cancer Res 2020; 80:4346-4354. [PMID: 32907841 PMCID: PMC7572664 DOI: 10.1158/0008-5472.can-20-1353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is among the most well-characterized cancer types, yet a large proportion of the heritability of pancreatic cancer risk remains unclear. Here, we performed a large transcriptome-wide association study to systematically investigate associations between genetically predicted gene expression in normal pancreas tissue and pancreatic cancer risk. Using data from 305 subjects of mostly European descent in the Genotype-Tissue Expression Project, we built comprehensive genetic models to predict normal pancreas tissue gene expression, modifying the UTMOST (unified test for molecular signatures). These prediction models were applied to the genetic data of 8,275 pancreatic cancer cases and 6,723 controls of European ancestry. Thirteen genes showed an association of genetically predicted expression with pancreatic cancer risk at an FDR ≤ 0.05, including seven previously reported genes (INHBA, SMC2, ABO, PDX1, RCCD1, CFDP1, and PGAP3) and six novel genes not yet reported for pancreatic cancer risk [6q27: SFT2D1 OR (95% confidence interval (CI), 1.54 (1.25-1.89); 13q12.13: MTMR6 OR (95% CI), 0.78 (0.70-0.88); 14q24.3: ACOT2 OR (95% CI), 1.35 (1.17-1.56); 17q12: STARD3 OR (95% CI), 6.49 (2.96-14.27); 17q21.1: GSDMB OR (95% CI), 1.94 (1.45-2.58); and 20p13: ADAM33 OR (95% CI): 1.41 (1.20-1.66)]. The associations for 10 of these genes (SFT2D1, MTMR6, ACOT2, STARD3, GSDMB, ADAM33, SMC2, RCCD1, CFDP1, and PGAP3) remained statistically significant even after adjusting for risk SNPs identified in previous genome-wide association study. Collectively, this analysis identified novel candidate susceptibility genes for pancreatic cancer that warrant further investigation. SIGNIFICANCE: A transcriptome-wide association analysis identified seven previously reported and six novel candidate susceptibility genes for pancreatic cancer risk.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yanfa Sun
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
- College of Life Science, Longyan University, Longyan, Fujian, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, P.R. China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, P.R. China
| | - Jingjing Zhu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dalia Ghoneim
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Qizhi Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lang Wu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.
| |
Collapse
|
12
|
Tian Z, Tang J, Liao X, Yang Q, Wu Y, Wu G. Identification of a 9-gene prognostic signature for breast cancer. Cancer Med 2020; 9:9471-9484. [PMID: 33090721 PMCID: PMC7774725 DOI: 10.1002/cam4.3523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) is the most common cancer among women and is the second leading cause of cancer death in women. In this study, we developed a 9‐gene prognostic signature to predict the prognosis of patients with BRCA. GSE20685, GSE42568, GSE20711, and GSE88770 were used as training sets. The Kaplan–Meier plot was constructed to assess survival differences and log‐rank test was performed to evaluate the statistical significance. The overall survival (OS) of patients in the low‐risk group was significantly higher than that in the high‐risk group. ROC analysis indicated that this 9‐gene signature shows good diagnostic efficiency both in OS and disease‐free survival (DFS). The 9‐gene signature was further validated through GSE16446, GSE7390, and TCGA‐BRCA datasets. We also established a nomogram that integrates clinicopathological features and 9‐gene signature. The analysis of the calibration plot showed that the nomogram has good prognostic performance. More convincingly, real‐time reverse transcription‐polymerase chain reaction (RT‐PCR) results indicated that the protective prognostic factors in BRCA patients were downregulated, whereas the dangerous prognostic factors were upregulated. The innovation of this article is not only constructing a prognostic gene signature, but also combining with clinical information to further establish a nomogram to better predict the survival probability of patients. It is worth mentioning that this signature also does not depend on other clinical factors or variables.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) and survival in breast cancer: a retrospective analysis of protein and mRNA expression. Sci Rep 2019; 9:16987. [PMID: 31740718 PMCID: PMC6861271 DOI: 10.1038/s41598-019-53529-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
Dopamine and cAMP regulated phosphoprotein 32 kDa (DARPP-32) also known as phosphoprotein phosphatase-1 regulatory subunit 1B and encoded by the PPP1R1B gene is an inhibitor of protein phosphatase-1 and protein kinase A. DARPP-32 is expressed in a wide range of epithelial cells and some solid tumours; however, its role in breast cancer is only partially defined. DARPP-32 expression was determined using immunohistochemistry in two independent cohorts of early stage invasive breast cancer patients (discovery n = 1352; validation n = 1655), and 112 HER2 positive breast cancer patients treated with trastuzumab and adjuvant chemotherapy. PPP1R1B mRNA expression was assessed in the METABRIC cohort (n = 1980), using artificial neural network analysis to identify associated genes. In the discovery cohort, low nuclear expression of DARPP-32 was significantly associated with shorter survival (P = 0.041), which was independent of other prognostic variables (P = 0.019). In the validation cohort, low cytoplasmic and nuclear expression was significantly associated with shorter survival (both P = 0.002), with cytoplasmic expression independent of other prognostic variables (P = 0.023). Stronger associations with survival in oestrogen receptor (ER) positive disease were observed. In patients treated with trastuzumab, low nuclear expression was significantly associated with adverse progression-free survival (P = 0.031). In the METABRIC cohort, low PPP1R1B expression was associated with shortened survival of ER positive patients. Expression of CDC42 and GRB7, amongst others, were associated with PPP1R1B expression. This data suggests a role for DARPP-32 as a prognostic marker with clinical utility in breast cancer.
Collapse
|
14
|
Boretti A. Nutrition, lipidic parameters, and cancer risk and progress. Nutrition 2019; 69:110538. [PMID: 31525703 DOI: 10.1016/j.nut.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
The aim of this literature review is to analyze the association between lipidic parameters and cancer risk and progression, as there is no clear evidence that the risk or advancement of cancer increases with cholesterol levels. Some works suggest a positive, others a negative, and still others a neutral correlation between cancer advancement or risk and cholesterol-related parameters. This lack of a simple relationship indicates the need for a more complex, multi-variable, non-linear framework correlating lipid and cancer parameters, as well as the likely existence of optimum values of lipid parameters that may pave the way to cancer therapeutic strategies that include clinical nutrition.
Collapse
Affiliation(s)
- Albert Boretti
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
15
|
Li Q, Ge Y, Chen X, Wang L, Xia Y, Xu Z, Li Z, Wang W, Yang L, Zhang D, Xu Z. LEM domain containing 1 promotes proliferation via activating the PI3K/Akt signaling pathway in gastric cancer. J Cell Biochem 2019; 120:15190-15201. [PMID: 31021450 DOI: 10.1002/jcb.28783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Qiang Li
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yugang Ge
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Xiaofeng Chen
- Department of Oncology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Lu Wang
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yiwen Xia
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Zhipeng Xu
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Zheng Li
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Weizhi Wang
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Li Yang
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Diancai Zhang
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Zekuan Xu
- Department of General Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
16
|
Avanes A, Lenz G, Momand J. Darpp-32 and t-Darpp protein products of PPP1R1B: Old dogs with new tricks. Biochem Pharmacol 2018; 160:71-79. [PMID: 30552871 DOI: 10.1016/j.bcp.2018.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
The PPP1R1B gene is located on chromosome 17q12 (39,626,208-39,636,626[GRCh38/hg38]), which codes for multiple transcripts and two experimentally-documented proteins Darpp-32 and t-Darpp. Darpp-32 (Dopamine and cAMP Regulated Phosphoprotein), discovered in the early 1980s, is a protein whose phosphorylation is upregulated in response to cAMP in dopamine-responsive tissues in the brain. It's phosphorylation profile modulates its ability to bind and inhibit Protein Phosphatase 1 activity, which, in turn, controls the activity of hundreds of phosphorylated proteins. PPP1R1B knockout mice exhibit subtle learning defects. In 2002, the second protein product of PPP1R1B was discovered in gastric cancers: t-Darpp (truncated Darpp-32). The start codon of t-Darpp is amino acid residue 37 of Darpp-32 and it lacks the domain responsible for modulating Protein Phosphatase 1. Aside from gastric cancers, t-Darpp and/or Darpp-32 is overexpressed in tumor cells from breast, colon, esophagus, lung and prostate tissues. More than one research team has demonstrated that these proteins, through mechanisms that to date remain cloudy, activate AKT, a protein whose phosphorylation leads to cell survival and blocks apoptosis. Furthermore, in Her2 positive breast cancers (an aggressive form of breast cancer), t-Darpp/Darpp-32 overexpression causes resistance to the frequently-administered anti-Her2 drug, trastuzumab (Herceptin), likely through AKT activation. Here we briefly describe how Darpp-32 and t-Darpp were discovered and report on the current state of knowledge of their involvement in cancers. We present a case for the development of an anti-t-Darpp therapeutic agent and outline the unique challenges this endeavor will likely encounter.
Collapse
Affiliation(s)
- Arabo Avanes
- Department of Chemistry and Biochemistry, California State University Los Angeles, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope, CA 91010, USA.
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, CA, USA.
| |
Collapse
|
17
|
RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. Nat Commun 2018; 9:4439. [PMID: 30361512 PMCID: PMC6202325 DOI: 10.1038/s41467-018-06747-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
We conducted an RNA sequencing study to identify novel gene fusions in 80 discovery dataset tumors collected from young patients with diffuse gastric cancer (DGC). Twenty-five in-frame fusions are associated with DGC, three of which (CLDN18-ARHGAP26, CTNND1-ARHGAP26, and ANXA2-MYO9A) are recurrent in 384 DGCs based on RT-PCR. All three fusions contain a RhoGAP domain in their 3’ partner genes. Patients with one of these three fusions have a significantly worse prognosis than those without. Ectopic expression of CLDN18-ARHGAP26 promotes the migration and invasion capacities of DGC cells. Parallel targeted RNA sequencing analysis additionally identifies TACC2-PPAPDC1A as a recurrent and poor prognostic in-frame fusion. Overall, PPAPDC1A fusions and in-frame fusions containing a RhoGAP domain clearly define the aggressive subset (7.5%) of DGCs, and their prognostic impact is greater than, and independent of, chromosomal instability and CDH1 mutations. Our study may provide novel genomic insights guiding future strategies for managing DGCs. Diffuse Gastric Cancer (DGC) is increasingly being considered separate to intestinal type gastric cancer; several fusions events have been reported as drivers of the disease but few of those have been subsequently validated. Here the authors perform RNA-seq on early-onset DGC patients who had not been treated with chemotherapy or radiation and identify a previously unknown fusion.
Collapse
|
18
|
Lin BM, Li WQ, Cho E, Curhan GC, Qureshi AA. Statin use and risk of skin cancer. J Am Acad Dermatol 2018; 78:682-693. [PMID: 29208416 PMCID: PMC5957516 DOI: 10.1016/j.jaad.2017.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Statins are among the most commonly used medications in the United States, and statin use is associated with increased risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). However, previous studies are limited by lack of adjustment for important confounders. OBJECTIVE Examine the relation between statins and skin cancer risk in the Nurses' Health Study and Health Professionals Follow-up Study. METHODS Cox proportional hazards regression was used to evaluate associations. RESULTS During follow-up (2000-2010), we documented 10,201 BCC, 1393 SCC, and 333 melanoma cases. History of high cholesterol level was not associated with risk of BCC (pooled multivariable-adjusted hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.00-1.09), SCC (HR, 0.95; 95% CI, 0.85-1.06), or melanoma (HR, 0.87; 95% CI, 0.64-1.19). Statin use was not associated with risk of BCC (HR, 1.04; 95% CI, 0.99-1.09]), SCC (HR, 1.08; 95% CI, 0.94-1.24), or melanoma (HR, 1.04; 95% CI, 0.78-1.38). There was a trend toward higher BCC risk with longer duration of statin use in men (P trend = .003) but not in women (P trend = .86). LIMITATIONS Lack of treatment data. CONCLUSION History of high cholesterol level was not associated with skin cancer risk. Longer duration of statin use was associated with a trend toward higher BCC risk in men.
Collapse
Affiliation(s)
- Brian M Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Providence, Rhode Island; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Eunyoung Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Warren Alpert Medical School, Providence, Rhode Island; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Gary C Curhan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Abrar A Qureshi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Warren Alpert Medical School, Providence, Rhode Island; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| |
Collapse
|
19
|
Pintarelli G, Dassano A, Cotroneo CE, Galvan A, Noci S, Piazza R, Pirola A, Spinelli R, Incarbone M, Palleschi A, Rosso L, Santambrogio L, Dragani TA, Colombo F. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma. Oncotarget 2017; 7:27889-98. [PMID: 27058892 PMCID: PMC5053695 DOI: 10.18632/oncotarget.8556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue.
Collapse
Affiliation(s)
- Giulia Pintarelli
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Dassano
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara E Cotroneo
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy.,Present Address: UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Antonella Galvan
- Formerly, Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Noci
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Alessandra Pirola
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Roberta Spinelli
- Formerly, Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Matteo Incarbone
- Department of Surgery, San Giuseppe Hospital, Multimedica, Milan, Italy
| | - Alessandro Palleschi
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Rosso
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Luigi Santambrogio
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Tommaso A Dragani
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Colombo
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
20
|
Wang Y, Wu N, Liu D, Jin Y. Recurrent Fusion Genes in Leukemia: An Attractive Target for Diagnosis and Treatment. Curr Genomics 2017; 18:378-384. [PMID: 29081694 PMCID: PMC5635644 DOI: 10.2174/1389202918666170329110349] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Since the first fusion gene was discovered decades ago, a considerable number of fusion genes have been detected in leukemia. The majority of them are generated through chromosomal rearrangement or abnormal transcription. With the development of techniques, high-throughput sequencing method makes it possible to detect fusion genes systematically in multiple human cancers. Owing to their biological significance and tumor-specific expression, some of the fusion genes are attractive diagnostic tools and therapeutic targets. Tyrosine kinase inhibitors (TKI) targeting BCR-ABL1 fusions have been widely used to treat CML. The combination of ATRA and ATO targeting PML-RARA fusions has proven to be effective in acute promyelocytic leukemia (APL). Moreover, therapy with high dose cytarabine (HDAC) has significantly improved the prognosis of core binding factor (CBF) acute myeloid leukemia (AML) patients. Therefore, studies on fusion genes may benefit patients with leukemia by providing more diagnostic markers and therapies in the future. CONCLUSION The presented review focuses on the history of fusion genes, mechanisms of formation, and treatments against specific fusion genes in leukemia.
Collapse
Affiliation(s)
- Yuhui Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Duo Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
21
|
Momand J, Magdziarz P, Feng Y, Jiang D, Parga E, Celis A, Denny E, Wang X, Phillips ML, Monterroso E, Kane SE, Zhou F. t-Darpp is an elongated monomer that binds calcium and is phosphorylated by cyclin-dependent kinases 1 and 5. FEBS Open Bio 2017; 7:1328-1337. [PMID: 28904862 PMCID: PMC5586343 DOI: 10.1002/2211-5463.12269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
t‐Darpp (truncated isoform of dopamine‐ and cAMP‐regulated phosphoprotein) is a protein encoded by the PPP1R1B gene and is expressed in breast, colon, esophageal, gastric, and prostate cancers, as well as in normal adult brain striatal cells. Overexpression of t‐Darpp in cultured cells leads to increased protein kinase A activity and increased phosphorylation of AKT (protein kinase B). In HER2+ breast cancer cells, t‐Darpp confers resistance to the chemotherapeutic agent trastuzumab. To shed light on t‐Darpp function, we studied its secondary structure, oligomerization status, metal‐binding properties, and phosphorylation by cyclin‐dependent kinases 1 and 5. t‐Darpp exhibits 12% alpha helix, 29% beta strand, 24% beta turn, and 35% random coil structures. It binds calcium, but not other metals commonly found in biological systems. The T39 site, critical for t‐Darpp activation of the AKT signaling pathway, is a substrate for phosphorylation by cyclin‐dependent kinase 1 and cyclin‐dependent kinase 5. Gel filtration chromatography, sedimentation equilibrium analysis, blue native gel electrophoresis, and glutaraldehyde‐mediated cross‐linking experiments demonstrate that the majority of t‐Darpp exists as a monomer, but forms low levels (< 3%) of hetero‐oligomers with its longer isoform Darpp‐32. t‐Darpp has a large Stokes radius of 4.4 nm relative to its mass of 19 kDa, indicating that it has an elongated structure.
Collapse
Affiliation(s)
- Jamil Momand
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Patrycja Magdziarz
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - You Feng
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Dianlu Jiang
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Elizabeth Parga
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Arianna Celis
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Erin Denny
- Department of Cancer BiologyBeckman Research Institute at City of HopeDuarteCAUSA
| | - Xiaoying Wang
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Martin L. Phillips
- Department of Chemistry and Biochemistry, Biochemistry InstrumentationUniversity of California Los AngelesCAUSA
| | - Estuardo Monterroso
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| | - Susan E. Kane
- Department of Cancer BiologyBeckman Research Institute at City of HopeDuarteCAUSA
| | - Feimeng Zhou
- Department of Chemistry and BiochemistryCalifornia State University Los AngelesCAUSA
| |
Collapse
|
22
|
Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, Chen L. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 2017; 116:973-989. [PMID: 28301871 PMCID: PMC5396111 DOI: 10.1038/bjc.2017.54] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients.
Collapse
Affiliation(s)
- Yanjing Song
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xudong Zhao
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
23
|
Hoff AM, Johannessen B, Alagaratnam S, Zhao S, Nome T, Løvf M, Bakken AC, Hektoen M, Sveen A, Lothe RA, Skotheim RI. Novel RNA variants in colorectal cancers. Oncotarget 2017; 6:36587-602. [PMID: 26474385 PMCID: PMC4742197 DOI: 10.18632/oncotarget.5500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 01/03/2023] Open
Abstract
With an annual estimated incidence of 1.4 million, and a five-year survival rate of 60%, colorectal cancer (CRC) is a major clinical burden. To identify novel RNA variants in CRC, we analyzed exon-level microarray expression data from a cohort of 202 CRCs. We nominated 25 genes with increased expression of their 3′ parts in at least one cancer sample each. To efficiently investigate underlying transcript structures, we developed an approach using rapid amplification of cDNA ends followed by high throughput sequencing (RACE-seq). RACE products from the targeted genes in 23 CRC samples were pooled together and sequenced. We identified VWA2-TCF7L2, DHX35-BPIFA2 and CASZ1-MASP2 as private fusion events, and novel transcript structures for 17 of the 23 other candidate genes. The high-throughput approach facilitated identification of CRC specific RNA variants. These include a recurrent read-through fusion transcript between KLK8 and KLK7, and a splice variant of S100A2. Both of these were overrepresented in CRC tissue and cell lines from external RNA-seq datasets.
Collapse
Affiliation(s)
- Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sharmini Alagaratnam
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marthe Løvf
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Anne C Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Merete Hektoen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Belkhiri A, Zhu S, El-Rifai W. DARPP-32: from neurotransmission to cancer. Oncotarget 2017; 7:17631-40. [PMID: 26872373 PMCID: PMC4951238 DOI: 10.18632/oncotarget.7268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32), also known as phosphoprotein phosphatase-1 regulatory subunit 1B (PPP1R1B), was initially discovered as a substrate of dopamine-activated protein kinase A (PKA) in the neostriatum in the brain. While phosphorylation at Thr-34 by PKA converts DARPP-32 into a potent inhibitor of protein phosphatase 1 (PP1), phosphorylation at Thr-75 transforms DARPP-32 into an inhibitor of PKA. Through regulation of DARPP-32 phosphorylation and modulation of protein phosphatase and kinase activities, DARPP-32 plays a critical role in mediating the biochemical, electrophysiological, and behavioral effects controlled by dopamine and other neurotransmitters in response to drugs of abuse and psychostimulants. Altered expression of DARPP-32 and its truncated isoform (t-DARPP), specifically in the prefrontal cortex, has been associated with schizophrenia and bipolar disorder. Moreover, cleavage of DARPP-32 by calpain has been implicated in Alzheimer's disease. Amplification of the genomic locus of DARPP-32 at 17q12 has been described in several cancers. DARPP-32 and t-DARPP are frequently overexpressed at the mRNA and protein levels in adenocarcinomas of the breast, prostate, colon, and stomach. Several studies demonstrated the pro-survival, pro-invasion, and pro-angiogenic functions of DARPP-32 in cancer. Overexpression of DARPP-32 and t-DARPP also promotes chemotherapeutic drug resistance and cell proliferation in gastric and breast cancers through regulation of pro-oncogenic signal transduction pathways. The expansion of DARPP-32 research from neurotransmission to cancer underscores the broad scope and implication of this protein in disparate human diseases.
Collapse
Affiliation(s)
- Abbes Belkhiri
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shoumin Zhu
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, Cancer Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
25
|
Okuda T, Taki T, Nishida K, Chinen Y, Nagoshi H, Sakakura C, Taniwaki M. Molecular heterogeneity in the novel fusion gene APIP-FGFR2: Diversity of genomic breakpoints in gastric cancer with high-level amplifications at 11p13 and 10q26. Oncol Lett 2016; 13:215-221. [PMID: 28123544 PMCID: PMC5244987 DOI: 10.3892/ol.2016.5386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/28/2016] [Indexed: 01/14/2023] Open
Abstract
Several novel fusion transcripts were identified by next-generation sequencing in gastric cancer; however, the breakpoint junctions have yet to be characterized. The present study characterized a plethora of APIP-FGFR2 genomic breakpoints in the SNU-16 gastric cancer cell line, which harbored homogeneously staining regions (hsrs) and double minute chromosomes. Oligonucleotide microarrays revealed high-level amplifications at chromosomes 8q24.1 (0.8 Mb region), 10q26 (1.1 Mb) and 11p13 (1.1 Mb). These amplicons contained MYC and PVT1 at chromosome 8q24.1, BRWD2, FGFR2 and ATE1 at chromosome 10q26, and 24 genes, including APIP, CD44, RAG1 and RAG2, at chromosome 11p13. Based on these findings, reverse transcription-polymerase chain reaction (PCR) was performed using various candidate gene primers to detect possible fusion transcripts, and several products using primer sets for the APIP and FGFR2 genes were detected. Eventually, three in-frame and two out-of-frame fusion transcripts were detected. Notably, PCR analysis of the entire genomic DNA detected three distinct genomic junctions. The breakpoints were within intron 5 of APIP, which contained three distinct breakpoints, and introns 5, 7 and 9 of FGFR2. Fluorescence in situ hybridization showed several fusion signals within hsrs using two short probes (~10-kb segments of a bacterial artificial chromosome clone) containing exons 2–5 of APIP or exons 11–13 of FGFR2. Although, for any given fusion, a multiplicity of transcripts is thought to be created by alternative splicing of one rearranged allele, the results of the present study suggested that genomic fusions of APIP and FGFR2 are generated in hsrs with a diversity of breakpoints that are then faithfully transcribed.
Collapse
Affiliation(s)
- Takashi Okuda
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan; Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Kazuhiro Nishida
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Yoshiaki Chinen
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hisao Nagoshi
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Chouhei Sakakura
- Department of Digestive Surgery, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Masafumi Taniwaki
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
26
|
miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun 2016; 7:11309. [PMID: 27095304 PMCID: PMC4842991 DOI: 10.1038/ncomms11309] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/15/2022] Open
Abstract
The biological role of miR-3188 has not yet been reported in the context of cancer. In this study, we observe that miR-3188 not only reduces cell-cycle transition and proliferation, but also significantly prolongs the survival time of tumour-bearing mice as well as sensitizes cells to 5-FU. Mechanistic analyses indicate that miR-3188 directly targets mTOR to inactivate p-PI3K/p-AKT/c-JUN and induces its own expression. This feedback loop further suppresses cell-cycle signalling through the p-PI3K/p-AKT/p-mTOR pathway. Interestingly, we also observe that miR-3188 direct targeting of mTOR is mediated by FOXO1 suppression of p-PI3K/p-AKT/c-JUN signalling. In clinical samples, reduced miR-3188 is an unfavourable factor and negatively correlates with mTOR and c-JUN levels but positively correlates with FOXO1 expression. Our studies demonstrate that as a tumour suppressor, miR-3188 directly targets mTOR to stimulate its own expression and participates in FOXO1-mediated repression of cell growth, tumorigenesis and NPC chemotherapy resistance. Although miR-related mechanisms have been implicated in nasopharyngeal carcinoma (NPC), a precise role for miR-3188 has not been reported in this context. Here, Zhao et al. show that FOXO1-induced miR-3188 acts as a tumour suppressor in NPC by regulating the axis mTOR/PI3K/Akt/c-Jun.
Collapse
|
27
|
Kuzu OF, Noory MA, Robertson GP. The Role of Cholesterol in Cancer. Cancer Res 2016; 76:2063-70. [PMID: 27197250 DOI: 10.1158/0008-5472.can-15-2613] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
28
|
IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett 2015; 368:135-143. [DOI: 10.1016/j.canlet.2015.07.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/21/2022]
|
29
|
Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015; 149:1153-1162.e3. [PMID: 26073375 DOI: 10.1053/j.gastro.2015.05.059] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients.
Collapse
Affiliation(s)
- Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - Khay-Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| |
Collapse
|
30
|
Jin DH, Park SE, Lee J, Kim KM, Kim S, Kim DH, Park J. Copy Number Gains at 8q24 and 20q11-q13 in Gastric Cancer Are More Common in Intestinal-Type than Diffuse-Type. PLoS One 2015; 10:e0137657. [PMID: 26360582 PMCID: PMC4567330 DOI: 10.1371/journal.pone.0137657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022] Open
Abstract
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%-30%), 8q24.3 (22%-48%), 13q34 (20%-31%), and 20q11-q13 (25%-30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%-23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.
Collapse
Affiliation(s)
- Dong-Hao Jin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Seong-Eun Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Jeeyun Lee
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135–710, Korea
| | - Kyung-Mi Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135–710, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135–710, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Joobae Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| |
Collapse
|
31
|
Constantinescu S, Szczurek E, Mohammadi P, Rahnenführer J, Beerenwinkel N. TiMEx: a waiting time model for mutually exclusive cancer alterations. Bioinformatics 2015; 32:968-75. [PMID: 26163509 DOI: 10.1093/bioinformatics/btv400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/26/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Despite recent technological advances in genomic sciences, our understanding of cancer progression and its driving genetic alterations remains incomplete. RESULTS We introduce TiMEx, a generative probabilistic model for detecting patterns of various degrees of mutual exclusivity across genetic alterations, which can indicate pathways involved in cancer progression. TiMEx explicitly accounts for the temporal interplay between the waiting times to alterations and the observation time. In simulation studies, we show that our model outperforms previous methods for detecting mutual exclusivity. On large-scale biological datasets, TiMEx identifies gene groups with strong functional biological relevance, while also proposing new candidates for biological validation. TiMEx possesses several advantages over previous methods, including a novel generative probabilistic model of tumorigenesis, direct estimation of the probability of mutual exclusivity interaction, computational efficiency and high sensitivity in detecting gene groups involving low-frequency alterations. AVAILABILITY AND IMPLEMENTATION TiMEx is available as a Bioconductor R package at www.bsse.ethz.ch/cbg/software/TiMEx CONTACT niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Simona Constantinescu
- Department of Biosystems Science and Engineering, ETH Zürich, Swiss Institute of Bioinformatics, Basel 4058, Switzerland and
| | - Ewa Szczurek
- Department of Biosystems Science and Engineering, ETH Zürich, Swiss Institute of Bioinformatics, Basel 4058, Switzerland and
| | - Pejman Mohammadi
- Department of Biosystems Science and Engineering, ETH Zürich, Swiss Institute of Bioinformatics, Basel 4058, Switzerland and
| | - Jörg Rahnenführer
- Faculty of Statistics, Technische Universität Dortmund, Dortmund 44221, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Swiss Institute of Bioinformatics, Basel 4058, Switzerland and
| |
Collapse
|