1
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Ren M, Xu Q, Luan J, Ni Y, Xie B. Mir-509-3p targets SLC25A13 to regulate ferroptosis and protect retinal endothelial cells in diabetic retinopathy. Acta Diabetol 2024:10.1007/s00592-024-02400-3. [PMID: 39508857 DOI: 10.1007/s00592-024-02400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
AIMS Diabetic retinopathy (DR) is a major complication of diabetes that leads to vision impairment. The aim of this study was to investigate the regulatory role of miR-509-3p in DR, focusing on its interaction with SLC25A13 and its impact on retinal endothelial cell function, oxidative stress, apoptosis, and ferroptosis. METHODS HRVECs were cultured in high-glucose (HG) conditions to establish an in vitro DR model. miR-509-3p mimics and inhibitors were transfected into HRVECs to assess their effects on SLC25A13 expression, cell viability, apoptosis, reactive oxygen species (ROS) levels, and ferroptosis markers. A luciferase reporter assay and RNA immunoprecipitation were used to confirm the binding of miR-509-3p to SLC25A13 mRNA. For in vivo validation, agomiR-509-3p was injected into the vitreous of DR mice, and retinal thickness, pathological damage, and apoptosis were evaluated. Ferroptosis-related markers (GPX4, TlR4, ASCL4) were analyzed in HRVECs to explore the mechanism of miR-509-3p in regulating ferroptosis. RESULTS In vitro, miR-509-3p significantly decreased SLC25A13 expression, resulting in enhanced HRVEC viability, reduced apoptosis, and lower ROS levels under HG conditions. Overexpression of SLC25A13 reversed these protective effects, while miR-509-3p knockdown exacerbated oxidative stress and apoptosis. In vivo, agomiR-509-3p increased retinal thickness, reduced pathological damage, and decreased apoptosis in DR mice. Ferroptosis marker analysis revealed that miR-509-3p upregulated GPX4 expression and downregulated TlR4 and ASCL4, whereas SLC25A13 overexpression reversed these effects, further linking miR-509-3p to the regulation of ferroptosis. CONCLUSIONS miR-509-3p exerts a protective effect in DR by targeting SLC25A13, reducing oxidative stress, apoptosis, and ferroptosis in retinal endothelial cells. These findings highlight the potential of miR-509-3p as a therapeutic target for DR management.
Collapse
Affiliation(s)
- Meiqing Ren
- Department of Ophthalmology, School of medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qian Xu
- Department of Ophthalmology, School of medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jie Luan
- Department of Ophthalmology, School of medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yan Ni
- Department of Ophthalmology, School of medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Bo Xie
- The Diabetes Research Institute, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Khan MS, Wong GL, Zhuang C, Najjar MK, Lo HW. Crosstalk between breast cancer-derived microRNAs and brain microenvironmental cells in breast cancer brain metastasis. Front Oncol 2024; 14:1436942. [PMID: 39175471 PMCID: PMC11338853 DOI: 10.3389/fonc.2024.1436942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women, constituting 15.2% of all new cancers diagnosed in the United States. Distant breast cancer metastasis accounts for the majority of breast cancer-related deaths; brain metastasis is the third most common site for metastatic breast cancer but is associated with worst prognosis of approximately eight months of survival. Current treatment options for breast cancer brain metastasis (BCBM) are limited and ineffective. To help identify new and effective therapies for BCBM, it is important to investigate the mechanisms by which breast cancer cells metastasize to the brain and thrive in the brain microenvironment. To this end, studies have reported that primary breast tumor cells can prime brain microenvironmental cells, including, astrocytes and microglia, to promote the formation of BCBM through the release of extracellular vesicle-microRNAs (miRNAs). Breast tumor-derived miRNAs can also promote breast cancer cell invasion through the blood-brain barrier by disrupting the integrity of the brain microvascular endothelial cells. In this review, we summarize current literature on breast cancer-derived BCBM-promoting miRNAs, cover their roles in the complex steps of BCBM particularly their interactions with microenvironmental cells within the brain metastatic niche, and finally discuss their therapeutic applications in the management of BCBM.
Collapse
Affiliation(s)
- Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grace L. Wong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Hudson K, Mondia MW, Zhang Y, Saha S, Gibert MK, Dube C, Sun Y, Marcinkiewicz P, Fadul C, Abounader R. The role of microRNAs in brain metastasis. J Neurooncol 2024; 166:231-241. [PMID: 38194195 PMCID: PMC10834572 DOI: 10.1007/s11060-023-04541-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Brain metastasis (BM) is the most common type of brain tumor and frequently foreshadows disease progression and poor overall survival with patients having a median survival of 6 months. 70,000 new cases of BM are diagnosed each year in the United States (US) and the incidence rate for BM is increasing with improved detection. MicroRNAs (miRNAs) are small non-coding RNAs that serve as critical regulators of gene expression and can act as powerful oncogenes and tumor suppressors. MiRNAs have been heavily implicated in cancer and proposed as biomarkers or therapeutic targets or agents. In this review, we summarize an extensive body of scientific work investigating the role of microRNAs in BM. We discuss miRNA dysregulation, functions, targets, and mechanisms of action in BM and present the current standing of miRNAs as biomarkers and potential therapeutics for BM. We conclude with future directions of miRNA basic and clinical research in BM.
Collapse
Affiliation(s)
- Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mark Willy Mondia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Myron K Gibert
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Yunan Sun
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Pawel Marcinkiewicz
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Camilo Fadul
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, Department of Neurology, University of Virginia, University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Zugbi S, Aschero R, Ganiewich D, Cancela MB, Winter U, Ottaviani D, Sampor C, Dinardi M, Torbidoni AV, Mena M, Balaguer-Lluna L, Lamas G, Sgroi M, Lagomarsino E, Lubieniecki F, Fandiño A, Radvanyi F, Abramson DH, Podhajcer O, Llera AS, Cafferata EG, Chantada G, Carcaboso AM, Schaiquevich P. Establishment and Comprehensive Characterization of a Novel Preclinical Platform of Metastatic Retinoblastoma for Therapeutic Developments. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 38117242 PMCID: PMC10741097 DOI: 10.1167/iovs.64.15.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Purpose Although there have been improvements in the management of metastatic retinoblastoma, most patients do not survive, and all patients suffer from multiple short- and long-term treatment toxicities. Reliable and informative models to assist clinicians are needed. Thus we developed and comprehensively characterized a novel preclinical platform of primary cell cultures and xenograft models of metastatic retinoblastoma to provide insights into the molecular biology underlying metastases and to perform drug screening for the identification of hit candidates with the highest potential for clinical translation. Methods Orbital tumor, bone marrow, cerebrospinal fluid, and lymph node tumor infiltration specimens were obtained from seven patients with metastatic retinoblastoma at diagnosis, disease progression, or relapse. Tumor specimens were engrafted in immunodeficient animals, and primary cell lines were established. Genomic, immunohistochemical/immunocytochemical, and pharmacological analysis were performed. Results We successfully established five primary cell lines: two derived from leptomeningeal, two from orbital, and one from lymph node tumor dissemination. After the intravitreal or intraventricular inoculation of these cells, we established cell-derived xenograft models. Both primary cell lines and xenografts accurately retained the histological and genomic features of the tumors from which they were derived and faithfully recapitulated the dissemination patterns and pharmacological sensitivity observed in the matched patients. Conclusions Ours is an innovative and thoroughly characterized preclinical platform of metastatic retinoblastoma developed for the understanding of tumor biology of this highly aggressive tumor and has the potential to identify drug candidates to treat patients who currently lack effective treatment options.
Collapse
Affiliation(s)
- Santiago Zugbi
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Rosario Aschero
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Daiana Ganiewich
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - María B. Cancela
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Ursula Winter
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Daniela Ottaviani
- Institut Curie; PSL Research University, Centre National de la Recherche Scientifique (CNRS); Equipe Ligue contre le cancer, Paris, France
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Milagros Dinardi
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Ana V. Torbidoni
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marcela Mena
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Gabriela Lamas
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Eduardo Lagomarsino
- Pharmacy Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - François Radvanyi
- Institut Curie; PSL Research University, Centre National de la Recherche Scientifique (CNRS); Equipe Ligue contre le cancer, Paris, France
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Osvaldo Podhajcer
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Andrea S. Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Eduardo G. Cafferata
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Guillermo Chantada
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Paula Schaiquevich
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
8
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
9
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Abdelsalam M, Ahmed M, Osaid Z, Hamoudi R, Harati R. Insights into Exosome Transport through the Blood-Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals (Basel) 2023; 16:571. [PMID: 37111328 PMCID: PMC10144189 DOI: 10.3390/ph16040571] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Drug delivery to the central nervous system (CNS) is limited due to the presence of the blood-brain barrier (BBB), a selective physiological barrier located at the brain microvessels that regulates the flow of cells, molecules and ions between the blood and the brain. Exosomes are nanosized extracellular vesicles expressed by all cell types and that function as cargos, allowing for communication between the cells. The exosomes were shown to cross or regulate the BBB in healthy and disease conditions. However, the mechanistic pathways by which exosomes cross the BBB have not been fully elucidated yet. In this review, we explore the transport mechanisms of exosomes through the BBB. A large body of evidence suggests that exosome transport through the BBB occurs primarily through transcytosis. The transcytosis mechanisms are influenced by several regulators. Inflammation and metastasis also enhance exosome trafficking across the BBB. We also shed light on the therapeutical applications of exosomes for treating brain diseases. Further investigations are essential to provide clearer insights related to trafficking of exosomes across the BBB and disease treatment.
Collapse
Affiliation(s)
- Manal Abdelsalam
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
11
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
12
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
13
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
14
|
Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers (Basel) 2022; 14:cancers14194963. [PMID: 36230886 PMCID: PMC9563727 DOI: 10.3390/cancers14194963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Brain metastases are the most common brain tumor in adults and are associated with poor prognosis. The propensity of different solid tumors to metastasize varies greatly, with lung, breast, and melanoma primary tumors commonly leading to brain metastases, while other primaries such as prostate rarely metastasize to the brain. The molecular mechanisms that predispose and facilitate brain metastasis development are poorly understood. In this review, we present the current data on the genomic landscape of brain metastases that arise from various primary cancers and also outline potential molecular mechanisms that drive the formation of distant metastases in the brain. Abstract Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
Collapse
|
15
|
Hammash D, Mahfood M, Khoder G, Ahmed M, Tlili A, Hamoudi R, Harati R. miR-623 Targets Metalloproteinase-1 and Attenuates Extravasation of Brain Metastatic Triple-Negative Breast Cancer Cells. BREAST CANCER: TARGETS AND THERAPY 2022; 14:187-198. [PMID: 35936987 PMCID: PMC9354772 DOI: 10.2147/bctt.s372083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Most breast cancer-related deaths result from metastasis. Understanding the molecular basis of metastasis is needed for the development of effective targeted and preventive strategies. Matrix metalloproteinase-1 (MMP1) plays an important role in brain metastasis (BM) of triple-negative breast cancer (TNBC) by promoting extravasation of cancer cells across the brain endothelium (BE). MMP1 expression is controlled by endogenous microRNAs. Preliminary bioinformatics analysis has revealed that miR-623, known to target the 3ʹUTR of MMP1, is significantly downregulated in brain metastatic tumors compared to primary BC tumors. However, the involvement of miR-623 in MMP1 upregulation in breast cancer brain metastatic cells (BCBMC) remains unexplored. Here, we investigated the role of miR-623 in MMP1 regulation and its impact on the extravasation of TNBC cells through the BE in vitro. Materials and Methods A loss-and-gain of function method was employed to address the effect of miR-623 modulation on MMP1 expression. MMP1 regulation by miR-623 was investigated by real-time PCR, western blot, luciferase and transwell migration assays using an in vitro human BE model. Results Our results confirmed that brain metastatic TNBC cells express lower levels of miR-623 compared with cells having low propensity to spread toward the brain. miR-623 binds to the 3′-untranslated region of MMP1 transcript and downregulates its expression. Restoring miR-623 expression significantly decreased MMP1 expression, preserved the endothelial barrier integrity, and attenuated transmigration of BCBMC through the BE. Conclusion Our study elucidates, for the first time, the crucial role of miR-623 as MMP1 direct regulator in BCBMC and sheds light on miR-623 as a novel therapeutic target that can be exploited to predict and prevent brain metastasis in TNBC. Importantly, the presents study helps in unraveling a brain metastasis-specific microRNA signature in TNBC that can be used as a guide to personalized metastasis prediction and preventive approach with better therapeutic outcome.
Collapse
Affiliation(s)
- Dua Hammash
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technologies, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: Rania Harati, Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates, Tel +971 6 505 7438, Fax +971 6 558 5812, Email
| |
Collapse
|
16
|
Siegl F, Vecera M, Roskova I, Smrcka M, Jancalek R, Kazda T, Slaby O, Sana J. The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases. Cancers (Basel) 2022; 14:cancers14143386. [PMID: 35884446 PMCID: PMC9322877 DOI: 10.3390/cancers14143386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022] Open
Abstract
Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications.
Collapse
Affiliation(s)
- Frantisek Siegl
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Ivana Roskova
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Annes University Hospital Brno and Faculty of Medicine of Masaryk University, 656 91 Brno, Czech Republic;
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic;
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic
- Department of Pathology, University Hospital Brno, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-495-246
| |
Collapse
|
17
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
18
|
Motallebnejad P, Rajesh VV, Azarin SM. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell Mol Bioeng 2022; 15:99-114. [PMID: 35096187 PMCID: PMC8761198 DOI: 10.1007/s12195-021-00710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In vivo, breast cancer cells spend on average 3-7 days adhered to the endothelial cells inside the vascular lumen before entering the brain. IL-1β is one of the highly upregulated molecules in brain-seeking triple negative breast cancer (TNBC) cells. In this study, the effect of IL-1β on the blood-brain barrier (BBB) and astrocytes and its role in transmigration of TNBC cells were evaluated. METHODS The effect of IL-1β on transendothelial electrical resistance, gene and protein expression of human induced pluripotent stem cell-derived brain-specific microvascular endothelial-like cells (iBMECs) was studied. Transport of IL-1β across the iBMEC layer was investigated and the effect of IL-1β treatment of astrocytes on their cytokine and chemokine secretome was evaluated with a cytokine membrane array. Using BBB-on-a-chip devices, transmigration of MDA-MB-231 cells and their brain-seeking variant (231BR) across the iBMECs was studied, and the effect of an IL-1β neutralizing antibody on TNBC cell transmigration was investigated. RESULTS We showed that IL-1β reduces BBB integrity and induces endothelial-to-mesenchymal transition in iBMECs. IL-1β crosses the iBMEC layer and induces secretion of multiple chemokines by astrocytes, which can enhance TNBC cell transmigration across the BBB. Transmigration assays in a BBB-on-a-chip device showed that 231BR cells have a higher rate of transmigration across the iBMECs compared to MDA-MB-231 cells, and IL-1β pretreatment of BBB-on-a-chip devices increases the number of transmigrated MDA-MB-231 cells. Finally, we demonstrated that neutralizing IL-1β reduces the rate of 231BR cell transmigration. CONCLUSION IL-1β plays a significant role in transmigration of brain-seeking TNBC cells across the BBB. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00710-y.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vinayak V. Rajesh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
20
|
Chen R, He P. Long noncoding RNA HOXA-AS2 accelerates cervical cancer by the miR-509-3p/BTN3A1 axis. J Pharm Pharmacol 2021; 73:1387-1396. [PMID: 34240204 DOI: 10.1093/jpp/rgab090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/28/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Cervical cancer is an aggressive malignant tumour and causes high mortality in women. LncRNA HOXA-AS2 is a tumour promoter in many cancers. The current work was designed to elucidate the functions of HOXA-AS2 in cervical cancer and the underlying regulatory mechanism. METHODS qRT-PCR was conducted to reveal RNA levels. A FISH assay was conducted for the identification of the subcellular location of HOXA-AS2. MTT, EdU, Transwell and tube formation were used for detection of cell growth, migration and angiogenesis, respectively. In-vivo studies were conducted to reveal the role of HOXA-AS2 on transplanted tumour growth in mice. KEY FINDINGS The HOXA-AS2 level was found high in tissues and cells of cervical cancer. Silencing of HOXA-AS2 restrained cell proliferation, migration and invasion. Angiogenesis of HUVECs was restrained after silencing HOXA-AS2. Additionally, HOXA-AS2 upregulated the BTN3A1 by interaction with miR-509-3p. BTN3A1 overexpression rescues the inhibitory effect of silenced HOXA-AS2 on cell phenotypes in cervical cancer. Moreover, xenograft tumour growth in mice was suppressed by HOXA-AS2 depletion and was facilitated by BTN3A1 overexpression. CONCLUSIONS HOXA-AS2 accelerates cellular progression in cervical cancer by the miR-509-3p/BTN3A1 axis.
Collapse
Affiliation(s)
| | - Ping He
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Fu B, Liu W, Zhu C, Li P, Wang L, Pan L, Li K, Cai P, Meng M, Wang Y, Zhang A, Tang W, An M. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int J Biol Sci 2021; 17:3104-3117. [PMID: 34421353 PMCID: PMC8375234 DOI: 10.7150/ijbs.58916] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) play critical roles in tumorigenesis and the progression of various cancers. We previously identified a novel upregulated circRNA, circBCBM1 (hsa_circ_0001944), in the context of breast cancer brain metastasis. However, the potential biological function and molecular mechanism of circBCBM1 in breast cancer brain metastasis remain largely unknown. In this study, we confirmed that circBCBM1 was a stable and cytoplasmic circRNA. Functionally, circBCBM1 promoted the proliferation and migration of 231-BR cells in vitro and growth and brain metastasis in vivo. Mechanistically, circBCBM1 acted as an endogenous miR-125a sponge to inhibit miR-125a activity, resulting in the upregulation of BRD4 (bromodomain containing 4) and subsequent upregulation of MMP9 (matrix metallopeptidase 9) through Sonic hedgehog (SHH) signaling pathway. Importantly, circBCBM1 was markedly upregulated in the breast cancer brain metastasis cells and clinical tissue and plasma samples; besides, circBCBM1 overexpression in primary cancerous tissues was associated with shorter brain metastasis-free survival (BMFS) of breast cancer patients. These findings indicate that circBCBM1 is involved in breast cancer brain metastasis via circBCBM1/miR-125a/BRD4 axis. CircBCBM1 may serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for breast cancer brain metastasis.
Collapse
Affiliation(s)
- Bo Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Wei Liu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Cui Zhu
- Department of Neurology, Dongchang Fu People's Hospital, Liaocheng, P.R. China
| | - Peng Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Li Wang
- Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Li Pan
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Peiying Cai
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Min Meng
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Yiting Wang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Wenqiang Tang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| |
Collapse
|
22
|
Liu X, Shen L, Han B, Yao H. Involvement of noncoding RNA in blood-brain barrier integrity in central nervous system disease. Noncoding RNA Res 2021; 6:130-138. [PMID: 34377876 PMCID: PMC8327137 DOI: 10.1016/j.ncrna.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Given the important role of the blood-brain barrier (BBB) in the central nervous system (CNS), increasing studies have been carried out to determine how the structural and functional integrity of the BBB impacts the pathogenesis of CNS diseases such as stroke, traumatic brain injuries (TBIs), and gliomas. Emerging studies have revealed that noncoding RNAs (ncRNAs) help to maintain the integrity and permeability of the BBB, thereby mediating CNS homeostasis. This review summarizes recent studies that focus on the effects of ncRNAs on the BBB in CNS diseases, including regulating the biological processes of inflammation, necrosis, and apoptosis of cells, affecting the translational dysfunction of proteins and regulating tight junctions (TJs). A comprehensive and detailed understanding of the interaction between ncRNAs and the BBB will lay a solid foundation for the development of early diagnostic methods and effective treatments for CNS diseases.
Collapse
Affiliation(s)
- Xi Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Honghong Yao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
23
|
Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat 2021; 187:695-713. [PMID: 34041621 DOI: 10.1007/s10549-021-06255-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Extravasation of triple-negative (TN) metastatic breast cancer (BC) cells through the brain endothelium (BE) is a critical step in brain metastasis (BM). During extravasation, metastatic cells induce alteration in the inter-endothelial junctions and transmigrate through the endothelial barrier. Transmigration of metastatic cells is mediated by the upregulation of cyclooxygenase-2 (COX-2) that induces matrix metalloproteinase-1 (MMP-1) capable of degrading inter-endothelial junctional proteins. Despite their important role in BM, the molecular mechanisms upregulating COX-2 and MMP-1 in TNBC cells remain poorly understood. In this study, we unraveled a synergistic effect of a pair of micro-RNAs (miR-26b-5p and miR-101-3p) on COX-2 expression and the brain transmigration ability of BC cells. METHODS Using a gain-and-loss of function approach, we modulated levels of miR-26b-5p and miR-101-3p in two TNBC cell lines (the parental MDA-MB-231 and its brain metastatic variant MDA-MB-231-BrM2), and examined the resultant effect on COX-2/MMP-1 expression and the transmigration of cancer cells through the BE. RESULTS We observed that the dual inhibition of miR-26b-5p and miR-101-3p in BC cells results in higher increase of COX-2/MMP-1 expression and a higher trans-endothelial migration compared to either micro-RNA alone. The dual restoration of both micro-RNAs exerted a synergistic inhibition on COX-2/MMP-1 by targeting COX-2 and potentiated the suppression of trans-endothelial migration compared to single micro-RNA. CONCLUSION These findings provide new insights on a synergism between miR-26-5p and miR-101-3p in regulating COX-2 in metastatic TNBC cells and shed light on miR-26-5p and miR-101-3p as prognostic and therapeutic targets that can be exploited to predict or prevent BM.
Collapse
|
24
|
Yoshida K, Yokoi A, Yamamoto Y, Kajiyama H. ChrXq27.3 miRNA cluster functions in cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:112. [PMID: 33766100 PMCID: PMC7992321 DOI: 10.1186/s13046-021-01910-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate the expression of their target genes post-transcriptionally; thus, they are deeply involved in fundamental biological processes. miRNA clusters contain two or more miRNA-encoding genes, and these miRNAs are usually coexpressed due to common expression mechanisms. Therefore, miRNA clusters are effective modulators of biological pathways by the members coordinately regulating their multiple target genes, and an miRNA cluster located on the X chromosome q27.3 region has received much attention in cancer research recently. In this review, we discuss the novel findings of the chrXq27.3 miRNA cluster in various types of cancer. The chrXq27.3 miRNA cluster contains 30 mature miRNAs synthesized from 22 miRNA-encoding genes in an ~ 1.3-Mb region. The expressions of these miRNAs are usually negligible in many normal tissues, with the male reproductive system being an exception. In cancer tissues, each miRNA is dysregulated, compared with in adjacent normal tissues. The miRNA-encoding genes are not uniformly distributed in the region, and they are further divided into two groups (the miR-506-514 and miR-888-892 groups) according to their location on the genome. Most of the miRNAs in the former group are tumor-suppressive miRNAs that are further downregulated in various cancers compared with normal tissues. miR-506-3p in particular is the most well-known miRNA in this cluster, and it has various tumor-suppressive functions associated with the epithelial–mesenchymal transition, proliferation, and drug resistance. Moreover, other miRNAs, such as miR-508-3p and miR-509-3p, have similar tumor-suppressive effects. Hence, the expression of these miRNAs is clinically favorable as prognostic factors in various cancers. However, the functions of the latter group are less understood. In the latter group, miR-888-5p displays oncogenic functions, whereas miR-892b is tumor suppressive. Therefore, the functions of the miR-888–892 group are considered to be cell type- or tissue-specific. In conclusion, the chrXq27.3 miRNA cluster is a critical regulator of cancer progression, and the miRNAs themselves, their regulatory mechanisms, and their target genes might be promising therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
25
|
Watase C, Shiino S, Shimoi T, Noguchi E, Kaneda T, Yamamoto Y, Yonemori K, Takayama S, Suto A. Breast Cancer Brain Metastasis-Overview of Disease State, Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051078. [PMID: 33802424 PMCID: PMC7959316 DOI: 10.3390/cancers13051078] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we present the latest information on the pathophysiology, diagnosis, and local and systemic treatment of brain metastases from breast cancer, with a focus on recent publications. Improving the local treatment and subtype-specific systemic therapies through advancements in basic and translational research will contribute to better clinical outcomes for patients with breast cancer brain metastasis. Abstract Breast cancer is the second most common origin of brain metastasis after lung cancer. Brain metastasis in breast cancer is commonly found in patients with advanced course disease and has a poor prognosis because the blood–brain barrier is thought to be a major obstacle to the delivery of many drugs in the central nervous system. Therefore, local treatments including surgery, stereotactic radiation therapy, and whole-brain radiation therapy are currently considered the gold standard treatments. Meanwhile, new targeted therapies based on subtype have recently been developed. Some drugs can exceed the blood–brain barrier and enter the central nervous system. New technology for early detection and personalized medicine for metastasis are warranted. In this review, we summarize the historical overview of treatment with a focus on local treatment, the latest drug treatment strategies, and future perspectives using novel therapeutic agents for breast cancer patients with brain metastasis, including ongoing clinical trials.
Collapse
Affiliation(s)
- Chikashi Watase
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
- Correspondence: ; Tel.: +81-3-3542-2511; Fax: +81-3-3545-3567
| |
Collapse
|
26
|
Lv Y, Ma X, Du Y, Feng J. Understanding Patterns of Brain Metastasis in Triple-Negative Breast Cancer and Exploring Potential Therapeutic Targets. Onco Targets Ther 2021; 14:589-607. [PMID: 33519208 PMCID: PMC7837592 DOI: 10.2147/ott.s293685] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer. High invasiveness and heterogeneity, as well as a lack of drug targets, are the main factors leading to poor prognosis. Brain metastasis (BM) is a serious event threatening the life of breast cancer patients, especially those with TNBC. Compared with that for hormone receptor-positive and HER2-positive breast cancers, TNBC-derived BM (TNBCBM) occurs earlier and more frequently, and has a worse prognosis. There is no standard treatment for BM to date, and one is urgently required. In this review, we discuss the current knowledge regarding the developmental patterns of TNBCBM, focusing on the key events in BM formation. Specifically, we consider (i) the nature and function of TNBC cells; (ii) how TNBC cells cross the blood–brain barrier and form a fenestrated, more permeable blood–tumor barrier; (iii) the biological characteristics of TNBCBM; and (iv) the infiltration and colonization of the central nervous system (CNS) by TNBC cells, including the establishment of premetastatic niches, immunosurveillance escape, and metabolic adaptations. We also discuss putative therapeutic targets and precision therapy with the greatest potential to treat TNBCBM, and summarize the relevant completed and ongoing clinical trials. These findings may provide new insights into the prevention and treatment of BM in TNBC patients.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, People's Republic of China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| |
Collapse
|
27
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
28
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Harati R, Hafezi S, Mabondzo A, Tlili A. Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. PLoS One 2020; 15:e0239292. [PMID: 33002044 PMCID: PMC7529272 DOI: 10.1371/journal.pone.0239292] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain metastasis (BM) is a major cause of morbidity and mortality in breast cancer (BC) and its molecular mechanism remains poorly understood. Transmigration of metastatic cells through the brain endothelium is an essential step in BM. Metalloproteinase-1 (MMP-1) overexpression plays a key role in promoting trans-endothelial migration by degrading the inter-endothelial junctions and disrupting the endothelial integrity. However, little is known about the molecular mechanisms that induce MMP-1 in metastatic cells granting them a brain invasive phenotype. MiR-202-3p is downregulated in brain metastases compared to primary breast tumors and directly targets MMP-1. Here, we unraveled a critical role of miR-202-3p loss in MMP-1 upregulation promoting transmigration of metastatic cells through the brain endothelium. METHODS A variant of the MDA-MB-231 human BC cell line (MDA-MB-231-BrM2) selected for its propensity to form brain metastases was found to express high levels of MMP-1 and low levels of miR-202-3p compared to the parental cells. Using a gain-and-loss of function approach, we modulated levels of miR-202-3p and examined the resultant effect on MMP-1 expression. Effect of miR-202-3p modulation on integrity of the brain endothelium and the transmigrative ability of BC cells were also examined. RESULTS Loss of miR-202-3p in breast cancer cells enhanced their transmigration through the brain endothelium by upregulating MMP-1 and disrupting the inter-endothelial junctions (claudin-5, ZO-1 and ß-catenin). Restoring miR-202-3p exerted a metastasis-suppressive effect and preserved the endothelial barrier integrity. CONCLUSIONS Our study identified a critical regulatory role of miR-202-3p in brain metastasis and shed light on miR-202-3p/MMP-1 axis as a novel prognostic and therapeutic target that can be exploited to predict and prevent brain metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aloïse Mabondzo
- Department of Medicines and Healthcare Technologies, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
32
|
Loss of miR-101-3p Promotes Transmigration of Metastatic Breast Cancer Cells through the Brain Endothelium by Inducing COX-2/MMP1 Signaling. Pharmaceuticals (Basel) 2020; 13:ph13070144. [PMID: 32645833 PMCID: PMC7407639 DOI: 10.3390/ph13070144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain metastases represent one of the incurable end stages in breast cancer (BC). Developing effective or preventive treatments is hampered by a lack of knowledge on the molecular mechanisms driving brain metastasis. Transmigration of BC cells through the brain endothelium is a key event in the pathogenesis of brain metastasis. In this study, we identified miR-101-3p as a critical micro-RNA able to reduce transmigration of BC cells through the brain endothelium. Our results revealed that miR-101-3p expression is downregulated in brain metastatic BC cells compared to less invasive variants, and varies inversely compared to the brain metastatic propensity of BC cells. Using a loss-and-gain of function approach, we found that miR-101-3p downregulation increased transmigration of BC cells through the brain endothelium in vitro by inducing COX-2 expression in cancer cells, whereas ectopic restoration of miR-101-3p exerted a metastasis-reducing effect. In regulatory experiments, we found that miR-101-3p mediated its effect by modulating COX-2-MMP1 signaling capable of degrading the inter-endothelial junctions (claudin-5 and VE-cadherin), key components of the brain endothelium. These findings suggest that miR-101-3p plays a critical role in the transmigration of breast cancer cells through the brain endothelium by modulating the COX-2-MMP1 signaling and thus may serve as a therapeutic target that can be exploited to prevent or suppress brain metastasis in human breast cancer.
Collapse
|
33
|
Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and Organotropism in Breast Cancer Metastasis. Cancers (Basel) 2020; 12:E1827. [PMID: 32646059 PMCID: PMC7408921 DOI: 10.3390/cancers12071827] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy for women in which one in eight women will be diagnosed with the disease in their lifetime. Despite advances made in treating primary breast cancer, there is still no effective treatment for metastatic breast cancer. Consequently, metastatic breast cancer is responsible for 90% of breast cancer-related deaths while only accounting for approximately one third of all breast cancer cases. To help develop effective treatments for metastatic breast cancer, it is important to gain a deeper understanding of the mechanisms by which breast cancer metastasizes, particularly, those underlying organotropism towards brain, bone, and lungs. In this review, we will primarily focus on the roles that circulating exosomal microRNAs (miRNAs) play in organotropism of breast cancer metastasis. Exosomes are extracellular vesicles that play critical roles in intercellular communication. MicroRNAs can be encapsulated in exosomes; cargo-loaded exosomes can be secreted by tumor cells into the tumor microenvironment to facilitate tumor-stroma interactions or released to circulation to prime distant organs for subsequent metastasis. Here, we will summarize our current knowledge on the biogenesis of exosomes and miRNAs, mechanisms of cargo sorting into exosomes, the exosomal miRNAs implicated in breast cancer metastasis, and therapeutic exosomal miRNAs.
Collapse
Affiliation(s)
- Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
34
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Genes that Mediate Metastasis across the Blood-Brain Barrier. Trends Cancer 2020; 6:660-676. [PMID: 32417182 DOI: 10.1016/j.trecan.2020.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Brain metastasis is an important cause of mortality in patients with cancer and represents the majority of all intracranial tumors. A key step during the metastatic journey of the cancer cell to the brain is the invasion through the blood-brain barrier (BBB). Nevertheless, the molecular mechanisms that govern this process remain unknown. The BBB has been blamed for limiting the access of therapeutic drugs to the brain, which provides a safe haven for cancer cells in the brain and confers poor prognosis for the patient. Here, we explore the genes that control the transmigration of metastatic cancer cells across the BBB, offering new targets for the development of gene and cell therapies against brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Xiao W, Zheng S, Xie X, Li X, Zhang L, Yang A, Wang J, Tang H, Xie X. SOX2 Promotes Brain Metastasis of Breast Cancer by Upregulating the Expression of FSCN1 and HBEGF. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:118-129. [PMID: 32322668 PMCID: PMC7163054 DOI: 10.1016/j.omto.2020.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
The prognosis of breast cancer brain metastasis (BCBM) is extremely poor due to its resistance to conventional therapy. Elucidation of the molecular mechanisms of BCBM could contribute to the development of new therapeutic targets. In this study, we isolated RNA samples from primary breast cancer or BCBM, and then performed mRNA profiling. We determined that SOX2 is associated with the occurrence of BCBM and could be a predictor of BCBM. High levels of SOX2 were significantly associated with decreasing BCBM-free survival in patients. Overexpression of SOX2 in breast cancer cells enhanced cancer cell adhesion to brain microvascular endothelial cells, transendothelial migration, and in vitro blood-brain barrier (BBB) migration, whereas silencing SOX2 inhibited these events. SOX2 can increase cancer cell migration and BBB permeability by upregulating FSCN1 and HBEGF, thereby promoting BBB migration of breast cancer cells. Moreover, high levels of FSCN1 and HBEGF were significantly associated with reducing BCBM-free survival in breast cancer patients. Further study indicated that SOX2 mediates the expression of HBEGF and FSCN1 by activating AKT and β-catenin signaling pathways. Additionally, in vivo experiments showed that SOX2 promotes the development of BCBM. This study demonstrated that SOX2 promotes BCBM by upregulating the expression of FSCN1 and HBEGF.
Collapse
Affiliation(s)
- Weikai Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China.,Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Shaoquan Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Xinhua Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Xing Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Lijuan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Anli Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Jian Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People's Republic of China
| |
Collapse
|
36
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Ju JA, Godet I, DiGiacomo JW, Gilkes DM. RhoB is regulated by hypoxia and modulates metastasis in breast cancer. Cancer Rep (Hoboken) 2020; 3:e1164. [PMID: 32671953 PMCID: PMC7941481 DOI: 10.1002/cnr2.1164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND RhoB is a Rho family GTPase that is highly homologous to RhoA and RhoC. RhoA and RhoC have been shown to promote tumor progression in many cancer types; however, a distinct role for RhoB in cancer has not been delineated. Additionally, several well-characterized studies have shown that small GTPases such as RhoA, Rac1, and Cdc42 are induced in vitro under hypoxia, but whether and how hypoxia regulates RhoB in breast cancer remains elusive. AIMS To determine whether and how hypoxia regulates RhoB expression and to understand the role of RhoB in breast cancer metastasis. METHODS We investigated the effects of hypoxia on the expression and activation of RhoB using real-time quantitative polymerase chain reaction and western blotting. We also examined the significance of both decreased and increased RhoB expression in breast cancer using CRISPR depletion of RhoB or a vector overexpressing RhoB in 3D in vitro migration models and in an in vivo mouse model. RESULTS We found that hypoxia significantly upregulated RhoB mRNA and protein expression resulting in increased levels of activated RhoB. Both loss of RhoB and gain of RhoB expression led to reduced migration in a 3D collagen matrix and invasion within a multicellular 3D spheroid. We showed that neither the reduction nor overexpression of RhoB affected tumor growth in vivo. While the loss of RhoB had no effect on metastasis, RhoB overexpression led to decreased metastasis to the lungs, liver, and lymph nodes of mice. CONCLUSION Our results suggest that RhoB may have an important role in suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Julia A. Ju
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Baltimore School of MedicineUniversity of MarylandBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Josh W. DiGiacomo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
- Cellular and Molecular Medicine ProgramThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
38
|
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 2020; 18:1. [PMID: 31900168 PMCID: PMC6941297 DOI: 10.1186/s12967-019-02189-8] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present review aimed to discuss contemporary scientific literature involving differences between the tumor microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metastases (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibroblasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and melanoma. Metastatic cancer cells have to adhere to and penetrate the blood-brain barrier (BBB). After traversing BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
Collapse
Affiliation(s)
- Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| | - Donovan R García-Botello
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Talia Wegman-Ostrosky
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Elizabeth Ortiz-Sánchez
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Luis Alonso Herrera-Montalvo
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| |
Collapse
|
39
|
Giannoudis A, Clarke K, Zakaria R, Varešlija D, Farahani M, Rainbow L, Platt-Higgins A, Ruthven S, Brougham KA, Rudland PS, Jenkinson MD, Young LS, Falciani F, Palmieri C. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci Rep 2019; 9:18518. [PMID: 31811234 PMCID: PMC6897960 DOI: 10.1038/s41598-019-55084-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer brain metastasis (BCBM) is an area of unmet clinical need. MicroRNAs (miRNAs) have been linked to the metastatic process in breast cancer (BC). In this study, we aim to determine differentially-expressed miRNAs utilising primary BCs that did not relapse (BCNR, n = 12), primaries that relapsed (BCR) and their paired (n = 40 pairs) brain metastases (BM) using the NanoString™ nCounter™ miRNA Expression Assays. Significance analysis of microarrays identified 58 and 11 differentially-expressed miRNAs between BCNR vs BCR and BCR vs BM respectively and pathway analysis revealed enrichment for genes involved in invasion and metastasis. Four miRNAs, miR-132-3p, miR-199a-5p, miR-150-5p and miR-155-5p, were differentially-expressed within both cohorts (BCNR-BCR, BCR-BM) and receiver-operating characteristic curve analysis (p = 0.00137) and Kaplan-Meier survival method (p = 0.0029, brain metastasis-free survival; p = 0.0007, overall survival) demonstrated their potential use as prognostic markers. Ingenuity pathway enrichment linked them to the MET oncogene, and the cMET protein was overexpressed in the BCR (p < 0.0001) and BM (p = 0.0008) cases, compared to the BCNRs. The 4-miRNAs panel identified in this study could be potentially used to distinguish BC patients with an increased risk of developing BCBM and provide potential novel therapeutic targets, whereas cMET-targeting warrants further investigation in the treatment of BCBM.
Collapse
Affiliation(s)
- Athina Giannoudis
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Rasheed Zakaria
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mosavar Farahani
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Lucille Rainbow
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Stuart Ruthven
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, UK
| | | | - Philip S Rudland
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Carlo Palmieri
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, UK.
| |
Collapse
|
40
|
MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol 2019; 323:113094. [PMID: 31676317 DOI: 10.1016/j.expneurol.2019.113094] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Given the essential role of the blood-brain barrier (BBB) in the central nervous system (CNS), cumulative investigations have been performed to elucidate how modulation of BBB structural and functional integrity affects the pathogenesis of CNS diseases such as stroke, traumatic brain injuries, dementia, and cerebral infection. Recent studies have demonstrated that microRNAs (miRNAs) contribute to the maintenance of the BBB and thereby mediate CNS homeostasis. This review summarizes emerging studies that demonstrate cerebral miRNAs regulate BBB function in CNS disorders, emphasizing the direct role of miRNAs in BBB molecular composition. Evidence presented in this review will encourage a deeper understanding of the mechanisms by which miRNAs regulate BBB function, and facilitate the development of new miRNAs-based therapies in patients with CNS diseases.
Collapse
|
41
|
Sato J, Shimomura A, Kawauchi J, Matsuzaki J, Yamamoto Y, Takizawa S, Sakamoto H, Ohno M, Narita Y, Ochiya T, Tamura K. Brain metastasis-related microRNAs in patients with advanced breast cancer. PLoS One 2019; 14:e0221538. [PMID: 31603918 PMCID: PMC6788729 DOI: 10.1371/journal.pone.0221538] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
Brain metastasis is a major distant metastasis occurring in patients with advanced breast cancer, and is associated with poor prognosis. MicroRNAs (miRNAs) have a strong influence on various oncological functions and have been reported as potential biomarkers for detecting distant metastasis. Specific biomarkers and unique miRNAs for brain metastasis have yet to be reported. The aim of this study was to identify novel miRNAs in serum, to assist in the diagnosis of brain metastasis in patients with advanced breast cancer. We retrospectively analyzed the medical records of patients with breast cancer and collected clinical data. In addition, we evaluated serum miRNA profiles in patients with breast cancer, with and without brain metastasis, using high-sensitivity microarrays. All patients underwent computed tomography or magnetic resonance imaging brain imaging tests. A total of 51 serum samples from patients with breast cancer and brain metastasis, stored in the National Cancer Center Biobank, were used, and 28 serum samples were obtained from controls without brain metastasis. Two miRNAs, miR-4428 and miR-4480, could significantly distinguish patients with brain metastasis, with area under the receiver operating characteristic curve (AUC) values of 0.779 and 0.781, respectively, while a combination of miR-4428 and progesterone receptor had an AUC value of 0.884. No significant correlations were identified between the expression levels of these two miRNAs in serum and clinical data. We conclude that serum miR-4428 and miR-4480 may be useful as biomarkers for predicting brain metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Jun Sato
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Junpei Kawauchi
- Toray Industries, Inc., Kanagawa, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoko Takizawa
- Toray Industries, Inc., Kanagawa, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Biobank and Tissue Resources, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Zhao X, Wang N, Chidanguro T, Gu H, Li Y, Cao H, Wen P, Ren F. Candidate genes and pathways associated with brain metastasis from lung cancer compared with lymph node metastasis. Exp Ther Med 2019; 18:1276-1284. [PMID: 31363372 PMCID: PMC6614716 DOI: 10.3892/etm.2019.7712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/16/2019] [Indexed: 01/10/2023] Open
Abstract
Brain metastasis from lung cancer (BMLC) is one of the common types of metastasis associated with poor prognosis. The aim of the present study was to elucidate the underlying molecular mechanisms of BMLC. The mRNA microarray dataset GSE18549 was downloaded from the Gene Expression Omnibus database. The Limma package of R was used to screen the differentially expressed genes (DEGs). Based on the DAVID database, functional and pathway enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the STRING database and visualized with Cytoscape software. In addition, hub genes and significant modules were selected based on the network. A total of 190 DEGs with log2|(fold change)|>1, including 129 significantly downregulated DEGs and 61 upregulated DEGs, were obtained. Gene Ontology functional enrichment analysis indicated that downregulated DEGs were mainly associated with ‘immune response’, ‘cell activation’ and ‘leukocyte activation’, while the upregulated DEGs were involved in ‘DNA repair’ and ‘viral process’. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the downregulated DEGs were mainly enriched in ‘chemokine signaling pathway’, whereas the upregulated DEGs were associated with ‘oocyte meiosis’. Based on the PPI network, 9 hub genes were selected, namely tumor necrosis factor, C-C motif chemokine ligand (CCL) 2, CD34, vascular cell adhesion molecule 1, CD48, CD27, CCL19, C-X-C motif chemokine receptor 6 and C-C motif chemokine receptor 2. The present study sheds light on the molecular mechanisms of BMLC and may provide molecular targets and diagnostic biomarkers for BMLC.
Collapse
Affiliation(s)
- Xuelian Zhao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Nan Wang
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tungamirai Chidanguro
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huanyu Gu
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yi Li
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huiru Cao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Pushuai Wen
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
43
|
Fu B, Zhang A, Li M, Pan L, Tang W, An M, Liu W, Zhang J. Circular RNA profile of breast cancer brain metastasis: identification of potential biomarkers and therapeutic targets. Epigenomics 2019; 10:1619-1630. [PMID: 30810051 DOI: 10.2217/epi-2018-0090] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the circular RNA (circRNA) profile of breast cancer brain metastasis (BCBM). MATERIALS & METHODS RNA-seq was performed to identify the circRNA expression profile of brain metastatic breast cancer cell line 231-BR, in comparison with its parental nonspecific metastatic cell line MDA-MB-231. RESULTS A total of 215 upregulated and 191 downregulated circRNAs were identified. The expression levels of ten randomly selected majorly altered circRNAs were re-examined by real-time quantitative PCR and agarose gel electrophoresis, and the following alterations were verified: upregulation of hsa_circ_0001944, hsa_circ_0001481, hsa_circ_0000646, hsa_circ_0001006 and hsa_circ_0000732, and downregulation of hsa_circ_0001910, hsa_circ_0008285 and hsa_circ_0000002. CircRNA/miRNA analysis revealed that hsa_circ_0001944 may be involved in BCBM through sponging up miR-509 and interfering with its binding to the downstream targets. CONCLUSION This study provides a leading and fundamental circRNA profile of BCBM.
Collapse
Affiliation(s)
- Bo Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, PR China.,School of Basic Medical Science, Shandong University, Jinan, PR China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Mingli Li
- Department of Clinical Laboratory, Weifang Traditional Chinese Hospital, Weifang, PR China
| | - Li Pan
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Wenqiang Tang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Wei Liu
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Jianqiong Zhang
- Jiangsu Key Laboratory of Molecule Imaging & Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
44
|
Yang C, Wang Y, Yang W, Gao Y, Zhao B, Yang X. MiR-509-5p improves the proliferative and invasive abilities of papillary thyroid carcinoma cells by inhibiting SFRP1. Arch Med Sci 2019; 15:968-978. [PMID: 31360191 PMCID: PMC6657240 DOI: 10.5114/aoms.2019.85904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Our study was conducted to prove that miR-509-5p improved the proliferative and invasive abilities of papillary thyroid carcinoma (PTC) cells through inhibiting SFRP1 expression. MATERIAL AND METHODS QRT-PCR was conducted in order to detect the miR-509-5p expression levels in PTC and normal tissues. The miR-509-5p and SFRP1 mRNA expression levels in PTC cell lines K1, TPC-1, BCPAP and the human normal thyroid cell line HT-ori3 were also detected by qRT-PCR. The transfection was performed using Lipofectamine and lentiviral vectors. Pgcsil-008 was used as the SFRP1 gene vector. Western blot and dual luciferase reporter gene assay were conducted to investigate miR-509-5p's direct regulation on SFRP1. MTT, clone formation, and Transwell assays were adopted to investigate the biological behaviors of PTC cells. TCF/LEF luciferase assays were used to prove that miR-509-5p influenced the Wnt/β-catenin signaling pathway by regulating SFRP1. RESULTS MiR-509-5p was overexpressed in PTC cells and tissues in which SFRP1 was down-regulated. MiR-509-5p bound to the 3'-UTR of SFRP1 and therefore partially weakened the proliferative, migrating and invasive activities of PTC cells. MiR-509-5p promoted activation of the Wnt/β-catenin signaling pathway through down-regulating SFRP1. CONCLUSIONS MiR-509-5p improved the proliferative, migrating and invasive abilities of PTC cells through inhibiting SFRP1 expression.
Collapse
Affiliation(s)
- Chunxiao Yang
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Yingluan Wang
- Department of Ultrasonography, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Wenyi Yang
- Department of General Surgery First Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Yujun Gao
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Bo Zhao
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Xingwang Yang
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| |
Collapse
|
45
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Bahiraee A, Ebrahimi R, Halabian R, Aghabozorgi AS, Amani J. The role of inflammation and its related microRNAs in breast cancer: A narrative review. J Cell Physiol 2019; 234:19480-19493. [PMID: 31025369 DOI: 10.1002/jcp.28742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Breast cancer is recognized as the most common type of cancer among women with a high rate of mortality all over the world. Over the past years, growing attention has been regarded to realize more about the mechanisms underlying the disease process. It is revealed that the progression of breast cancer may be strongly linked to chronic inflammation owing to the role of inflammatory factors in genetic instability and subsequent cancer predisposition. Although the association between breast cancer and inflammatory pathways has been well-defined now, only recent evidence pointed towards the inflammation-related microRNAs (miRNAs) as potential biomarkers and therapeutic targets involved in the crosstalk of multiple pathways during breast cancer development. Moreover, the practical interactions between these miRNAs and inflammatory factors are also a little characterized. In this review, we intended to describe the effects of predominant inflammatory pathways such as cytokines, phosphoinositide 3-kinase/protein kinase B, and nuclear factor kappa B in association with tumor promoting and tumor suppressing miRNAs on breast cancer progression. Providing new studies in the field of combining biomarkers for early diagnosis, prognosis, and monitoring breast cancer are very important. Notably, understanding the underlying mechanisms of miRNAs as a possible link between inflammation and tumorigenesis may offer a novel insight for combating this epidemic.
Collapse
Affiliation(s)
- Alireza Bahiraee
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Chen Q, Zeng X, Huang D, Qiu X. Identification of differentially expressed miRNAs in early-stage cervical cancer with lymph node metastasis across The Cancer Genome Atlas datasets. Cancer Manag Res 2018; 10:6489-6504. [PMID: 30568508 PMCID: PMC6276827 DOI: 10.2147/cmar.s183488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and aim Previous studies have suggested that lymph node metastasis (LNM) in early-stage cervical cancer (CESC) may affect the prognosis of patients and the outcomes of subsequent adjuvant therapy. However, research focused on miRNA expression in early-stage CESC patients with LNM remains limited. Therefore, it is necessary to identify prognostic miRNAs and determine their molecular mechanisms. Methods We evaluated the differentially expressed genes in early-stage CESC patients with LNM compared to patients without LNM and evaluated the prognostic significance of these differentially expressed genes by analyzing a public dataset from The Cancer Genome Atlas. Potential molecular mechanisms were investigated by gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and protein–protein interaction network analyses. Results According to the The Cancer Genome Atlas data, hsa-miR-508, hsa-miR-509-2, and hsa-miR-526b expression levels were significantly lower in early-stage CESC patients with LNM than in patients without LNM. A multivariate analysis suggested that three miRNAs were prognostic factors for CESC (P<0.05). The target genes were identified to be involved in the MAPK, cAMP, PI3K/Akt, mTOR, and estrogen cancer signaling pathways. Protein–protein interaction network analysis showed that TP53, MMP1, NOTCH1, SMAD4, and NFKB1 were the most significant hub proteins. Conclusion Our results indicate that hsa-miR-508, hsa-miR-509-2, and hsa-miR-526b may be potential diagnostic biomarkers for early-stage CESC with LNM, and serve as prognostic predictors for patients with CESC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| | - Dongping Huang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| |
Collapse
|
48
|
Zhu R, Lin W, Zhao W, Fan F, Tang L, Hu Y. A 4-microRNA signature for survival prognosis in pediatric and adolescent acute myeloid leukemia. J Cell Biochem 2018; 120:3958-3968. [PMID: 30242879 DOI: 10.1002/jcb.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with significant molecular heterogeneity. MicroRNAs (miRNAs) play a critical role in AML diagnosis, pathogenesis, and prognosis of AML. Little has been done to identify a miRNA signature in pediatric and adolescent patients for predicting overall survival. This study aims to identify a panel of miRNA signature that could predict the prognosis of all younger AML patients with all subtypes of AML by analyzing data from The Cancer Genome Atlas (TCGA). A total of 229 patients under 23 years with miRNA data and corresponding clinical data from TCGA database were enrolled in this study. Through conducting multivariate analysis in the training test, it was identified that the high expression of hsa-miR-509 and hsa-miR-542 were independent poor prognostic factors, whereas that of hsa-miR-146a and hsa-miR-3667 had a trend to be favorable factors. A 4-miRNA signature was constructed by these miRNAs considering the weight of each. In testing group and all 229 patients' cohort as well as 59 cytogenetically normal AML (CN-AML) patients' cohort, higher risk score was associated with shorter overall survival (OS). All results were confidential by using powerful statistical analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were carried out to further develop leukemia-relevant mechanisms supporting the model. The results indicate that the 4-miRNA-based signature is a reliable prognostic biomarker for pediatric and adolescent AML patients.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, Feng J, Sanders S, Jin G, Singh R, Vidi PA, Tyagi A, Chan MD, Ruiz J, Debinski W, Pasche BC, Lo HW, Metheny-Barlow LJ, D'Agostino RB, Watabe K. Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Res 2018; 78:4316-4330. [PMID: 30026327 PMCID: PMC6072593 DOI: 10.1158/0008-5472.can-18-1102] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XISThigh cells in our xenograft models. Moreover, knockout of XIST in mice mammary glands accelerated primary tumor growth as well as metastases in the brain. Decreased expression of XIST stimulated epithelial-mesenchymal transition and activated c-Met via MSN-mediated protein stabilization, which resulted in the promotion of stemness in the tumor cells. Loss of XIST also augmented secretion of exosomal miRNA-503, which triggered M1-M2 polarization of microglia. This M1-M2 conversion upregulated immune suppressive cytokines in microglia that suppressed T-cell proliferation. Furthermore, we screened an FDA-approved drug library and identified fludarabine as a synthetic lethal drug for XISTlow breast tumor cells and found that fludarabine blocked brain metastasis in our animal model. Our results indicate that XIST plays a critical role in brain metastasis in breast cancer by affecting both tumor cells and the tumor microenvironment and that the XIST-mediated pathway may serve as an effective target for treating brain metastasis.Significance: These findings describe mechanisms of how loss of the lncRNA XIST promotes brain metastasis in breast cancer and identify fludarabine as a potential therapeutic agent that specifically eliminates XISTlow tumor cells in the brain. Cancer Res; 78(15); 4316-30. ©2018 AACR.
Collapse
Affiliation(s)
- Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina.
| | - Yin Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jiamei Feng
- Mammary Department, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Stephanie Sanders
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jimmy Ruiz
- Department of Hematology & Oncology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Linda J Metheny-Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Ralph B D'Agostino
- Biostatistical Sciences Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
50
|
Wang T, Ha M. Silencing ARHGAP9 correlates with the risk of breast cancer and inhibits the proliferation, migration, and invasion of breast cancer. J Cell Biochem 2018; 119:7747-7756. [DOI: 10.1002/jcb.27127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyi Wang
- Department of Oncology The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Minwen Ha
- Department of Oncology The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|