1
|
Boutelle AM, Mabene AR, Yao D, Xu H, Wang M, Tang YJ, Lopez SS, Sinha S, Demeter J, Cheng R, Benard BA, Valente LJ, Drainas AP, Fischer M, Majeti R, Petrov DA, Jackson PK, Yang F, Winslow MM, Bassik MC, Attardi LD. Integrative multiomic approaches reveal ZMAT3 and p21 as conserved hubs in the p53 tumor suppression network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612743. [PMID: 39345444 PMCID: PMC11429870 DOI: 10.1101/2024.09.17.612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
TP53 , the most frequently mutated gene in human cancer, encodes a transcriptional activator that induces myriad downstream target genes. Despite the importance of p53 in tumor suppression, the specific p53 target genes important for tumor suppression remain unclear. Recent studies have identified the p53-inducible gene Zmat3 as a critical effector of tumor suppression, but many questions remain regarding its p53-dependence, activity across contexts, and mechanism of tumor suppression alone and in cooperation with other p53-inducible genes. To address these questions, we used Tuba-seq Ultra somatic genome editing and tumor barcoding in a mouse lung adenocarcinoma model, combinatorial in vivo CRISPR/Cas9 screens, meta-analyses of gene expression and Cancer Dependency Map data, and integrative RNA-sequencing and shotgun proteomic analyses. We established Zmat3 as a core component of p53-mediated tumor suppression and identified Cdkn1a as the most potent cooperating p53-induced gene in tumor suppression. We discovered that ZMAT3/CDKN1A serve as near-universal effectors of p53-mediated tumor suppression that regulate cell division, migration, and extracellular matrix organization. Accordingly, combined Zmat3 - Cdkn1a inactivation dramatically enhanced cell proliferation and migration compared to controls, akin to p53 inactivation. Together, our findings place ZMAT3 and CDKN1A as hubs of a p53-induced gene program that opposes tumorigenesis across various cellular and genetic contexts.
Collapse
|
2
|
Li Q, Wang SJ, Wang WJ, Ye YC, Ling YQ, Dai YF. PAK4-relevant proliferation reduced by cell autophagy via p53/mTOR/p-AKT signaling. Transl Cancer Res 2023; 12:461-472. [PMID: 37033362 PMCID: PMC10080326 DOI: 10.21037/tcr-22-2272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
Background P21-activated kinase 4 (PAK4) involves in cell proliferation in cancer and mutually regulates with p53, a molecule is demonstrated to control cell autophagy by mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling. Since the signaling exhibits an association with PAK family members in cell autophagy, it implies that PAK4-relevant proliferation may be impacted by autophagy via p53 with a lack of evidence in cancer cells. Methods In this research, transient and stable PAK4-knockdown human hepatocarcinoma cell lines (HepG2) were constructed by transfection of PAK4-RNA interference (RNAi) plasmid and lentivirus containing PAK4-RNAi plasmid, respectively. We investigated cell proliferation using methyl thiazolyl tetrazolium (MTT) and Cell Counting Kit 8 (CCK8) assays, cell cycle by flow cytometry (FCM) and cell autophagy by monodansylcadaverine (MDC) staining and autophagic biomarker's expression, and detected the expressions of p53, mTOR, phosphorylated-AKT (p-AKT) and AKT by immunofluorescence and western blot to explore the mechanism. Results We successfully constructed transient and stable PAK4-knockdown HepG2 cell lines, and detected dysfunction of the cells' proliferation. An increased expression of p53, as a molecule of cell-cycle-surveillance on G1/S phase, was demonstrated in the cells although the cell cycle blocked at G2/M. And then, we detected increased autophagosome and autophagic biomarker LC3-II, and decreased expressions in p-AKT and mTOR. Conclusions The proliferation is reduced in PAK4-knockdown HepG2 cells, which is relative to not only cell cycle arrest but also cell autophagy, and p53/mTOR/p-AKT signaling involves in the cell progress. The findings provide a new mechanism on PAK4 block in cancer therapy.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Su-Jie Wang
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wen-Jia Wang
- Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yu-Cai Ye
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Ya-Fei Dai
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Schwab K, Coronel L, Riege K, Sacramento EK, Rahnis N, Häckes D, Cirri E, Groth M, Hoffmann S, Fischer M. Multi-omics analysis identifies RFX7 targets involved in tumor suppression and neuronal processes. Cell Death Discov 2023; 9:80. [PMID: 36864036 PMCID: PMC9981735 DOI: 10.1038/s41420-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recurrently mutated in lymphoid neoplasms, the transcription factor RFX7 is emerging as a tumor suppressor. Previous reports suggested that RFX7 may also have a role in neurological and metabolic disorders. We recently reported that RFX7 responds to p53 signaling and cellular stress. Furthermore, we found RFX7 target genes to be dysregulated in numerous cancer types also beyond the hematological system. However, our understanding of RFX7's target gene network and its role in health and disease remains limited. Here, we generated RFX7 knock-out cells and employed a multi-omics approach integrating transcriptome, cistrome, and proteome data to obtain a more comprehensive picture of RFX7 targets. We identify novel target genes linked to RFX7's tumor suppressor function and underscoring its potential role in neurological disorders. Importantly, our data reveal RFX7 as a mechanistic link that enables the activation of these genes in response to p53 signaling.
Collapse
Affiliation(s)
- Katjana Schwab
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Luis Coronel
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Erika K. Sacramento
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Norman Rahnis
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Emilio Cirri
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Marco Groth
- grid.418245.e0000 0000 9999 5706Core Facility for Next-Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Steve Hoffmann
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
4
|
Physiological media advance cell culture experiments. Trends Biochem Sci 2023; 48:103-105. [PMID: 36114088 DOI: 10.1016/j.tibs.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023]
Abstract
The metabolism plays a fundamental role in cellular signaling pathways, but commonly used cell culture media do not reflect physiological metabolite concentrations. The metabolic control hub mammalian target of rapamycin complex 1 (mTORC1) kinase is an illuminating example that it is about time to advance our cell culture to become more physiological and relevant.
Collapse
|
5
|
Liu CJ, Fan XD, Jiang JG, Chen QX, Zhu W. Potential anticancer activities of securinine and its molecular targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154417. [PMID: 36063584 DOI: 10.1016/j.phymed.2022.154417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Securinine is an alkaloid identified from the roots and leaves of the shrub Flueggea suffruticosa (Pall.) Baill. The molecular structure of securinine consists of four rings, including three chiral centers. It has been suggested that securinine can be chemically synthesized from tyrosine and lysine. Securinine has long been used to treat central nervous system diseases. In recent years, more and more evidence shows that securinine also has anticancer activity, which has not been systematically discussed and analyzed. PURPOSE This study aims to propose an overall framework to describe the molecular targets of securinine in different signal pathways, and discuss the current status and prospects of each pathway, so as to provide a theoretical basis for the development securinine as an effective anticancer drug. METHODS The research databases on the anticancer activity of securinine from PubMed, Scopus, Web of Science and ScienceDirect to 2021 were systematically searched. This paper follows the Preferred Reporting Items and Meta-Analysis guidelines. RESULTS Securinine has the ability to kill a variety of human cancer cells, including, leukemia as well as prostate, cervical, breast, lung, and colon cancer cells. It can regulate the signal pathways of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, Wnt and Janus kinase-signal transducer and activator of transcription, promote cancer cell apoptosis and autophagy, and inhibit cancer cell metastasis. Securinine also has the activity of inducing leukemia cell differentiation. CONCLUSION Although there has been some experimental evidence indicating the anticancer effect of securinine and its possible pharmacology, in order to design more effective anticancer drugs, it is necessary to study the synergy of intracellular signaling pathways. More in vivo experiments and even clinical studies are needed, and the synergy between securinine and other drugs is also worth studying.
Collapse
Affiliation(s)
- Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiu-Xiong Chen
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
6
|
Bareli Y, Shimon I, Tobar A, Rubinfeld H. PICT-1 regulates p53 splicing and sensitivity of medullary thyroid carcinoma cells to everolimus. J Neuroendocrinol 2022; 34:e13187. [PMID: 36306198 DOI: 10.1111/jne.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Protein interacting with carboxyl terminus 1 (PICT-1) is a nucleolar protein shown to act as a tumor suppressor that interacts with PTEN, or in a contrasting manner to facilitate the accessibility of p53 to ubiquitination and degradation, thus to function as an oncogene. The aim of the study was to examine the potential role of PICT-1 in neuroendocrine neoplasm (NEN) tumorigenesis and response to mTOR inhibitor treatment. PICT-1 was overexpressed in medullary thyroid (TT) and pancreatic (BON1) NEN cell lines using lentiviral vector. Whereas in BON1 cells PICT-1 overexpression exhibited no significant impact, in TT cells it induced the appearance of p53β lacking the C-terminus end. This was accompanied by a robust decrease in p21 expression and elevation of cell viability. Remarkably, PICT-1 overexpression completely reversed the reduction in cell viability of medullary thyroid neoplasm cells induced by everolimus, a therapeutic option for patients with progressive NENs. mTOR pathway investigations revealed that PICT-1 overexpression induced a reduction in PTEN expression and a robust increase in the expression level of phospho-Akt-Ser47 only partially inhibited by everolimus. These findings suggest a possible role of PICT-1 in the spliceosome machinery and provide functional involvement of PICT-1 in the complex network of mTOR.
Collapse
Affiliation(s)
- Yifat Bareli
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ana Tobar
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| |
Collapse
|
7
|
Wu Y, Wu Y, Xu C, Sun W, You Z, Wang Y, Zhang S. CHMP1A suppresses the growth of renal cell carcinoma cells via regulation of the PI3K/mTOR/p53 signaling pathway. Genes Genomics 2022; 44:823-832. [PMID: 35583792 DOI: 10.1007/s13258-022-01237-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND CHMP1A, a member of the ESCRT-III complex family, has been indicated as a brand-new inhibitor gene of tumors. Our previous research has revealed that CHMP1A plays a vital role in the development and progression of renal cell carcinoma (RCC). OBJECTIVE To investigate the potential target pathway of the regulation of the tumor cell growth by CHMP1A. METHODS The effect of CHMP1A on mTOR pathway was elucidated by western blotting. The effect of CHMP1A on the expression of p53 was evaluated, and A498 cell growth was assessed by colony formation and MTT assays. The expression of p53 was knocked down by shRNA-p53, and the effect of CHMP1A on mTOR after knockdown of p53 was evaluated. The effect of CHMP1A on apoptosis and its relationship with MDM2 pathway were detected by western blotting and FCM. Finally, the relationship between the regulation of p53 by CHMP1A and the PI3K/mTOR pathway was detected. RESULTS This study showed that the mTOR pathway was suppressed significantly in CHMP1A-overexpressing A498 and 786-0 cells; moreover, the enhanced expression of p53 and the reduced proliferation were shown in CHMP1A-overexpressing A498 cells. Furthermore, CHMP1A was able to regulate the PI3K/PTEN/mTOR and MDM2/p53 pathways in order to suppress RCC. In addition, CHMP1A regulated Bax and Bcl-2 via MDM2/p53 to induce the apoptosis of tumor cells and upregulated the expression of p53 via the PI3K/mTOR pathway. CONCLUSIONS The results convey that CHMP1A-related suppression of RCC is closely related to the PI3K/mTOR/p53 pathway.
Collapse
Affiliation(s)
- Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yueguo Wu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cong Xu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Sun
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenqiang You
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China. .,Hangzhou Medical College, No.182 Tianmushan Road, 310013, Hangzhou, China.
| |
Collapse
|
8
|
Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022; 13:909526. [PMID: 35860027 PMCID: PMC9291274 DOI: 10.3389/fphar.2022.909526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a disease that seriously threatens human health. Based on the improvement of traditional treatment methods and the development of new treatment modes, the pattern of cancer treatment is constantly being optimized. Nanomedicine plays an important role in these evolving tumor treatment modalities. In this article, we outline the applications of nanomedicine in three important tumor-related fields: chemotherapy, gene therapy, and immunotherapy. According to the current common problems, such as poor targeting of first-line chemotherapy drugs, easy destruction of nucleic acid drugs, and common immune-related adverse events in immunotherapy, we discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yinong Liu
- Hospital Laboratory of Nangjing Lishui People’s Hospital, Nangjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional, and Pharmaceutical Nanomaterials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| |
Collapse
|
9
|
Schaffrin-Nabe D, Schuster S, Tannapfel A, Voigtmann R. Case Report: Extensive Tumor Profiling in Primary Neuroendocrine Breast Cancer Cases as a Role Model for Personalized Treatment in Rare and Aggressive Cancer Types. Front Med (Lausanne) 2022; 9:841441. [PMID: 35721079 PMCID: PMC9203716 DOI: 10.3389/fmed.2022.841441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroendocrine breast cancer (NEBC) is a rare entity accounting for <0.1% of all breast carcinomas and <0.1% of all neuroendocrine carcinomas. In most cases treatment strategies in NEBC are empirical in absence of prospective trial data on NEBC cohorts. Herein, we present two case reports diagnosed with anaplastic and small cell NEBC. After initial therapies failed, comprehensive tumor profiling was applied, leading to individualized treatment options for both patients. In both patients, targetable alterations of the PI3K/AKT/mTOR pathway were found, including a PIK3CA mutation itself and an STK11 mutation that negatively regulates the mTOR complex. The epicrisis of the two patients exemplifies how to manage rare and difficult to treat cancers and how new diagnostic tools contribute to medical management.
Collapse
Affiliation(s)
- Dörthe Schaffrin-Nabe
- Praxis für Hämatologie und Onkologie, Bochum, Germany
- *Correspondence: Dörthe Schaffrin-Nabe
| | | | | | | |
Collapse
|
10
|
Kan Y, Song M, Cui X, Yang Q, Zang Y, Li Q, Li Y, Cai W, Chen Y, Weng X, Wang Y, Zhu X. Muyin extract inhibits non-small-cell lung cancer growth by inducing autophagy and apoptosis in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153834. [PMID: 34952294 DOI: 10.1016/j.phymed.2021.153834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer with a higher mortality rate. Both apoptosis and autophagy are crucial processes in the pathophysiology of NSCLC. Muyin extract (MSE) is a combination of Momordica cochinchinensis (Lour.) Spreng seeds and Epimedium brevicornu Maxim extract, with an optimal ratio of 1:1. Our previous research has firstly shown that MSE exerts a good anti-tumor activity, especially for NSCLC. PURPOSE This study aims to evaluate the inhibitory effect of MSE on NSCLC and explore the underlying mechanism. METHODS In vitro, cell proliferation was examined by MTT and colony formation. Apoptosis was detected by annexin V-FITC/PI assay while autophagy was assessed by Acridine orange (AO) and Monodansylcadaverine (MDC) staining. In vivo, Lewis lung cancer cell transplanted mice model was established to measure the effect of MSE on tumor growth. Hematoxylin eosin (H & E) staining was used to observe the pathological changes of the tumor after MSE treatment. The apoptosis in tumor tissue was detected by TUNEL assay. Meanwhile, the cellular proliferation marker Ki67 and autophagy marker LC3Ⅱ were observed by immunohistochemistry staining. The IL-4 and IFN-γ concentrations in blood were tested by Elisa. The apoptosis related factors (Bcl-2, Bax Caspase-3, cleaved Caspase-3, Caspase-9 and p53), autophagy marker proteins (Atg-5, Becline-1, LC3Ⅱ/Ⅰand p62) as well as Akt/mTOR pathway were detected by western blotting. RESULTS Present study showed that MSE greatly inhibited the proliferation of NSCLC in vitro and in vivo, together with apoptotic rate increasing. P53 and cleaved Caspase-3 levels were up-regulated while Bcl-2/Bax ratio, Caspase-3 and Caspase-9 levels were significantly down-regulated treated with MSE. Meanwhile, MSE activated autophagy, Atg-5, Becline-1 as well as the ratio of LC3Ⅱ/Ⅰ were notably up-regulated while p62 was down-regulated after MSE treatment. Importantly, MSE significantly blocked Akt/mTOR pathway, which is a common upstream signal triggered by autophagy and apoptosis. Furthermore, when co-treated with specific autophagy inhibitor, the inhibitory rate and anti-apoptotic Bcl-2 level were significantly reversed. Impressively, MSE remarkably increased IFN-γ/ IL-4 ratio while VP16 did not in animal model, and the inhibition rate in tumor weight after MSE treatment was higher than xiaojin pill. CONCLUSION Taken together, it is proved that MSE may be a promising oral TCM candidate for NSCLC therapy with immunity improvement. The underlying mechanisms could be associated with the induction of apoptosis and autophagy through blocking Akt/mTOR pathway, meanwhile, it may promote crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Yueyi Kan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Min Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xihe Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yuanlong Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
11
|
Coronel L, Häckes D, Schwab K, Riege K, Hoffmann S, Fischer M. p53-mediated AKT and mTOR inhibition requires RFX7 and DDIT4 and depends on nutrient abundance. Oncogene 2022; 41:1063-1069. [PMID: 34907345 PMCID: PMC8837532 DOI: 10.1038/s41388-021-02147-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
In recent years the tumor suppressor p53 has been increasingly recognized as a potent regulator of the cell metabolism and for its ability to inhibit the critical pro-survival kinases AKT and mTOR. The mechanisms through which p53 controls AKT and mTOR, however, are largely unclear. Here, we demonstrate that p53 activates the metabolic regulator DDIT4 indirectly through the regulatory factor X 7 (RFX7). We provide evidence that DDIT4 is required for p53 to inhibit mTOR complex 2 (mTORC2)-dependent AKT activation. Most strikingly, we also find that the DDIT4 regulator RFX7 is required for p53-mediated inhibition of mTORC1 and AKT. Our results suggest that AMPK activation plays no role and p53-mediated AKT inhibition is not critical for p53-mediated mTORC1 inhibition. Moreover, using recently developed physiological cell culture media we uncover that basal p53 and RFX7 activity can play a critical role in restricting mTORC1 activity under physiological nutrient conditions, and we propose a nutrient-dependent model for p53-RFX7-mediated mTORC1 inhibition. These results establish RFX7 and its downstream target DDIT4 as essential effectors in metabolic control elicited by p53.
Collapse
Affiliation(s)
- Luis Coronel
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - David Häckes
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Katjana Schwab
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
12
|
Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, Gregorieff A, Ahmad M, Dimaras H, Langille E, Cole SPC, Monnier PP, Lok BH, Tsao MS, Akeno N, Schramek D, Wikenheiser-Brokamp KA, Knudsen ES, Witkiewicz AK, Wrana JL, Goodrich DW, Bremner R. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 2021; 39:1115-1134.e12. [PMID: 34270926 PMCID: PMC8981970 DOI: 10.1016/j.ccell.2021.06.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.
Collapse
Affiliation(s)
- Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Sean R McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kristine M Wadosky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Letian Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, ON H4A 3J1, Canada
| | - Mohammad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Helen Dimaras
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; The Department of Ophthalmology & Vision Sciences, Child Health Evaluative Sciences Program, and Center for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Clinical Public Health, Dalla Lana School of Public Health, The University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ellen Langille
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin H Lok
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Drainas AP, Lambuta RA, Ivanova I, Serçin Ö, Sarropoulos I, Smith ML, Efthymiopoulos T, Raeder B, Stütz AM, Waszak SM, Mardin BR, Korbel JO. Genome-wide Screens Implicate Loss of Cullin Ring Ligase 3 in Persistent Proliferation and Genome Instability in TP53-Deficient Cells. Cell Rep 2021; 31:107465. [PMID: 32268084 PMCID: PMC7166082 DOI: 10.1016/j.celrep.2020.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/07/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
TP53 deficiency is the most common alteration in cancer; however, this alone is typically insufficient to drive tumorigenesis. To identify genes promoting tumorigenesis in combination with TP53 deficiency, we perform genome-wide CRISPR-Cas9 knockout screens coupled with proliferation and transformation assays in isogenic cell lines. Loss of several known tumor suppressors enhances cellular proliferation and transformation. Loss of neddylation pathway genes promotes uncontrolled proliferation exclusively in TP53-deficient cells. Combined loss of CUL3 and TP53 activates an oncogenic transcriptional program governed by the nuclear factor κB (NF-κB), AP-1, and transforming growth factor β (TGF-β) pathways. This program maintains persistent cellular proliferation, induces partial epithelial to mesenchymal transition, and increases DNA damage, genomic instability, and chromosomal rearrangements. Our findings reveal CUL3 loss as a key event stimulating persistent proliferation in TP53-deficient cells. These findings may be clinically relevant, since TP53-CUL3-deficient cells are highly sensitive to ataxia telangiectasia mutated (ATM) inhibition, exposing a vulnerability that could be exploited for cancer treatment. Mixed-effect models with MEMcrispR applied to CRISPR screen analyses Knockout of neddylation genes increases persistent proliferation in TP53−/− cells TP53−/−,CUL3−/− cells exhibit persistent proliferation and partial EMT phenotype TP53−/−,CUL3−/− cells show increased DNA damage and display sensitivity to ATM inhibition
Collapse
Affiliation(s)
- Alexandros P Drainas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ruxandra A Lambuta
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Irina Ivanova
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Mike L Smith
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Theocharis Efthymiopoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
14
|
Miao ZF, Lewis MA, Cho CJ, Adkins-Threats M, Park D, Brown JW, Sun JX, Burclaff JR, Kennedy S, Lu J, Mahar M, Vietor I, Huber LA, Davidson NO, Cavalli V, Rubin DC, Wang ZN, Mills JC. A Dedicated Evolutionarily Conserved Molecular Network Licenses Differentiated Cells to Return to the Cell Cycle. Dev Cell 2020; 55:178-194.e7. [PMID: 32768422 DOI: 10.1016/j.devcel.2020.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Differentiated cells can re-enter the cell cycle to repair tissue damage via a series of discrete morphological and molecular stages coordinated by the cellular energetics regulator mTORC1. We previously proposed the term "paligenosis" to describe this conserved cellular regeneration program. Here, we detail a molecular network regulating mTORC1 during paligenosis in both mouse pancreatic acinar and gastric chief cells. DDIT4 initially suppresses mTORC1 to induce autodegradation of differentiated cell components and damaged organelles. Later in paligenosis, IFRD1 suppresses p53 accumulation. Ifrd1-/- cells do not complete paligenosis because persistent p53 prevents mTORC1 reactivation and cell proliferation. Ddit4-/- cells never suppress mTORC1 and bypass the IFRD1 checkpoint on proliferation. Previous reports and our current data implicate DDIT4/IFRD1 in governing paligenosis in multiple organs and species. Thus, we propose that an evolutionarily conserved, dedicated molecular network has evolved to allow differentiated cells to re-enter the cell cycle (i.e., undergo paligenosis) after tissue injury. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China
| | - Mark A Lewis
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dongkook Park
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianyun Lu
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Mahar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang 110001, China.
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Yamauchi Y, Kodama Y, Shiokawa M, Kakiuchi N, Marui S, Kuwada T, Sogabe Y, Tomono T, Mima A, Morita T, Matsumori T, Ueda T, Tsuda M, Nishikawa Y, Kuriyama K, Sakuma Y, Ota Y, Maruno T, Uza N, Masuda A, Tatsuoka H, Yabe D, Minamiguchi S, Masui T, Inagaki N, Uemoto S, Chiba T, Seno H. Rb and p53 Execute Distinct Roles in the Development of Pancreatic Neuroendocrine Tumors. Cancer Res 2020; 80:3620-3630. [PMID: 32591410 DOI: 10.1158/0008-5472.can-19-2232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic neuroendocrine tumors (PanNET) were classified into grades (G) 1 to 3 by the World Health Organization in 2017, but the precise mechanisms of PanNET initiation and progression have remained unclear. In this study, we used a genetically engineered mouse model to investigate the mechanisms of PanNET formation. Although pancreas-specific deletion of the Rb gene (Pdx1-Cre;Rbf/f ) in mice did not affect pancreatic exocrine cells, the α-cell/β-cell ratio of islet cells was decreased at 8 months of age. During long-term observation (18-20 months), mice formed well-differentiated PanNET with a Ki67-labeling index of 2.7%. In contrast, pancreas-specific induction of a p53 mutation (Pdx1-Cre;Trp53R172H ) had no effect on pancreatic exocrine and endocrine tissues, but simultaneous induction of a p53 mutation with Rb gene deletion (Pdx1-Cre;Trp53R172H;Rb f/f ) resulted in the formation of aggressive PanNET with a Ki67-labeling index of 24.7% over the short-term (4 months). In Pdx1-Cre;Trp53R172H;Rbf/f mice, mRNA expression of Pten and Tsc2, negative regulators of the mTOR pathway, significantly decreased in the islet cells, and activation of the mTOR pathway was confirmed in subsequently formed PanNET. Thus, by manipulating Rb and p53 genes, we established a multistep progression model from dysplastic islet to indolent PanNET and aggressive metastatic PanNET in mice. These observations suggest that Rb and p53 have distinct roles in the development of PanNET. SIGNIFICANCE: Pancreas-specific manipulation of Rb and p53 genes induced malignant transformation of islet cells, reproducing stepwise progression from microadenomas to indolent (grade 1) and subsequent aggressive PanNETs (grade 2-3).
Collapse
Affiliation(s)
- Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Atsuhiro Masuda
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Hisato Tatsuoka
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan.,Kansai Electric Power Hospital, Fukushima-ku, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
17
|
Harvey RF, Pöyry TAA, Stoneley M, Willis AE. Signaling from mTOR to eIF2α mediates cell migration in response to the chemotherapeutic doxorubicin. Sci Signal 2019; 12:12/612/eaaw6763. [PMID: 31848319 DOI: 10.1126/scisignal.aaw6763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After exposure to cytotoxic chemotherapeutics, tumor cells alter their translatome to promote cell survival programs through the regulation of eukaryotic initiation factor 4F (eIF4F) and ternary complex. Compounds that block mTOR signaling and eIF4F complex formation, such as rapamycin and its analogs, have been used in combination therapies to enhance cell killing, although their success has been limited. This is likely because the cross-talk between signaling pathways that coordinate eIF4F regulation with ternary complex formation after treatment with genotoxic therapeutics has not been fully explored. Here, we described a regulatory pathway downstream of p53 in which inhibition of mTOR after DNA damage promoted cross-talk signaling and led to eIF2α phosphorylation. We showed that eIF2α phosphorylation did not inhibit protein synthesis but was instead required for cell migration and that pharmacologically blocking this pathway with either ISRIB or trazodone limited cell migration. These results support the notion that therapeutic targeting of eIF2α signaling could restrict tumor cell metastasis and invasion and could be beneficial to subsets of patients with cancer.
Collapse
Affiliation(s)
- Robert F Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Tuija A A Pöyry
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Mark Stoneley
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK.
| |
Collapse
|
18
|
Dai C, Xiao X, Li J, Ciccotosto GD, Cappai R, Tang S, Schneider-Futschik EK, Hoyer D, Velkov T, Shen J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chem Neurosci 2019; 10:120-131. [PMID: 30362702 DOI: 10.1021/acschemneuro.8b00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotoxicity is one major unwanted side-effects associated with polymyxin (i.e., colistin and polymyxin B) therapy. Clinically, colistin neurotoxicity is characterized by neurological symptoms including dizziness, visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and facial and peripheral paresthesias. Pathologically, colistin-induced neurotoxicity is characterized by cell injury and death in neuronal cell. This Review covers our current understanding of polymyxin-induced neurotoxicity, its underlying mechanisms, and the discovery of novel neuroprotective agents to limit this neurotoxicity. In recent years, an increasing body of literature supports the notion that polymyxin-induced nerve damage is largely related to oxidative stress and mitochondrial dysfunction. P53, PI3K/Akt, and MAPK pathways are also involved in colistin-induced neuronal cell death. The activation of the redox homeostasis pathways such as Nrf2/HO-1 and autophagy have also been shown to play protective roles against polymyxin-induced neurotoxicity. These pathways have been demonstrated to be upregulated by neuroprotective agents including curcumin, rapamycin and minocycline. Further research is needed toward the development of novel polymyxin formulations in combination with neuroprotective agents to ameliorate this unwanted adverse effect during polymyxins therapy in patients.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tony Velkov
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
19
|
|
20
|
Wasserman JK, AlGhamdi D, de Almeida JR, Stockley TL, Perez-Ordonez B. P53 Gene Mutation Identified by Next Generation Sequencing in Poorly Differentiated Neuroendocrine Carcinoma of the Nasal Cavity. Head Neck Pathol 2018; 13:516-522. [PMID: 29845478 PMCID: PMC6684699 DOI: 10.1007/s12105-018-0934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Neuroendocrine carcinomas (NECs) are epithelial neoplasms showing morphologic, immunophenotypic or ultrastructural evidence of neuroendocrine differentiation. The 2017 WHO Classification of Head and Neck Tumours classifies NECs into well, moderately and poorly differentiated NECs according to light microscopic features, mitotic rate and presence of tumour necrosis. In this study, we performed next generation sequencing (NGS) using a targeted 161 cancer gene panel on a poorly differentiated NEC of the nasal cavity. The tumour was composed of large cells arranged in poorly formed glands and solid nests. The mitotic count rate was 30/10 HPFs and p53 protein was strongly expressed in all tumour cells. NGS identified a missense mutation, c.764T > G (p.Ile255Ser) in the TP53 gene with an allele frequency of 85%. This mutation results in an isoleucine to serine substitution and a non-functional protein. No other mutations were identified. These results suggest that TP53 mutations may drive oncogenesis in poorly differentiated NECs of the head and neck.
Collapse
Affiliation(s)
- Jason K. Wasserman
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Doaa AlGhamdi
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - John R. de Almeida
- 0000 0004 0474 0428grid.231844.8Department of Otolaryngology Head and Neck Surgery, Department of Surgical Oncology, University Health Network, Toronto, ON Canada
| | - Tracy L. Stockley
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Bayardo Perez-Ordonez
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
21
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Chen H, Zhang L, He W, Liu T, Zhao Y, Chen H, Li Y. ESCO2 knockdown inhibits cell proliferation and induces apoptosis in human gastric cancer cells. Biochem Biophys Res Commun 2018; 496:475-481. [PMID: 29330052 DOI: 10.1016/j.bbrc.2018.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Establishment of cohesion 1 homolog 2 (ESCO2), an essential gene for cohesion regulation and genomic stability, has not been studied in human gastric cancer (GC). We found that ESCO2 knockdown in human GC cell lines dramatically inhibited cell proliferation and induced cell apoptosis in vitro and suppressed tumor xenograft development in vivo. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) was activated following the suppression of its downstream targets, including mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase 1 (p70S6K1), and this result was consistent with p53 activation. Significantly, co-immunoprecipitation (Co-IP) analyses indicated that ESCO2 can interact with p53 in GC cells. Taken together, our data demonstrate that ESCO2 is essential for the development of GC and might be a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Hongmei Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Institute of Medical Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, 199 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Wenting He
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Tao Liu
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yang Zhao
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Hao Chen
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yumin Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| |
Collapse
|
23
|
Greco A, Auletta L, Orlandella FM, Iervolino PLC, Klain M, Salvatore G, Mancini M. Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer. Int J Mol Sci 2017; 18:E2731. [PMID: 29258188 PMCID: PMC5751332 DOI: 10.3390/ijms18122731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer.
Collapse
Affiliation(s)
- Adelaide Greco
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy.
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche-IBB, CNR, 80145 Napoli, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80131 Napoli, Italy.
| | | | | | | | - Michele Klain
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy.
| | - Giuliana Salvatore
- IRCCS S.D.N., 80134 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy.
| | - Marcello Mancini
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche-IBB, CNR, 80145 Napoli, Italy.
| |
Collapse
|
24
|
Expression of p53 protein in high-grade gastroenteropancreatic neuroendocrine carcinoma. PLoS One 2017; 12:e0187667. [PMID: 29112960 PMCID: PMC5675414 DOI: 10.1371/journal.pone.0187667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs) are aggressive, rapidly proliferating tumors. Therapeutic response to current chemotherapy regimens is usually short lasting. The aim of this study was to examine the expression and potential clinical importance of immunoreactive p53 protein in GEP-NEC. MATERIALS AND METHODS Tumor tissues from 124 GEP-NEC patients with locally advanced or metastatic disease treated with platinum-based chemotherapy were collected from Nordic centers and clinical data were obtained from the Nordic NEC register. Tumor proliferation rate and differentiation were re-evaluated. All specimens were immunostained for p53 protein using a commercially available monoclonal antibody. Kaplan-Meier curves and cox regression analyses were used to assess progression-free survival (PFS) and overall survival (OS). RESULTS All tumor tissues were immunoreactive for either one or both neuroendocrine biomarkers (chromogranin A and synaptophysin) and Ki67 index was >20% in all cases. p53 immunoreactivity was only shown in 39% of the cases and was not found to be a prognostic marker for the whole cohort. However, p53 immunoreactivity was correlated with shorter PFS in patients with colorectal tumors (HR = 2.1, p = 0.03) in a univariate analysis as well as to poorer PFS (HR = 2.6, p = 0.03) and OS (HR = 3.4, p = 0.02) in patients with colorectal tumors with distant metastases, a correlation which remained significant in the multivariate analyses. CONCLUSION In this cohort of GEP-NEC patients, p53 expression could not be correlated with clinical outcome. However, in patients with colorectal NECs, p53 expression was correlated with shorter PFS and OS. Further studies are needed to establish the role of immunoreactive p53 as a prognostic marker for GEP-NEC patients.
Collapse
|
25
|
Akeno N, Reece AL, Callahan M, Miller AL, Kim RG, He D, Lane A, Moulton JS, Wikenheiser-Brokamp KA. TRP53 Mutants Drive Neuroendocrine Lung Cancer Through Loss-of-Function Mechanisms with Gain-of-Function Effects on Chemotherapy Response. Mol Cancer Ther 2017; 16:2913-2926. [PMID: 28847987 DOI: 10.1158/1535-7163.mct-17-0353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths with small-cell lung cancer (SCLC) as the most aggressive subtype. Preferential occurrence of TP53 missense mutations rather than loss implicates a selective advantage for TP53-mutant expression in SCLC pathogenesis. We show that lung epithelial expression of R270H and R172H (R273H and R175H in humans), common TRP53 mutants in lung cancer, combined with RB1 loss selectively results in two subtypes of neuroendocrine carcinoma, SCLC and large cell neuroendocrine carcinoma (LCNEC). Tumor initiation and progression occur in a remarkably consistent time frame with short latency and uniform progression to lethal metastatic disease by 7 months. R270H or R172H expression and TRP53 loss result in similar phenotypes demonstrating that TRP53 mutants promote lung carcinogenesis through loss-of-function and not gain-of-function mechanisms. Tumor responses to targeted and cytotoxic therapeutics were discordant in mice and corresponding tumor cell cultures demonstrating need to assess therapeutic response at the organismal level. Rapamycin did not have therapeutic efficacy in the mouse model despite inhibiting mTOR signaling and markedly suppressing tumor cell growth in culture. In contrast, cisplatin/etoposide treatment using a patient regimen prolonged survival with development of chemoresistance recapitulating human responses. R270H, but not R172H, expression conferred gain-of-function activity in attenuating chemotherapeutic efficacy. These data demonstrate a causative role for TRP53 mutants in development of chemoresistant lung cancer, and provide tractable preclinical models to test novel therapeutics for refractory disease. Mol Cancer Ther; 16(12); 2913-26. ©2017 AACR.
Collapse
Affiliation(s)
- Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alisa L Reece
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melissa Callahan
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashley L Miller
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca G Kim
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diana He
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam Lane
- Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan S Moulton
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. .,University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Sen M, Akeno N, Reece A, Miller AL, Simpson DS, Wikenheiser-Brokamp KA. p16 controls epithelial cell growth and suppresses carcinogenesis through mechanisms that do not require RB1 function. Oncogenesis 2017; 6:e320. [PMID: 28414317 PMCID: PMC5520502 DOI: 10.1038/oncsis.2017.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
The p16/RB1 tumor suppressor pathway is inactivated in the vast majority, if not all, human cancers. The current paradigm is that p16 and RB1 function in a linear pathway to suppress tumorigenesis; however p16 is preferentially lost in human cancers suggesting that p16 has critical tumor suppressive functions not mediated through RB1. Carcinomas arise from transformed epithelial cells and account for 80% of adult malignancies highlighting the need to understand p16/RB1 pathway function in organ epithelia. Lung cancer is the leading cause of cancer deaths and is associated with p16/RB1 pathway deregulation. We demonstrate that p16 is upregulated in the lung epithelium after Rb1 ablation in genetically engineered mouse models. In contrast to fibroblasts, loss of RB1 family proteins, p107 or p130, did not result in p16 induction, demonstrating that p16 suppression is a unique RB1 pocket protein function in the lung epithelium in vivo. p16 upregulation did not induce cellular senescence but rather promoted survival of RB1-deficient lung epithelial progenitor cells. Mechanistic studies show that p16 protects RB1-deficient cells from DNA damage. Consequently, additional loss of p16 led to genetic instability and increased susceptibility to cellular immortalization and transformation. Mice with combined RB1/p16-deficient lungs developed lung tumors including aggressive metastatic lung cancers. These studies identify p16 loss as a molecular event that causes genetic instability and directly demonstrate that p16 protects against DNA damage in the absence of RB1 function providing an explanation for why p16 is preferentially targeted in human cancers.
Collapse
Affiliation(s)
- M Sen
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - N Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - A Reece
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - A L Miller
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - D S Simpson
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - K A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
MDM2 antagonists synergize with PI3K/mTOR inhibition in well-differentiated/dedifferentiated liposarcomas. Oncotarget 2017; 8:53968-53977. [PMID: 28903316 PMCID: PMC5589555 DOI: 10.18632/oncotarget.16345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS) are characterized by a consistent amplification of the MDM2 gene. The PI3K/AKT/mTOR pathway has been suggested to play also an important role in their tumorigenesis. Our goal was to determine whether combined MDM2 and PI3K/AKT/mTOR targeting is associated with higher anti-tumor activity than single agent alone in preclinical models of WDLPS/DDLPS. METHODS WDLPS/DDLPS cells were exposed to RG7388 (MDM2 antagonist) and BEZ235 (PI3K/mTOR dual inhibitor) after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Xenograft mouse models were used to assess tumor growth and animal survival. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. RESULTS The PI3K/AKT/mTOR was upregulated in up to 81% of the human WDLPS/DDLPS samples analysed. Treatment with RG7388 and BEZ235 resulted in a greater tumor activity than either drug alone with a significant difference in terms of cell viability after 72h of treatment with RG-73888 alone, BEZ235 alone and a combination of both agents. Consistent with these observations, we found a significant increase in apoptosis with the combination versus the single agent treatment alone. We then analysed the in vivo antitumor activity of RG7388 and BEZ235 in a xenograft model of DDLPS. The combination regimen significantly reduced tumor growth rate in comparison with single agent alone. CONCLUSIONS Our results represent the first in vivo evidence of synergy between MDM2 and PI3K/AKT/mTOR antagonists and represent a strong rationale to evaluate the therapeutic potential of such a combination in WDLPS/DDLPS.
Collapse
|
28
|
Song H, Lin C, Yao E, Zhang K, Li X, Wu Q, Chuang PT. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma. J Biol Chem 2017; 292:3888-3899. [PMID: 28119454 PMCID: PMC5339769 DOI: 10.1074/jbc.m116.765727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRPCreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53, Rb, and Pten, in mature parafollicular C cells via an inducible Cre recombinase from CGRPCreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53/Rb-induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRPCreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities.
Collapse
Affiliation(s)
- Hai Song
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Chuwen Lin
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Erica Yao
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Kuan Zhang
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Xiaoling Li
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
| | - Qingzhe Wu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
| | - Pao-Tien Chuang
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| |
Collapse
|
29
|
Vitale G, Gaudenzi G, Circelli L, Manzoni MF, Bassi A, Fioritti N, Faggiano A, Colao A. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 2017; 24:R1-R12. [PMID: 27799362 DOI: 10.1530/erc-16-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Medullary thyroid carcinoma is a neuroendocrine tumour originating from parafollicular C cells accounting for 5-10% of thyroid cancers. Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid carcinoma. These drugs increase progression-free survival; however, they are often poorly tolerated and most treatment responses are transient. Animal models are indispensable tools for investigating the pathogenesis, mechanisms for tumour invasion and metastasis and new therapeutic approaches for cancer. Unfortunately, only few models are available for medullary thyroid carcinoma. This review provides an overview of the state of the art of animal models in medullary thyroid carcinoma and highlights future developments in this field, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
| | - Luisa Circelli
- Department of Experimental OncologyLaboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 'Fondazione Pascale' - IRCCS, Naples, Italy
| | - Marco F Manzoni
- Department of Endocrinology and Internal MedicineEndocrine Tumors Unit, San Raffaele Hospital Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bassi
- Department of PhysicsPolitecnico di Milano, Milan, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgerySection of Endocrinology, 'Federico II' University of Naples, Naples, Italy
| | | |
Collapse
|
30
|
Colorectal carcinomas with submucosal invasion (pT1): analysis of histopathological and molecular factors predicting lymph node metastasis. Mod Pathol 2017; 30:113-122. [PMID: 27713420 DOI: 10.1038/modpathol.2016.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/06/2023]
Abstract
Submucosally invasive colorectal carcinoma (pT1) has the potential to be cured by local excision. In US surgical intervention is reserved for tumors with high-grade morphology, lymphvascular invasion, and close/positive margin. In other countries, particularly Japan, surgical therapy is also recommended for mucinous tumors, tumors with >1000 μm of submucosal invasion, and those with high tumor budding. These histological features have not been well evaluated in a western cohort of pT1 carcinomas. In a cohort of 116 surgically resected pT1 colorectal carcinomas, high tumor budding (P<0.001), lymphatic invasion (P=0.003), depth of submucosal invasion >1000 μm (P=0.04), and high-grade morphology (P=0.04) were significantly associated with lymph node metastasis on univariate analysis. Mucinous differentiation, tumor location, tumor growth pattern, and size of invasive component were not significant. On multivariate analysis, only high tumor budding was associated with lymph node metastasis with an odds ratio of 4.3 (P=0.004). A subset of 48 tumors (22 node-positive and 26 node-negative) was analyzed for mutations in 50 oncogenes and tumor suppressors. No statistically significant molecular alterations in these 50 genes were associated with lymph node status. However, lymphatic invasion was associated with BRAF mutations (P=0.01). Furthermore, high tumor budding was associated with mutations in TP53 (P=0.03) and inversely associated with mutations in the mTOR pathway (PIK3CA and AKT, P=0.02). In conclusion, this study demonstrates the importance of identifying high tumor budding in pT1 carcinomas when considering additional surgical resection. Molecular alterations associated with adverse histological features are identified.
Collapse
|
31
|
Nozhat Z, Hedayati M, Pourhassan H. Signaling pathways in medullary thyroid carcinoma: therapeutic implications. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Medullary thyroid cancer (MTC) is the third most frequent thyroid cancer arising from thyroid parafollicular cells. Surgery is the first-line strategy in treatment of MTC but disease relapse and patient's death have been observed in approximately two out of three of MTC cases. Identification of molecular mechanisms and different signaling pathways has offered new insights for disease treatment. The development of tyrosine kinase inhibitors targeting these pathways has provided a promising landscape for prevention of progression in patients with advanced metastatic MTC. In this review article different altered molecular pathways implicated in the development of MTC and the therapeutic strategies based on targeting the identified signaling pathways have been summarized.
Collapse
Affiliation(s)
- Zahra Nozhat
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoda Pourhassan
- Clinical Instructor Faculty, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
32
|
Shi XJ, Yu B, Wang JW, Qi PP, Tang K, Huang X, Liu HM. Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms. Sci Rep 2016; 6:31607. [PMID: 27527552 PMCID: PMC4985843 DOI: 10.1038/srep31607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells always have increased ROS levels, thus making them more vulnerable to persistent endogenous oxidative stress. The biochemical difference between cancer and normal cells could be exploited to achieve selective cancer cell killing by exogenous ROS-producing agents. Herein we described a structurally novel steroidal spirooxindole by241 and its anticancer efficacy. By241 exhibited potent inhibition against human cancer cells and less toxic to normal cells. By241 concentration-dependently induced apoptosis of MGC-803 and EC9706 cells, accompanied with the mitochondrial dysfunction and increased ROS levels. NAC can completely restore the decreased cell viability of MGC-803 cells caused by by241, suggesting ROS-mediated mechanisms. The expression levels of proteins involved in the mitochondrion-related pathways were detected, showing increased expression of proapoptotic proteins and decreased expression of anti-apoptotic proteins, and activation of caspases-9/-3, but without activating caspase-8 expression. Pretreatment with Z-VAD-FMK partially rescued by241-induced apoptosis of MGC-803 cells. Additionally, by241 inhibited mTOR, activated p53 and its downstream proteins, cleaved MDM2 and PI3K/AKT as well as NF-κB signaling pathway. In vivo experiments showed that by241 did not have significant acute oral toxicity and exerted good anticancer efficacy against MGC-803 bearing mice models. Therefore, by241 may serve as a lead for further development for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Wei Wang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Qi
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Tang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Huang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Lin JF, Lin YC, Yang SC, Tsai TF, Chen HE, Chou KY, Hwang TIS. Autophagy inhibition enhances RAD001-induced cytotoxicity in human bladder cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1501-13. [PMID: 27143856 PMCID: PMC4841413 DOI: 10.2147/dddt.s95900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Mammalian target of rapamycin (mTOR), involved in PI3K/AKT/mTOR pathway, is known to play a central role in regulating the growth of cancer cells. The PI3K/AKT/mTOR pathway enhances tumor survival and proliferation through suppressing autophagy, which sustains energy homeostasis by collecting and recycling cellular components under stress conditions. Conversely, inhibitors of the mTOR pathway such as RAD001 induce autophagy, leading to promotion of tumor survival and limited antitumor efficacy. We thus hypothesized that the use of autophagy inhibitor in combination with mTOR inhibition improves the cytotoxicity of mTOR inhibitors in bladder cancer. Materials and methods The cytotoxicity of RT4, 5637, HT1376, and T24 human bladder cancer cells treated with RAD001 alone or combined with autophagy inhibitors (3-methyladenine (3-MA), bafilomycin A1 (Baf A1), chloroquine, or hydroxychloroquine) was assessed using the WST-8 cell viability kit. The autophagy status in cells was analyzed by the detection of microtubule-associated light chain 3 form II (LC3-II), using immunofluorescent staining and Western blot. Acidic vesicular organelle (AVO) formation in treated cells was determined by acridine orange vital staining. Inhibition of mTOR pathway by RAD001 was monitored by using a homemade quantitative polymerase chain reaction gene array, while phospho-mTOR was detected using Western blot. Induced apoptosis was determined by measurement of caspase 3/7 activity and DNA fragmentation in cells after treatment. Results Advanced bladder cancer cells (5637, HT1376, and T24) were more resistant to RAD001 than RT4. Autophagy flux detected by the expression of LC3-II showed RAD001-induced autophagy. AVO formation was detected in cells treated with RAD001 and was inhibited by the addition of 3-MA or Baf A1. Cotreatment of RAD001 with autophagy inhibitors further reduced cell viability and induced apoptosis in bladder cancer cells. Conclusion Our results indicate that simultaneous inhibition of the mTOR and autophagy pathway significantly enhances apoptosis, and it is suggested to be a new therapeutic paradigm for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yi-Chia Lin
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shan-Che Yang
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan; Department of Urology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Qin X, Wang X, Liu F, Morris LE, Wang X, Jiang B, Zhang Y. Gankyrin activates mTORC1 signaling by accelerating TSC2 degradation in colorectal cancer. Cancer Lett 2016; 376:83-94. [PMID: 26975632 DOI: 10.1016/j.canlet.2016.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
Gankyrin is overexpressed in some malignancies. However its roles in colorectal carcinogenesis and underlying mechanisms remain largely unexplored. Here we report that gankyrin promotes the initiation and development of colorectal carcinogenesis by activating mTORC1 signaling through TSC/Rheb dependent mechanism. We further show that Gankyrin overexpression accelerated TSC2 degradation, while knockdown in a panel of colorectal cancer (CRC) cell lines, cell line derived xenografts and CRC patient derived xenograft (PDX) tumors delayed TSC2 degradation, restored the TSC2 protein level, and inhibited mTORC1 signaling and CRC growth. Our findings reveal a unique mechanism by which gankyrin promotes colorectal carcinogenesis and show that gankyrin is a potential therapeutic target to improve the clinical management of CRC.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Laura E Morris
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Xiaowen Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
35
|
He CL, Bian YY, Xue Y, Liu ZX, Zhou KQ, Yao CF, Lin Y, Zou HF, Luo FX, Qu YY, Zhao JY, Ye ML, Zhao SM, Xu W. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Sci Rep 2016; 6:21524. [PMID: 26876154 PMCID: PMC4753445 DOI: 10.1038/srep21524] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 02/05/2023] Open
Abstract
In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells.
Collapse
Affiliation(s)
- Chang-Liang He
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yang-Yang Bian
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Yu Xue
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ze-Xian Liu
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kai-Qiang Zhou
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Cui-Fang Yao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Yan Lin
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Han-Fa Zou
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Fang-Xiu Luo
- Department of Pathology, Affiliated Ruijin Hospital of Shanghai Jiaotong University, Shanghai, 201821 P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Yuan Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ming-Liang Ye
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Shi-Min Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Xu
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
36
|
p53 regulates autophagic activity in senescent rat mesenchymal stromal cells. Exp Gerontol 2016; 75:64-71. [PMID: 26792455 DOI: 10.1016/j.exger.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/04/2016] [Accepted: 01/09/2016] [Indexed: 01/09/2023]
Abstract
The tumor suppressor protein p53 is an important player in the regulation of cell senescence, its functions are largely carried out by modulating its downstream genes. Emerging evidence has suggested that senescence and autophagy appear to be regulated by overlapping signaling pathways. Furthermore, autophagy markers have been observed in senescent cells. In this study, we sought to explore the effects of the expression pattern and function of p53 on the activity of autophagy and replicative senescence in bone marrow derived mesenchymal stromal cells (BMSCs). We found that more than 85% of BMSCs stained positive for SA-β-gal at passage 6 (senescent BMSCs) with increased expressions of senescence related genes (p16(ink4a) and p21(waf1)). These results were accompanied by the up-regulation of p53, down-regulation of mammalian target of rapamycin (mTOR) and phosphorylation of Rb. Senescent BMSCs displayed an increased monodansylcadaverine (MDC) staining and autophagy related genes (LC3 and atg12) level compared with BMSCs at passage 2. Knockdown of p53 alleviated the senescent state and reduced autophagic activity during the progression of BMSC senescence, which was accompanied by significantly up-regulated levels of mTOR and phosphorylation of Rb. These results demonstrate that autophagy increases when BMSCs enter the replicative senescence state, and p53 contributes a crucial role in the up-regulation of autophagy in this state.
Collapse
|
37
|
Meder L, König K, Fassunke J, Ozretić L, Wolf J, Merkelbach-Bruse S, Heukamp LC, Buettner R. Implementing amplicon-based next generation sequencing in the diagnosis of small cell lung carcinoma metastases. Exp Mol Pathol 2015; 99:682-6. [PMID: 26546837 DOI: 10.1016/j.yexmp.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Small cell lung carcinoma (SCLC) is the most aggressive entity of lung cancer. Rapid cancer progression and early formation of systemic metastases drive the deadly outcome of SCLC. Recent advances in identifying oncogenes by cancer whole genome sequencing improved the understanding of SCLC carcinogenesis. However, tumor material is often limited in the clinic. Thus, it is a compulsive issue to improve SCLC diagnostics by combining established immunohistochemistry and next generation sequencing. We implemented amplicon-based next generation deep sequencing in our routine diagnostics pipeline to analyze RB1, TP53, EP300 and CREBBP, frequently mutated in SCLC. Thereby, our pipeline combined routine SCLC histology and identification of somatic mutations. We comprehensively analyzed fifty randomly collected SCLC metastases isolated from trachea and lymph nodes in comparison to specimens derived from primary SCLC. SCLC lymph node metastases showed enhanced proliferation and frequently a collapsed keratin cytoskeleton compared to SCLC metastases isolated from trachea. We identified characteristic synchronous mutations in RB1 and TP53 and non-synchronous CREBBP and EP300 mutations. Our data showed the benefit of implementing deep sequencing into routine diagnostics. We here identify oncogenic drivers and simultaneously gain further insights into SCLC tumor biology.
Collapse
Affiliation(s)
- Lydia Meder
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Katharina König
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Labor Dr. Quade und Kollegen GmbH, Aachener Straße 338, 50933 Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Luka Ozretić
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Jürgen Wolf
- Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Clinic for Internal Medicine I, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Lukas C Heukamp
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology Cologne/Bonn, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Lung Cancer Group Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
38
|
Kong LL, Man DM, Wang T, Zhang GA, Cui W. siRNA targeting RBP2 inhibits expression, proliferation, tumorigenicity and invasion in thyroid carcinoma cells. Oncol Lett 2015; 10:3393-3398. [PMID: 26788140 PMCID: PMC4665154 DOI: 10.3892/ol.2015.3782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
In order to estimate the effects of small interfering RNA (siRNA) targeting retinoblastoma binding protein 2 (RBP2) on the proliferation, expression, invasion, migration and tumorigenicity abilities of papillary thyroid carcinoma K1 cells, siRNA targeting RBP2 (RBP2-siRNA) and negative control siRNA were transfected into K1 cells. The mRNA levels of RBP2 in the transfected cells were estimated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the protein levels of RBP2 in these cells were evaluated by western blot analysis and immunocytochemical (ICC) analyses. The growth, tumorigenicity, migration and invasion abilities of the transfected cells were measured by Cell Counting Kit-8 (CCK-8), soft agar colony formation and transwell chamber assay, respectively. The ICC results demonstrated that the protein expression levels of RBP2 were lower in the RBP2-siRNA-transfected cells than in the blank and control cells (analysis of variance, F=26.754, P<0.01). RBP2-siRNA downregulated RBP2 at the mRNA (t=8.869) and protein level (F=60.835) (P=0.000 vs. control cells). In addition, the transfection of RBP2-siRNA into K1 cells also suppressed cell proliferation at 24, 48 and 72 h post-transfection (t=7.650, P<0.01; t=2.606, P=0.016; and t=2.377, P=0.027, respectively). Compared with the control group, the number of invasive and migrated cells were significantly reduced in the RBP2-siRNA-transfected group (t=4.774 and t=6.366, respectively; P<0.01). Furthermore, the tumorigenic potential of the cells transfected with RBP2-siRNA was markedly reduced, as indicated by the soft agar formation assay (t=2.749, P=0.014 vs. control cells). In conclusion, the transfection of RBP2-siRNA into papillary thyroid carcinoma K1 cells suppressed the expression of RBP2 in these cells, and reduced their proliferation, invasion, migration and tumorigenic potential. Therefore, targeting RBP2 may be an efficient approach to control thyroid carcinoma.
Collapse
Affiliation(s)
- Ling-Ling Kong
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dong-Mei Man
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Tian Wang
- Department of Electrocardiogram, The First Affiliated Hospital of Jining Medical University, Jining, Shandong 272111, P.R. China
| | - Guo-An Zhang
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
39
|
Ho YH, Gasch AP. Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 2015; 61:503-11. [PMID: 25957506 DOI: 10.1007/s00294-015-0491-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022]
Abstract
Healthy cells utilize intricate systems to monitor their environment and mount robust responses in the event of cellular stress. Whether stress arises from external insults or defects due to mutation and disease, cells must be able to respond precisely to mount the appropriate defenses. Multi-faceted stress responses are generally coupled with arrest of growth and cell-cycle progression, which both limits the transmission of damaged materials and serves to reallocate limited cellular resources toward defense. Therefore, stress defense versus rapid growth represent competing interests in the cell. How eukaryotic cells set the balance between defense versus proliferation, and in particular knowledge of the regulatory networks that control this decision, are poorly understood. In this perspective, we expand upon our recent work inferring the stress-activated signaling network in budding yeast, which captures pathways controlling stress defense and regulators of growth and cell-cycle progression. We highlight similarities between the yeast and mammalian stress responses and explore how stress-activated signaling networks in yeast can inform on signaling defects in human cancers.
Collapse
Affiliation(s)
- Yi-Hsuan Ho
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci 2015; 1346:33-44. [PMID: 25907074 DOI: 10.1111/nyas.12756] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase, which plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. Although rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has also been identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Department of Medicine State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.,Division of Rheumatology, Department of Microbiology and Immunology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| |
Collapse
|
41
|
mTORC1 maintains the tumorigenicity of SSEA-4(+) high-grade osteosarcoma. Sci Rep 2015; 5:9604. [PMID: 25853231 PMCID: PMC4389812 DOI: 10.1038/srep09604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 and/or Rb pathways restrains osteoblasts from cell-cycle exit and terminal differentiation, which underpins osteosarcoma formation coupled with dedifferentiation. Recently, the level of p-S6K was shown to independently predict the prognosis for osteosarcomas, while the reason behind this is not understood. Here we show that in certain high-grade osteosarcomas, immature SSEA-4+ tumor cells represent a subset of tumor-initiating cells (TICs) whose pool size is maintained by mTORC1 activity. mTORC1 supports not only SSEA-4+ cell self-renewal through S6K but also the regeneration of SSEA-4+ TICs by SSEA-4− osteosarcoma cell dedifferentiation. Mechanistically, active mTORC1 is required to prevent a likely upregulation of the cell-cycle inhibitor p27 independently of p53 or Rb activation, which otherwise effectively drives the terminal differentiation of SSEA-4− osteosarcoma cells at the expense of dedifferentiation. Thus, mTORC1 is shown to critically regulate the retention of tumorigenicity versus differentiation in discrete differentiation phases in SSEA-4+ TICs and their progeny.
Collapse
|
42
|
Hypermethylation of the tumor-suppressor cell adhesion molecule 1 in human papillomavirus-transformed cervical carcinoma cells. Int J Oncol 2015; 46:2656-62. [PMID: 25845528 PMCID: PMC4441298 DOI: 10.3892/ijo.2015.2945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modification at CpG islands located on the promoter regions of tumor-suppressor genes has been associated with tumor development in many human cancers. Our study showed that the cell adhesion molecule 1 (CADM1) is downregulated in human papillomavirus (HPV)-infected cervical cancer cell lines via its hypermethylation and demethylation using 5-aza-2′-deoxycyticine (5-aza-dC) restored the expression of CADM1 protein. Overexpression of CADM1 inhibited cell proliferation. p53 was involved in the regulation of CADM1. Our results demonstrate that epigenetic alteration of CADM1 was more frequent in HPV-positive cervical cancers and that restoration of CADM1 expression may be a potential strategy for cervical cancer therapy.
Collapse
|
43
|
Li X, Gu S, Ling Y, Shen C, Cao X, Xie R. p53 inhibition provides a pivotal protective effect against ischemia-reperfusion injury in vitro via mTOR signaling. Brain Res 2015; 1605:31-8. [PMID: 25681550 DOI: 10.1016/j.brainres.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
Tumor suppressor p53 has recently been reported to have numerous functions independent of tumorigenesis, including neuronal survival during ischemia. The mammalian target of rapamycin (mTOR) signaling pathway plays a central role in the regulation of metabolism, cell growth, development, and cell survival. Our recent work has demonstrated the neuroprotective effects of the mTOR pathway. Considering that p53 is also an important regulator of mTOR, to further clarify the role of p53 and the mTOR signaling pathway in neuronal ischemic-reperfusion injury, we used mouse primary mixed cultured neurons with an oxygen glucose deprivation (OGD) model to mimic an ischemic-reperfusion injury in vitro. A lentiviral system was also used to inhibit or overexpress p53 to determine whether p53 alteration affects OGD and reperfusion injury. Our results show that activated p53 was induced and it suppressed mTOR expression in primary mixed cultured neurons after OGD and reperfusion. Inhibiting p53, using either a chemical inhibitor or lentiviral-mediated shRNA, exhibited neuroprotective effects in primary cultured neurons against OGD and reperfusion injury through the upregulation of mTOR activity. Such protective effects could be reversed by rapamycin, an mTOR inhibitor. Conversely, p53 overexpression tended to exacerbate the detrimental effects of OGD injury by downregulating mTOR activity. These results suggest that p53 inhibition has a pivotal protective effect against an in vitro ischemia-reperfusion injury via mTOR signaling and provides a potential and promising therapeutic target for stroke treatment.
Collapse
Affiliation(s)
- Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shixin Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yan Ling
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xiaoyun Cao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
44
|
Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U, Bhadra MP. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene 2014; 552:255-64. [PMID: 25261849 DOI: 10.1016/j.gene.2014.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs are small non-coding RNAs that regulate post-transcriptional mRNA expression by binding to 3' untranslated region (3'-UTR) of the complementary mRNA sequence resulting in translational repression and gene silencing. They act as negative regulators of gene expression and play a pivotal role in regulating apoptosis and cell proliferation. Studies have shown that miRNAs interact with p53 by regulating the activity and function of p53 through direct repression or its regulators. Mammalian target of rapamycin (mTOR) is an evolutionary conserved check point protein kinase that plays a major effect in the control of cell division via protein synthesis regulation. mTOR regulates protein synthesis through phosphorylation and inactivation of 4E-BP1 and through phosphorylation and activation of S6 kinase 1 (S6K1). These two downstream effectors of mTOR control cell growth and metabolism. In mammals, mTOR protein kinase is the central node in the nutrient and growth factor signaling and p53 plays a critical role in sensing genotoxic stress. Activation of p53 inhibits mTOR activity, which in turn regulates its downstream targets providing a cross talk among both the signaling machinery. MicroRNA-15 and 16 belong to a common precursor family and are highly conserved. Deletion or downregulation of these two microRNAs has been shown to accelerate cell division by modulating the expression of the genes involved in controlling cell cycle progression. These microRNAs may function as tumor suppressors and act on the downstream targets of p53 signaling pathway. To have a better insight of the role of miR-15/16 in regulating the cross talk of p53 and mTOR, we performed an in depth study in MDA-MB-231 breast cancer cells by performing a gain-of-function analysis with lentiviral plasmids expressing microRNA-15 and 16. METHODS The effect of individual microRNAs on RPS6KB1 was examined by using 3'-UTR clones via luciferase based assays. The cell cycle effects were observed by flow-cytometric analysis. Reverse transcription PCR was used to explore the expression of mTOR and RPS6KB1 in cells transfected with miR-15/16. RESULTS Overexpression of miR-15/16 led to inhibition of cell proliferation causing G1 cell cycle arrest as well as caspase-3 dependent apoptosis. Forced expression of miR-15/16 might lead to decrease in mRNA level of RPS6KB1, mTOR. The effect was a complete reversal after treatment with anti-miRs against miR-15/16 proving the specificity of the expression. In addition, the dual luciferase reporter assays indicated a clear decrease in luciferase gene expression in cells transfected with lentiviral based miR-15 and 16 plasmids indicating that miR-15/16 directly targets RPS6KB1 through its 3'-UTR binding. Further, these microRNAs also inhibit epithelial to mesenchymal transition (EMT) by targeting key proteins such as Twist1 and EZH2 clearly demonstrating its crucial role in controlling cell proliferation. CONCLUSION This study suggests that exogenous microRNA-15/16 can target RPS6KB1, control cell proliferation and cause apoptosis in caspase-dependent manner even in the absence of functional p53.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India; School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, India.
| | - A Lavanya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mohsen Honarpisheh
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mojtaba Zarea
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Utpal Bhadra
- Centre For Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, India.
| | - Manika Pal Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| |
Collapse
|
45
|
Pan LZ, Ahn DG, Sharif T, Clements D, Gujar SA, Lee PWK. The NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) is a p53 downstream target. Cell Cycle 2014; 13:1041-8. [PMID: 24552824 DOI: 10.4161/cc.28128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NAD(+) metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD(+) metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD(+) biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD(+) synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD(+) levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD(+) synthesis is congruent with p53's emerging role as a key regulator of metabolism and related cell fate.
Collapse
Affiliation(s)
- Lu-Zhe Pan
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Dae-Gyun Ahn
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Tanveer Sharif
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Derek Clements
- Department of Pathology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Shashi A Gujar
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada; Strategy & Organizational Performance; IWK Health Centre; Halifax, Nova Scotia, Canada
| | - Patrick W K Lee
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada; Department of Pathology; Dalhousie University; Halifax, Nova Scotia, Canada
| |
Collapse
|