1
|
Karouji K, Tominari T, Abe R, Sugasaki M, Ikeda K, Matsumoto C, Miyaura C, Miyata S, Nomura Y, Itoh Y, Hirata M, Inada M. Loss of ERα involved-HER2 induction mediated by the FOXO3a signaling pathway in fulvestrant-resistant breast cancer. Biochem Biophys Res Commun 2025; 742:151056. [PMID: 39626368 DOI: 10.1016/j.bbrc.2024.151056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Patients with estrogen receptor alpha (ERα)-positive breast cancer are commonly treated with anti-estrogen drugs as an initial treatment strategy. Fulvestrant, an estrogen receptor antagonist, effectively blocks ERα signaling; however, long-term fulvestrant treatment induces drug resistance in the absence of ERα. In this study, we investigated the molecular mechanism underlying the loss of ERα, FOXO3a, and induction of HER2 in fulvestrant-resistant breast cancer. Short-term fulvestrant treatment degraded ERα proteins via the ubiquitin-proteasome degradation pathway in MCF7 cells. MCF7 cells turn into highly proliferative cells (fulvestrant-resistant cells: Ful-R) after long-term fulvestrant treatment. These cells exhibit markedly suppressed estrogen and progesterone receptor levels. The phosphorylation of EGFR, HER2, and ERK was induced in Ful-R, and these phosphorylation inhibitors suppressed cell proliferation in Ful-R. FOXO3a, a transcriptional regulator of ERα was decreased in Ful-R, and a ubiquitin-proteasome inhibitor restored the expression of FOXO3a. These results suggest that the suppression of FOXO3a and ERα led to the increased expression of TGF-α, EGFR, and HER2 and subsequent cell proliferation in Ful-R. This study highlights the potential development of therapeutic drugs targeting FOXO3a for the treatment of HER2-positive, estrogen, and progesterone receptor-negative her2-type proliferative breast cancers.
Collapse
Affiliation(s)
- Kento Karouji
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Reika Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Moe Sugasaki
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Keisuke Ikeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shinji Miyata
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiro Nomura
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Masaki Inada
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Farghadani R, Naidu R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed Pharmacother 2023; 165:115170. [PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
4
|
Birkeness LB, Banerjee S, Quadir M, Banerjee SK. The role of CCNs in controlling cellular communication in the tumor microenvironment. J Cell Commun Signal 2023; 17:35-45. [PMID: 35674933 PMCID: PMC10030743 DOI: 10.1007/s12079-022-00682-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Cellular communication network (CCN) family of growth regulatory factors comprises six secreted matricellular proteins that promote signal transduction through cell-cell or cell-matrix interaction. The diversity of functionality between each protein is specific to the many aspects of healthy and cancer biology. For example, CCN family proteins modulate cell adhesion, proliferation, migration, invasiveness, apoptosis, and survival. In addition, the expression of each protein regulates many biological and pathobiological processes within its microenvironment to regulate angiogenesis, inflammatory response, chondrogenesis, fibrosis, and mitochondrial integrity. The collective range of CCN operation remains fully comprehended; however, understanding each protein's microenvironment may draw more conclusions about the abundance of interactions and signaling cascades occurring within such issues. This review observes and distinguishes the various roles a CCN protein may execute within distinct tumor microenvironments and the biological associations among them. Finally. We also review how CCN-family proteins can be used in nano-based therapeutic implications.
Collapse
Affiliation(s)
- Lauren B Birkeness
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
5
|
Zolfaghari S, Kaasbøll OJ, Monsen VT, Sredic B, Hagelin EMV, Attramadal H. The carboxyl-terminal TSP1-homology domain is the biologically active effector peptide of matricellular protein CCN5 that counteracts profibrotic CCN2. J Biol Chem 2022; 299:102803. [PMID: 36529291 PMCID: PMC9860493 DOI: 10.1016/j.jbc.2022.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.
Collapse
Affiliation(s)
- Sima Zolfaghari
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Vivi T. Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bojana Sredic
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | | | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,For correspondence: Håvard Attramadal
| |
Collapse
|
6
|
Wang C, Tu X, Jiang Y, Jiao P, Deng X, Xie Y, Zhang L. Prognostic value of high FOXO3a expression in patients with solid tumors: A meta-analysis and systematic review. Int J Biol Markers 2022; 37:210-217. [PMID: 35484793 DOI: 10.1177/03936155221095879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND FOXO3a (previously termed FKHRL1), plays an evolutionarily conserved role in the control of biological process, including DNA damage, apoptosis, and cell cycle regulation. However, the role of FOXO3a in tumors remains controversial. This meta-analysis was conducted to evaluate the prognostic value of FOXO3a expression in patients with solid tumors. METHODS A systematic literature search of the PubMed, Web of Science, Embase, and Cochrane Library databases was performed. Eligible publications on FOXO3a and cancer prognosis were collected and screened according to the eligibility criteria. The combined odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were used to assess the prognostic value of FOXO3a. Stata 12.0 software was used for statistical analysis. RESULTS A total of 4058 patients from 21 articles on a variety of solid tumors were included. Meta-analysis showed that the increased FOXO3a expression level was associated with longer overall survival (HR = 0.62; 95% CI: 0.46-0.85). The pooled ORs indicated high expression level of FOXO3a in tumors was significantly associated with lymph node metastasis (OR = 0.46; 95% CI: 0.30-0.71), TNM stage (OR = 0.37; 95% CI: 0.25-0.54), tumor differentiation (OR = 0.46; 95% CI: 0.26-0.80), distant metastasis (OR = 0.44; 95% CI: 0.32-0.61), and age (OR = 1.28; 95% CI: 1.08-1.51). However, we did not observe a significant correlation between the high expression of FOXO3a and sex or tumor size. CONCLUSIONS The high expression level of FOXO3a was associated with better clinical outcomes in solid tumors. FOXO3a may therefore serve as a potential prognostic biomarker and a promising molecular target.
Collapse
Affiliation(s)
- Chao Wang
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Tu
- Department of Physical Education, Ganzhou Teachers College, Ganzhou, China
| | - Yufen Jiang
- Department of Gastroenterology, Kezhou People's Hospital, Atushi, China
| | - Panpan Jiao
- Hospital Infection Management Office, Binzhou People's Hospital, Binzhou, China
| | - Xiaohong Deng
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Yuancai Xie
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, China
| |
Collapse
|
7
|
蔡 虹, 刘 勉, 林 妙, 李 红, 沈 朗, 全 松. [Lowered expression of CCN5 in endometriotic tissues promotes proliferation, migration and invasion of endometrial stromal cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:86-92. [PMID: 35249874 PMCID: PMC8901405 DOI: 10.12122/j.issn.1673-4254.2022.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the expression of CCN5 in endometriotic tissues and its impact on proliferation, migration and invasion of human endometrial stromal cells (HESCs). METHODS We collected ovarian endometriosis samples from 20 women receiving laparoscopic surgery and eutopic endometrium samples from 15 women undergoing IVF-ET for comparison of CCN5 expression. Cultured HESCs were transfected with a recombinant adenovirus Ad-CCN5 for CCN5 overexpression or with a CCN5-specific siRNA for knocking down CCN5 expression, and the changes of cell proliferation, migration and invasion were evaluated using CCK-8 assay, wound healing assay and Transwell chamber assay. RT-qPCR and Western blotting were used to examine the expression levels of epithelial-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin, Snail-1 and vimentin in HESCs with CCN5 overexpression or knockdown. RESULTS CCN5 expression was significantly decreased in ovarian endometriosis tissues as compared with eutopic endometrium samples (P < 0.01). CCN5 overexpression obviously inhibited the proliferation, migration and invasion of HESCs, significantly increased the expression of E-cadherin and decreased the expressions of N-cadherin, Snail-1 and vimentin (P < 0.01). CCN5 knockdown significantly enhanced the proliferation, migration and invasion of HESCs and produced opposite effects on the expressions of E-cadherin, N-cadherin, Snail-1 and vimentin (P < 0.01). CONCLUSION CCN5 can regulate the proliferation, migration and invasion of HESCs and thus plays an important role in EMT of HESCs, suggesting the potential of CCN5 as a therapeutic target for endometriosis.
Collapse
Affiliation(s)
- 虹 蔡
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 勉 刘
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妙玲 林
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 红 李
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 朗 沈
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 松 全
- />南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Das A, Haque I, Ray P, Ghosh A, Dutta D, Quadir M, De A, Gunewardena S, Chatterjee I, Banerjee S, Weir S, Banerjee SK. CCN5 activation by free or encapsulated EGCG is required to render triple-negative breast cancer cell viability and tumor progression. Pharmacol Res Perspect 2021; 9:e00753. [PMID: 33745223 PMCID: PMC7981588 DOI: 10.1002/prp2.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) has been considered an anticancer agent despite conflicting and discrepant bioavailability views. EGCG impairs the viability and self-renewal capacity of triple-negative breast cancer (TNBC) cells and makes them sensitive to estrogen via activating ER-α. Surprisingly, the mechanism of EGCG's action on TNBC cells remains unclear. CCN5/WISP-2 is a gatekeeper gene that regulates viability, ER-α, and stemness in TNBC and other types of cancers. This study aimed to investigate whether EGCG (free or encapsulated in nanoparticles) interacts with the CCN5 protein by emphasizing its bioavailability and enhancing its anticancer effect. We demonstrate that EGCG activates CCN5 to inhibit in vitro cell viability through apoptosis, the sphere-forming ability via reversing TNBC cells' stemness, and suppressing tumor growth in vivo. Moreover, we found EGCG-loaded nanoparticles to be functionally more active and superior in their tumor-suppressing ability than free-EGCG. Together, these studies identify EGCG (free or encapsulated) as a novel activator of CCN5 in TNBC cells and hold promise as a future therapeutic option for TNBC with upregulated CCN5 expression.
Collapse
Affiliation(s)
- Amlan Das
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
- Present address:
National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Inamul Haque
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
| | - Priyanka Ray
- Department of Chemical Biochemical Environmental Engineering (CBEEUniversity of MarylandBaltimoreMDUSA
| | - Arnab Ghosh
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Debasmita Dutta
- Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoNDUSA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoNDUSA
| | - Archana De
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Indranil Chatterjee
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
- Present address:
Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
| | - Snigdha Banerjee
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Scott Weir
- Department of PharmacologyToxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Sushanta K. Banerjee
- Cancer Research UnitVA Medical CenterKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Lead contact, SKB, Cancer Research UnitKansas CityMOUSA
| |
Collapse
|
9
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Shi ZQ, Chen ZY, Han Y, Zhu HY, Lyu MD, Zhang H, Zhang Y, Yang LQ, Pan WW. WISP2 promotes cell proliferation via targeting ERK and YAP in ovarian cancer cells. J Ovarian Res 2020; 13:85. [PMID: 32711570 PMCID: PMC7382796 DOI: 10.1186/s13048-020-00687-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background Wnt-inducible signaling pathway protein 2 (WISP2) is a wnt1-induced signaling pathway protein 2. Although studies indicate that WISP2 may promote the development of various tumors, its role in ovarian cancer remains unclear. The objective of the current study was to analyze the effects of WISP2 on the proliferation and migration of ovarian cancer cells in vitro and in vivo. Results Immunohistochemistry and western blotting indicated that WISP2 was highly expressed in various ovarian cancer tissues and cell lines, but weakly expressed in normal ovary tissue. WISP2 deletion inhibited cell growth, clone formation, and migration of ovarian cancer cells while promoting cell apoptosis and affecting the cell cycle. This growth inhibitory effect caused by WISP2 loss is due to the inhibition of phosphorylated extracellular signal-related kinase (p-ERK)1/2, as well as CCAAT/enhancer-binding protein α (CEBPα) and CEPBβ. In addition, WISP2 deletion also activated the Yes-associated protein (YAP). Conclusion WISP2 deletion inhibits ovarian cancer cell proliferation by affecting ERK signaling pathways.
Collapse
Affiliation(s)
- Zi-Qing Shi
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Zi-Yan Chen
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Yao Han
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Heng-Yan Zhu
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Meng-Dan Lyu
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Han Zhang
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Yi Zhang
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Liu-Qing Yang
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wei-Wei Pan
- School of Medicine, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
11
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020; 156:104806. [PMID: 32294525 DOI: 10.1016/j.phrs.2020.104806] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.
Collapse
|
14
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
15
|
Sun S, Cui Z, Yan T, Wu J, Liu Z. CCN5 inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells. Cell Biol Int 2020; 44:998-1008. [PMID: 31889370 DOI: 10.1002/cbin.11296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell-cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst-positive cell number, and altered the apoptotic-related proteins (caspase-3/9, Bax, and Bcl-2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca-8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p-AKT Ser473) in Tca-8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5-silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.
Collapse
Affiliation(s)
- Shiqun Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhi Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Tongtong Yan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Jian Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
16
|
Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:317-347. [DOI: 10.1007/978-981-15-1025-0_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Shao ZQ, Zhang X, Fan HH, Wang XS, Wu HM, Zhang L, Cheng WH, Zhu JH. Selenoprotein T Promotes Proliferation and G1-to-S Transition in SK-N-SH Cells: Implications in Parkinson's Disease. J Nutr 2019; 149:2110-2119. [PMID: 31504723 DOI: 10.1093/jn/nxz199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). OBJECTIVE We hypothesized a proliferative role of SELENOT in neural cells. METHODS To assess SELENOT status in PD, sedated male C57BL/6 mice at 10-12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor-like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. RESULTS SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase-positive dopaminergic neurons of 6-hydroxydopamine-injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2'-deoxyuridine incorporation but induced (17-47%; P < 0.05) annexin V-positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88-120%; P < 0.05) and reduced (37-42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. CONCLUSIONS These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.
Collapse
Affiliation(s)
- Zi-Qiang Shao
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Shuang Wang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.,Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Kaddour N, Zhang D, Gao ZH, Liu JL. Recombinant protein CCN5/WISP2 promotes islet cell proliferation and survival in vitro. Growth Factors 2019; 37:120-130. [PMID: 31437074 DOI: 10.1080/08977194.2019.1652400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pancreatic ß cell proliferation, survival and function are key elements that need to be considered in developing novel antidiabetic therapies. We recently identified CCN5/WISP2 to have potential growth promoting properties when overexpressed in ß cells; however, further investigations are needed to validate those properties. In this study, we demonstrated that exogenous treatment of insulinoma cells and primary islets with recombinant CCN5 (rh-CCN5) protein enhanced the proliferative capacity which was correlated with activation of cell-cycle regulators CDK4 and cyclin D1. Furthermore, pre-incubation of these cells with rh-CCN5 enhanced their survival rate after being exposed to harsh treatments such as streptozotocin and high concentrations of glucose and free fatty acids. CCN5 as well caused an upregulation in the expression of key genes associated with ß cell identity and function such as GLUT-2 and GCK. Finally, CCN5 activated FAK and downstream ERK kinases which are known to stimulate cell proliferation and survival. Hence, our results validate the growth promoting activities of rh-CCN5 in ß cells and open the door for further investigations in vivo.
Collapse
Affiliation(s)
- Nancy Kaddour
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Di Zhang
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
19
|
Chai DM, Qin YZ, Wu SW, Ma L, Tan YY, Yong X, Wang XL, Wang ZP, Tao YS. WISP2 exhibits its potential antitumor activity via targeting ERK and E-cadherin pathways in esophageal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:102. [PMID: 30808397 PMCID: PMC6390602 DOI: 10.1186/s13046-019-1108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Backgrounds Emerging evidence has demonstrated that WISP2 is critically involved in cell proliferation, migration, invasion and metastasis in cancers. However, the function of WISP2 in esophageal squamous cell carcinoma (ESCC) is largely unclear. Therefore, we aim to explore the effects and the potential mechanism of WISP2 on proliferation and motility and invasion of ESCC cells. Methods Cell proliferation was detected by MTT assay and apoptosis was measured by FACS in ESCC cells after WISP2 downregulation and overexpression. Cell migration and invasion were analyzed by wound healing assay and transwell migration assay, respectively. The expression of ERK-1/2, Slug and E-cadherin was measured by Western blot respectively. IHC was performed to measure the expression of WISP2 in ESCC tissues. Results WISP2 overexpression is associated with survival in ESCC patients. WISP2 overexpression inhibited cell growth and induced cell apoptosis, suppressed cell migration and invasion in ESCC cells. Moreover, WISP overexpression retarded tumor growth in mouse model. WISP2 downregulation enhanced cell growth, inhibited apoptosis, promoted cell migration and invasion in ESCC cells. Mechanistically, WISP2 exerts its tumor suppressive functions via regulation of ERK1/2, Slug, and E-cadherin in ESCC cells. Conclusions Our findings suggest that activation of WISP2 could be a useful therapeutic strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Da-Min Chai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yan-Zi Qin
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Shi-Wu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Li Ma
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yuan-Yuan Tan
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiang Yong
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Yi-Sheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China.
| |
Collapse
|
20
|
MiR-30a regulates cancer cell response to chemotherapy through SNAI1/IRS1/AKT pathway. Cell Death Dis 2019; 10:153. [PMID: 30770779 PMCID: PMC6377638 DOI: 10.1038/s41419-019-1326-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022]
Abstract
Despite gemcitabine being the leading chemotherapeutic drug for pancreatic cancer, many patients still relapse due to the drug resistance. We previously reported the molecular link between FKBP51 mediated AKT inhibition and gemcitabine response in pancreatic cancers. However, the upstream regulator of this pathway, especially the involvement of non-coding RNAs in gemcitabine response is still not clear. Here we delineated the miRNA expression profile and key signaling pathways associated with gemcitabine response. Furthermore, we confirmed that miR-30a, one node of this network, regulated cellular response to gemcitabine through SNAI1-IRS1-AKT pathway. MiR-30a directly targeted SNAI1, which activates AKT and ERK through regulating IRS1 in vitro and in vivo. Clinically, miR-30a is downregulated in pancreatic cancer tissue and associated with overall patient survival. We also identified miR-30a as an AKT-FOXO3a-regulated gene that forms a feedback loop. Together, these results demonstrate that miR-30a is an upstream regulator of the Akt pathway with a critical role in cancer etiology and chemoresistance.
Collapse
|
21
|
Pang X, Zhou Z, Yu Z, Han L, Lin Z, Ao X, Liu C, He Y, Ponnusamy M, Li P, Wang J. Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biol 2019; 16:233-248. [PMID: 30628514 DOI: 10.1080/15476286.2019.1565665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of chemotherapeutic drugs resistance such as doxorubicin (DOX) and cisplatin (DDP) is the major barrier in gastric cancer therapy. Emerging evidences reveal that microRNAs (miRNAs) contribute to chemosensitivity. In this study, we investigated the role of miR-633, an oncogenic miRNA, in gastric cancer chemoresistance. In gastric cancer tissue and cell lines, miR-633 expression was highly increased and correlated with down regulation of Fas-associated protein with death domain (FADD). Inhibition of miR-633 significantly increased FADD protein level and enhanced DOX/DDP induced apoptosis in vitro. MiR-633 antagomir administration remarkably decreased tumor growth in combination with DOX in vivo, suggesting that miR-633 targets FADD to block gastric cancer cell death. We found that the promoter region of miR-633 contained putative binding sites for forkhead box O 3 (Foxo3a), which can directly repress miR-633 transcription. In addition, we observed that DOX-induced nuclear accumulation of Foxo3a leaded to the suppression of miR-633 transcription. Together, our study revealed that miR-633/FADD axis played a significant role in the chemoresistance and Foxo3a regulated this pathway in gastric cancer. Thus, miR-633 antagomir resensitized gastric cancer cells to chemotherapy drug and had potentially therapeutic implication.
Collapse
Affiliation(s)
- Xin Pang
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Zhixia Zhou
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Zhuang Yu
- b Department of Oncology , Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Lichun Han
- b Department of Oncology , Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Zhijuan Lin
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China.,c Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine , Weifang Medical University , Weifang , Shandong Province , China
| | - Xiang Ao
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Chang Liu
- d Department of Oncology , PLA Army General Hospital , Beijin , China
| | - Yuqi He
- e Department of Gastroenterology , PLA Army General Hospital , Beijin , China
| | - Murugavel Ponnusamy
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Peifeng Li
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Jianxun Wang
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| |
Collapse
|
22
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
23
|
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee SK. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018; 18:99. [PMID: 29370782 PMCID: PMC5785848 DOI: 10.1186/s12885-018-3993-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. Methods We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Results Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. Conclusions These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Acup
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Amitabha Ray
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| |
Collapse
|
24
|
Gupta V, Haque I, Chakraborty J, Graff S, Banerjee S, Banerjee SK. Racial disparity in breast cancer: can it be mattered for prognosis and therapy. J Cell Commun Signal 2017; 12:119-132. [PMID: 29188479 DOI: 10.1007/s12079-017-0416-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) has emerged as a deadly disease that affects the lives of millions of women worldwide. It is the second leading cause of cancer-related deaths in the United States. Advancements in BC screening, preventive measures and treatment have resulted in significant decline in BC related deaths. However, unacceptable levels of racial disparity have been consistently reported, especially in African-American (AA) women compared to European American (EA). AA women go through worse prognosis, shorter survival time and higher mortality rates, despite higher cancer incidence reported in EA. These disparities are independent of socioeconomic status, access to healthcare or age, or even the stage of BC. Recent race-specific genetic and epigenetic studies have reported biological causes, which form the crux of this review. However, the developments are just the tip of the iceberg. Prioritizing primary research towards studying race-specific tumor microenvironment and biological composition of the host system in delineating the cause of these disparities is utmost necessary to ameliorate the disparity and design appropriate diagnosis/treatment regimen for AA women suffering from BC. In this review article, we discuss emerging trends and exciting discoveries that reveal how genetic/epigenetic circuitry contributed to racial disparity and discussed the strategies that may help in future therapeutic development.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Inamul Haque
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jinia Chakraborty
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Blue Valley West High School, Overland Park, KS, USA
| | - Stephanie Graff
- Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, Gupta V, Haque I, Tawfik O, Banerjee SK. CCN5/WISP-2 restores ER-∝ in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6:e340. [PMID: 28530705 PMCID: PMC5569333 DOI: 10.1038/oncsis.2017.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC)
progression. However, it is not well understood how CCN5 prevents invasive phenotypes
of BC cells. CCN5 protein expression is detected in estrogen receptor-α
(ER-α) -positive normal breast epithelial cells as well as BC cells, which are
weakly invasive and rarely metastasize depending on the functional status of
ER-α. A unique molecular relation between CCN5 and ER-α has been
established as the components of the same signaling pathway that coordinate some
essential signals associated with the proliferation as well as delaying the disease
progression from a non-invasive to invasive phenotypes. Given the importance of this
connection, we determined the role of CCN5 in regulation of ER-α in different
cellular settings and their functional relationship. In a genetically engineered
mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by
doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α
expression and activity in normal and neoplastic breast cells, as documented in
various in vitro settings such as mouse mammary gland culture, human mammary
epithelial cell and different BC cell cultures in the presence or absence of human
recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is
sufficient to induce ER-α expression at the transcription level via interacting
with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a.
Moreover, in vitro and in vivo functional assays indicate that CCN5
treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly
via restoring ER-α. Collectively, these studies implicates that the combination
treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as
potential therapies for TNBC.
Collapse
Affiliation(s)
- S Sarkar
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ghosh
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - S Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - G Maity
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Das
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - M A Larson
- Transgenic and Gene-targeting Institutional Facilities, University of Kansas Medical Centre, Kansas City, KS, USA
| | - V Gupta
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - I Haque
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - O Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
26
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
27
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
28
|
Xu T, Chen J, Zhu D, Chen L, Wang J, Sun X, Hu B, Duan Y. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells via SKP2/P27 signaling pathway. Sci Rep 2017; 7:275. [PMID: 28325896 PMCID: PMC5428252 DOI: 10.1038/s41598-017-00326-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Schistosomiasis is characterized by egg deposition, granulomatous inflammatory reaction and then subsequent hepatic fibrosis formation. Activated HSCs are regarded as the main effector cells in the progression of liver fibrosis and induction of senescence in hepatic stellate cells (HSCs) is vital to the reversion of hepatic fibrosis. Our previous work has showed that S. japonicum egg antigen p40 (Sjp40) could promote HSCs senescence via a STAT3/p53/p21 mechanism. In this paper, the major aim was to explore whether there are other signaling pathways in the process of Sjp40-induced HSCs aging and the underlying effect of SKP2/P27 signal pathway in this procedure. We observed the Sjp40-induced decrease of α-SMA and the senescence of LX-2 cells, and Sjp40 could upregulate P27 and downregulate the protein level of SKP2. The senescence induced by Sjp40 might be reversed in LX-2 cells that treated with P27-specific siRNA or with SKP2-special over-expression plasmid. In addition, we also demonstrated that the decreased expression of P-Rb and α-SMA induced by Sjp40 were partly restored by SKP2-overexpression. These data suggest that Sjp40 might inhibit HSCs activation by promoting cellular senescence via SKP2/P27 signaling pathway, which put forward novel mechanism in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tianhua Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Bin Hu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Dual roles of CCN proteins in breast cancer progression. J Cell Commun Signal 2016; 10:217-222. [PMID: 27520547 DOI: 10.1007/s12079-016-0345-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/30/2016] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment has a powerful effect on the development and progression of human breast cancer, which may be used therapeutically. Despite efforts to understand the complex role of the tumor microenvironment in breast cancer development, the specific players and their contributions to tumorigenesis need further investigation. The CCN family of matricellular proteins comprises six members (CCN1-6; CYR61, CTGF, NOV, WISP1-3) with central roles in development, inflammation, and tissue repair. CCN proteins also exert functions during pathological processes including fibrosis and cancer by regulating extracellular signals in the cellular environment. Studies have demonstrated that all six CCN proteins exert functions in breast tumorigenesis. Although CCN proteins share a multimodular structure in which most cysteine residues are conserved within structural motifs, they may have opposing functions in breast cancer progression. A better understanding of the functions of each CCN member will assist in the development of specific therapeutic approaches for breast cancer.
Collapse
|
30
|
Neely BA, Wilkins CE, Marlow LA, Malyarenko D, Kim Y, Ignatchenko A, Sasinowska H, Sasinowski M, Nyalwidhe JO, Kislinger T, Copland JA, Drake RR. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0154074. [PMID: 27128972 PMCID: PMC4851420 DOI: 10.1371/journal.pone.0154074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC). This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened the findings from each domain, demonstrating the complementary nature of such an analysis. Together these results highlight the importance of the VHL/HIF1A/HIF2A axis and provide a foundation and therapeutic targets for future studies. (Data are available via ProteomeXchange with identifier PXD003271 and MassIVE with identifier MSV000079511.)
Collapse
Affiliation(s)
- Benjamin A. Neely
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christopher E. Wilkins
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Dariya Malyarenko
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yunee Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Maciek Sasinowski
- INCOGEN, Inc., Williamsburg, Virginia, United States of America
- Venebio Group, LLC, Richmond, Virginia, United States of America
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sawyer AJ, Kyriakides TR. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev 2016; 97:56-68. [PMID: 26763408 DOI: 10.1016/j.addr.2015.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.
Collapse
|
32
|
Malik AR, Liszewska E, Jaworski J. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system. Front Cell Neurosci 2015; 9:237. [PMID: 26157362 PMCID: PMC4478388 DOI: 10.3389/fncel.2015.00237] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology.
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| |
Collapse
|
33
|
Ye J, Yin L, Xie P, Wu J, Huang J, Zhou G, Xu H, Lu E, He X. Antiproliferative effects and molecular mechanisms of troglitazone in human cervical cancer in vitro. Onco Targets Ther 2015; 8:1211-8. [PMID: 26060406 PMCID: PMC4454221 DOI: 10.2147/ott.s79899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the effects of troglitazone on human cervical cancer SiHa cells and its mechanisms of action. SiHa cells were incubated with different concentrations of troglitazone (100, 200, or 400 μg/mL) for 24, 48, and 72 hours. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay; cell cycle and apoptosis were detected by flow cytometry; and morphology of SiHa cells was observed under an inverted microscope. pcDNA3.1 and pcDNA3.1-Skp2 plasmids were constructed and then transfected into SiHa cells. Protein expression was analyzed by Western blotting. Troglitazone inhibited the proliferation of SiHa cells in a time- and concentration-dependent manner. Troglitazone caused G0/1 phase arrest but failed to reduce apoptosis in SiHa cells. Troglitazone significantly increased expression of p27 but decreased Skp2 expression. Skp2 overexpression inhibited the role of troglitazone in increasing expression of p27, and the cell cycle inhibitory effect of troglitazone. Troglitazone can inhibit SiHa cell viability by affecting cell cycle distribution but not apoptosis, and Skp2 and p27 may play a critical role.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Yin
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peng Xie
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianfeng Wu
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Huang
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoren Zhou
- Department of Chemotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanzi Xu
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Emei Lu
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xia He
- Department of Radiotherapy, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
34
|
Xiao G, Tang Z, Yuan X, Yuan J, Zhao J, Zhang Z, He Z, Liu J. The expression of Wnt-1 inducible signaling pathway protein-2 in astrocytoma: Correlation between pathological grade and clinical outcome. Oncol Lett 2014; 9:235-240. [PMID: 25435966 PMCID: PMC4246620 DOI: 10.3892/ol.2014.2663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
Wnt-1 inducible signaling pathway protein-2 (WISP-2) is a member of the CCN family, which is critical for the control of cell morphology, motion, adhesion and other processes involved in tumorigenesis. The expression pattern and clinical significance of WISP-2 in astrocytomas remains unclear. In this study, reverse transcription-polymerase chain reaction was performed to systematically investigate the expression of WISP-2 in 47 astrocytoma tissues of different pathological grades and 10 normal brain tissues. The mRNA expression levels of WISP-2 in the astrocytoma tissues were observed to be significantly higher than those in the normal brain tissues. Furthermore, the upregulation of WISP-2 was found to be associated with astrocytomas of higher pathological grades. Subsequently, 154 astrocytoma and 15 normal brain tissues were analyzed using immunohistochemistry and similar results were obtained. Univariate and multivariate survival analyses were used to determine the correlations between WISP-2 expression and overall survival (OS) and progression-free survival (PFS). The results indicated that the expression of WISP-2 was found to negatively correlate with patient PFS and OS. These results demonstrated that the WISP-2 protein is involved in the pathogenesis and progression of human astrocytomas and may serve as a malignant biomarker of this disease.
Collapse
Affiliation(s)
- Gelei Xiao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianrui Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jian Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhiping Zhang
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingping Liu
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|