1
|
Gunasekharan V, Lin HK, Marczyk M, Rios-Hoyo A, Campos GE, Shan NL, Ahmed M, Umlauf S, Gareiss P, Raaisa R, Williams R, Cardone R, Siebel S, Kibbey R, Surovtseva YV, Pusztai L. Phosphoenolpyruvate carboxykinase-2 (PCK2) is a therapeutic target in triple-negative breast cancer. Breast Cancer Res Treat 2024; 208:657-671. [PMID: 39177932 DOI: 10.1007/s10549-024-07462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Metabolic rewiring in malignant transformation is often accompanied by altered expression of metabolic isozymes. Phosphoenolpyruvate carboxykinase-2 (PCK2) catalyzes the rate-limiting step of gluconeogenesis and is the dominant isoform in many cancers including triple-negative breast cancer (TNBC). Our goal was to identify small molecule inhibitors of PCK2 enzyme activity. METHODS We assessed the impact of PCK2 down regulation with shRNA on TNBC cell growth in vitro and used AtomNet® deep convolutional neural network software to identify potential small molecule inhibitors of PCK2-based structure. We iteratively tested candidate compounds in an in vitro PCK-2 enzyme assay. The impact of the top hit on metabolic flux and cell viability was also assessed. RESULTS PCK2 downregulation decreased growth of BT-549 and MDA-MB-231 cells and reduced metabolic flux through pyruvate carboxylase. The first AtomNet® in silico structural screen of 7 million compounds yielded 86 structures that were tested in PCK2 enzyme assay in vitro. The top hit (IC50 = 2.4 µM) was used to refine a second round of in silico screen that yielded 82 candidates to be tested in vitro, which resulted in 45 molecules with inhibition > 20%. In the second in vitro screen we also included 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, previously suggested to be PCK2 inhibitor based on structure, which emerged as the top hit. The specificity of this compound was tested in PCK1 and PCK2 enzymatic assays and showed IC50 of 500 nM and 3.5-27 nM for PCK1 and PCK2, respectively. CONCLUSION 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate is a high affinity PCK2 enzyme inhibitor that also has significant growth inhibitory activity in breast cell lines in vitro and represents a potential therapeutic lead compound.
Collapse
Affiliation(s)
- Vignesh Gunasekharan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Hao-Kuen Lin
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Michal Marczyk
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Gerson Espinoza Campos
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Naing Lin Shan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | | | - Sheila Umlauf
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Peter Gareiss
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Raaisa Raaisa
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Williams
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Rebecca Cardone
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Stephan Siebel
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Kibbey
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Yilihamu Y, Xu R, Jia W, Kukun H, Aihemaiti D, Chang Y, Ding S, Wang Y. Role of long non-coding RNA TCONS_02443383 in regulating cell adhesion and peroxisome proliferator-activated receptor (PPAR) signaling genes in atherosclerosis: A New Zealand white rabbit model study. Gene 2024; 927:148694. [PMID: 38878987 DOI: 10.1016/j.gene.2024.148694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE In this study, we performed RNA sequencing (RNA-seq) on the abdominal aorta tissue of New Zealand rabbits and investigated the potential association of lncRNA TCONS_02443383 with the development of AS through bioinformatics analysis of the sequencing data. The obtained results were further validated using quantitative real-time polymerase chain reaction (qRT-PCR). METHOD We induced an AS model in New Zealand rabbits by causing balloon injury to the abdominal aorta vascular wall and administering a high-fat diet. We then upregulated the expression level of the lncRNA TCONS_02443383 by injecting lentiviral plasmids through the ear vein. RNA sequencing (RNA-seq) was performed on the abdominal aorta tissues. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) analyses. RESULT The overexpression of the lncRNA TCONS_02443383 led to an upregulation of peroxisome proliferator-activated receptor (PPAR) signaling pathways as well as genes related to cell adhesion. CONCLUSION The overexpression of the lncRNA TCONS_02443383 can inhibit the occurrence and development of AS by upregulating peroxisome proliferator-activated receptor (PPAR) signaling pathways and genes related to cell adhesion.
Collapse
Affiliation(s)
- Yilinuer Yilihamu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Rui Xu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Wenxiao Jia
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Hanjiaerbieke Kukun
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Dilinuerkezi Aihemaiti
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Yifan Chang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Shuang Ding
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| | - Yunling Wang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| |
Collapse
|
3
|
Lu Y, Zhu J, Zhang Y, Li W, Xiong Y, Fan Y, Wu Y, Zhao J, Shang C, Liang H, Zhang W. Lactylation-Driven IGF2BP3-Mediated Serine Metabolism Reprogramming and RNA m6A-Modification Promotes Lenvatinib Resistance in HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401399. [PMID: 39450426 DOI: 10.1002/advs.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Acquired resistance remains a bottleneck for molecular-targeted therapy in advanced hepatocellular carcinoma (HCC). Metabolic adaptation and epigenetic remodeling are recognized as hallmarks of cancer that may contribute to acquired resistance. In various lenvatinib-resistant models, increased glycolysis leads to lactate accumulation and lysine lactylation of IGF2BP3. This lactylation is crucial for capturing PCK2 and NRF2 mRNAs, thereby enhancing their expression. This process reprograms serine metabolism and strengthens the antioxidant defense system. Additionally, altered serine metabolism increases the availability of methylated substrates, such as S-adenosylmethionine (SAM), for N6-methyladenosine (m6A) methylation of PCK2 and NRF2 mRNAs. The lactylated IGF2BP3-PCK2-SAM-m6A loop maintains elevated PCK2 and NRF2 levels, enhancing the antioxidant system and promoting lenvatinib resistance in HCC. Treatment with liposomes carrying siRNAs targeting IGF2BP3 or the glycolysis inhibitor 2-DG restored lenvatinib sensitivity in vivo. These findings highlight the connection between metabolic reprogramming and epigenetic regulation and suggest that targeting metabolic pathways may offer new strategies to overcome lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Yuanxiang Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Department of Breast Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Wentao Li
- Department of Breast Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yixiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yunhui Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yang Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Yanjiang West Road, Guangzhou, 510120, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| |
Collapse
|
4
|
Jeroundi N, Roy C, Basset L, Pignon P, Preisser L, Blanchard S, Bocca C, Abadie C, Lalande J, Gueguen N, Mabilleau G, Lenaers G, Moreau A, Copin MC, Tcherkez G, Delneste Y, Couez D, Jeannin P. Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions. EMBO Rep 2024:10.1038/s44319-024-00278-4. [PMID: 39424955 DOI: 10.1038/s44319-024-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.
Collapse
Affiliation(s)
- Najia Jeroundi
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laetitia Basset
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Pignon
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laurence Preisser
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Cinzia Bocca
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Cyril Abadie
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julie Lalande
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Naïg Gueguen
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, Inserm, Oniris, RMeS, SFR ICAT, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guy Lenaers
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Aurélie Moreau
- Inserm, Nantes Université, University Hospital of Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Marie-Christine Copin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
- Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Dominique Couez
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Jeannin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France.
- Immunology and Allergology laboratory, University Hospital, Angers, France.
| |
Collapse
|
5
|
Eltayeb K, Alfieri R, Fumarola C, Bonelli M, Galetti M, Cavazzoni A, Digiacomo G, Galvani F, Vacondio F, Lodola A, Mor M, Minari R, Tiseo M, La Monica S, Giorgio Petronini P. Targeting metabolic adaptive responses induced by glucose starvation inhibits cell proliferation and enhances cell death in osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines. Biochem Pharmacol 2024; 228:116161. [PMID: 38522556 DOI: 10.1016/j.bcp.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.
Collapse
Affiliation(s)
- Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
6
|
Tang D, Han B, He C, Xu Y, Liu Z, Wang W, Huang Z, Xiao Z, He F. Electrospun Poly-l-Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway. Adv Healthc Mater 2024; 13:e2400481. [PMID: 38650356 DOI: 10.1002/adhm.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Indexed: 04/25/2024]
Abstract
Electrospun membranes are widely used in tissue engineering. Regretfully, there is limited research on how its morphological characteristics precisely regulate macrophage activation and immune response. Therefore, electrospun poly-l-lactic acid (PLLA) membranes with different alignments (align and random) and diameters (nanoscale and microscale) are prepared to investigate the effects of different surface morphologies on M2 macrophage polarization. Additionally, transcriptome, proteome, and phosphoproteome sequencings are combined to examine the underlying regulatory mechanisms. The results show that the electrospun PLLA membranes with different surface morphologies have good biocompatibility and can regulate the phenotype and function of macrophages by changing the micromorphology of the matrix surface. Especially, macrophages cultured on the electrospun membranes of the A600 group exhibit higher M2 macrophage polarization than the other three groups. Furthermore, the findings demonstrate that electrospun PLLA membranes enhance AMP-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) signaling activation by upregulating the expression of integrin phosphoenolpyruvate carboxykinase 2 (PCK2), which is critical for M2 macrophage polarization. Taken together, electrospun PLLA membranes promote M2 macrophage polarization by regulating the PCK2/AMPK/mTOR signaling pathway. This research can provide further theoretical bases for scaffold design, immunoregulatory mechanisms, and clinical application based on electrospinning technology in the future.
Collapse
Affiliation(s)
- Daiyuan Tang
- Department of Orthopedics, Kunming Medical University Affiliated Qujing Hospital, Qujing, 655000, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Chengkai He
- Basic Medical College, Kunming Medical University, Kunming, 650500, China
| | - Yunrong Xu
- Department of Orthopedics, Kunming Medical University Affiliated Qujing Hospital, Qujing, 655000, China
| | - Zhui Liu
- Basic Medical College, Kunming Medical University, Kunming, 650500, China
| | - Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 655000, China
| | - Zaitian Huang
- Department of Orthopedics, Kunming Medical University Affiliated Qujing Hospital, Qujing, 655000, China
| | - Zhenping Xiao
- Department of Orthopedics, Kunming Medical University Affiliated Qujing Hospital, Qujing, 655000, China
| | - Fei He
- Department of Orthopedics, Kunming Medical University Affiliated Qujing Hospital, Qujing, 655000, China
| |
Collapse
|
7
|
Kodama T, Watanabe S, Kayanuma I, Sasaki A, Kurokawa D, Baba O, Jimbo M, Furukawa F. Gluconeogenesis during development of the grass puffer (Takifugu niphobles). Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111663. [PMID: 38735624 DOI: 10.1016/j.cbpa.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.
Collapse
Affiliation(s)
- Takafumi Kodama
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Seiya Watanabe
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Isana Kayanuma
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Akira Sasaki
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Otto Baba
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
8
|
Zhang J, He W, Liu D, Zhang W, Qin H, Zhang S, Cheng A, Li Q, Wang F. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death. Front Pharmacol 2024; 15:1434988. [PMID: 39193344 PMCID: PMC11347759 DOI: 10.3389/fphar.2024.1434988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjuan He
- School of Medicine, Tongji University, Shanghai, China
| | | | - Wenyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Huan Qin
- School of Medicine, Tongji University, Shanghai, China
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ailan Cheng
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Xue S, Cai Y, Liu J, Ji K, Yi P, Long H, Zhang X, Li P, Song Y. Dysregulation of phosphoenolpyruvate carboxykinase in cancers: A comprehensive analysis. Cell Signal 2024; 120:111198. [PMID: 38697449 DOI: 10.1016/j.cellsig.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis, glycolysis, and the tricarboxylic acid cycle by converting oxaloacetate into phosphoenolpyruvate. Two distinct isoforms of PEPCK, specifically cytosolic PCK1 and mitochondrial PCK2, have been identified. Nevertheless, the comprehensive understanding of their dysregulation in pan-cancer and their potential mechanism contributing to signaling transduction pathways remains elusive. METHODS We conducted comprehensive analyses of PEPCK gene expression across 33 diverse cancer types using data from The Cancer Genome Atlas (TCGA). Multiple public databases such as HPA, TIMER 2.0, GEPIA2, cBioPortal, UALCAN, CancerSEA, and String were used to investigate protein levels, prognostic significance, clinical associations, genetic mutations, immune cell infiltration, single-cell sequencing, and functional enrichment analysis in patients with pan-cancer. PEPCK expression was analyzed about different clinical and genetic factors of patients using data from TCGA, GEO, and CGGA databases. Furthermore, the role of PCK2 in Glioma was examined using both in vitro and in vivo experiments. RESULTS The analysis we conducted revealed that the expression of PEPCK is involved in both clinical outcomes and immune cell infiltration. Initially, we verified the high expression of PCK2 in GBM cells and its role in metabolic reprogramming and proliferation in GBM. CONCLUSION Our study showed a correlation between PEPCK (PCK1 and PCK2) expression with clinical prognosis, gene mutation, and immune infiltrates. These findings identified two possible predictive biomarkers across different cancer types, as well as a comprehensive analysis of PCK2 expression in various tumors, with a focus on GBM.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- Department of Neurosurgery, The 2(nd) affiliated hospital Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ke Ji
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peiyao Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Peng Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
11
|
Li C, Zhang ED, Ye Y, Xiao Z, Huang H, Zeng Z. Association of mitochondrial phosphoenolpyruvate carboxykinase with prognosis and immune regulation in hepatocellular carcinoma. Sci Rep 2024; 14:14051. [PMID: 38890507 PMCID: PMC11189538 DOI: 10.1038/s41598-024-64907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.
Collapse
Affiliation(s)
| | | | - Youzhi Ye
- Kunming Medical University, Kunming, China
| | | | - Hanfei Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| | - Zhong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
12
|
de Zeeuw P, Treps L, García-Caballero M, Harjes U, Kalucka J, De Legher C, Brepoels K, Peeters K, Vinckier S, Souffreau J, Bouché A, Taverna F, Dehairs J, Talebi A, Ghesquière B, Swinnen J, Schoonjans L, Eelen G, Dewerchin M, Carmeliet P. The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells. Commun Biol 2024; 7:618. [PMID: 38783087 PMCID: PMC11116505 DOI: 10.1038/s42003-024-06186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.
Collapse
Affiliation(s)
- Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Droia Ventures, Zaventem, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- CNRS, Nantes, France
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Dept. Molecular Biology and Biochemistry, Fac. Science, University of Malaga, Malaga, Spain
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Aarhus Institute of Advanced Studies (AIAS), Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Carla De Legher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Kristel Peeters
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Novartis Ireland, Dublin, Ireland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Bart Ghesquière
- Metabolomics Core Facility, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Metaptys NV/Droia Labs, Leuven, Belgium.
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Bi HE, Zhang J, Yao Y, Wang S, Yao J, Shao Z, Jiang Q. Expression and functional significance of phosphoenolpyruvate carboxykinase 1 in uveal melanoma. Cell Death Discov 2024; 10:196. [PMID: 38670942 PMCID: PMC11053060 DOI: 10.1038/s41420-024-01963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Uveal melanoma (UVM), an uncommon yet potentially life-threatening ocular cancer, arises from melanocytes in the uveal tract of the eye. The exploration of novel oncotargets for UVM is of paramount importance. In this study, we show that PCK1 (phosphoenolpyruvate carboxykinase 1) expression is upregulated in various UVM tissues as well as in primary UVM cells and immortalized lines. Furthermore, bioinformatics studies reveal that PCK1 overexpression in UVM correlates with advanced disease stages and poor patient survival. Genetic silencing (utilizing viral shRNA) or knockout (via CRISPR/Cas9) of PCK1 significantly curtailed cell viability, proliferation, cell cycle progression, and motility, while provoking apoptosis in primary and immortalized UVM cells. Conversely, ectopic overexpression of PCK1, achieved through a viral construct, bolstered UVM cell proliferation and migration. Gαi3 expression and Akt phosphorylation were reduced following PCK1 silencing or knockout, but increased after PCK1 overexpression in UVM cells. Restoring Akt phosphorylation through a constitutively active mutant Akt1 (S473D) ameliorated the growth inhibition, migration suppression, and apoptosis induced by PCK1 silencing in UVM cells. Additionally, ectopic expression of Gαi3 restored Akt activation and counteracted the anti-UVM cell effects by PCK1 silencing. In vivo, the growth of subcutaneous xenografts of primary human UVM cells was significantly inhibited following intratumoral injection of adeno-associated virus (aav) expressing PCK1 shRNA. PCK1 depletion, Gαi3 downregulation, Akt inhibition, proliferation arrest, and apoptosis were detected in PCK1-silenced UVM xenografts. Collectively, our findings demonstrate that PCK1 promotes UVM cell growth possibly by modulating the Gαi3-Akt signaling pathway.
Collapse
Affiliation(s)
- Hui-E Bi
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yujia Yao
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Zhijiang Shao
- Department of Ophthalmology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Meynen J, Adriaensens P, Criel M, Louis E, Vanhove K, Thomeer M, Mesotten L, Derveaux E. Plasma Metabolite Profiling in the Search for Early-Stage Biomarkers for Lung Cancer: Some Important Breakthroughs. Int J Mol Sci 2024; 25:4690. [PMID: 38731909 PMCID: PMC11083579 DOI: 10.3390/ijms25094690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. In order to improve its overall survival, early diagnosis is required. Since current screening methods still face some pitfalls, such as high false positive rates for low-dose computed tomography, researchers are still looking for early biomarkers to complement existing screening techniques in order to provide a safe, faster, and more accurate diagnosis. Biomarkers are biological molecules found in body fluids, such as plasma, that can be used to diagnose a condition or disease. Metabolomics has already been shown to be a powerful tool in the search for cancer biomarkers since cancer cells are characterized by impaired metabolism, resulting in an adapted plasma metabolite profile. The metabolite profile can be determined using nuclear magnetic resonance, or NMR. Although metabolomics and NMR metabolite profiling of blood plasma are still under investigation, there is already evidence for its potential for early-stage lung cancer diagnosis, therapy response, and follow-up monitoring. This review highlights some key breakthroughs in this research field, where the most significant biomarkers will be discussed in relation to their metabolic pathways and in light of the altered cancer metabolism.
Collapse
Affiliation(s)
- Jill Meynen
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
| | - Peter Adriaensens
- Applied and Analytical Chemistry, NMR Group, Institute for Materials Research (Imo-Imomec), Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium;
| | - Maarten Criel
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium;
| | - Evelyne Louis
- Department of Respiratory Medicine, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium;
| | - Karolien Vanhove
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Respiratory Medicine, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium;
- Department of Respiratory Medicine, Algemeen Ziekenhuis Vesalius, Hazelereik 51, B-3700 Tongeren, Belgium
| | - Michiel Thomeer
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium;
| | - Liesbet Mesotten
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Nuclear Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium
| | - Elien Derveaux
- Applied and Analytical Chemistry, NMR Group, Institute for Materials Research (Imo-Imomec), Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium;
| |
Collapse
|
15
|
Benzarti M, Neises L, Oudin A, Krötz C, Viry E, Gargiulo E, Pulido C, Schmoetten M, Pozdeev V, Lorenz NI, Ronellenfitsch MW, Sumpton D, Warmoes M, Jaeger C, Lesur A, Becker B, Moussay E, Paggetti J, Niclou SP, Letellier E, Meiser J. PKM2 diverts glycolytic flux in dependence on mitochondrial one-carbon cycle. Cell Rep 2024; 43:113868. [PMID: 38421868 DOI: 10.1016/j.celrep.2024.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.
Collapse
Affiliation(s)
- Mohaned Benzarti
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg; Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Krötz
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Coralie Pulido
- Animal Facility, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Maryse Schmoetten
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Vitaly Pozdeev
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Nadia I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David Sumpton
- Cancer Research U.K. Scotland Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Marc Warmoes
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christian Jaeger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Björn Becker
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
16
|
Haitzmann T, Schindlmaier K, Frech T, Mondal A, Bubalo V, Konrad B, Bluemel G, Stiegler P, Lackner S, Hrzenjak A, Eichmann T, Köfeler HC, Leithner K. Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. Cancer Metab 2024; 12:9. [PMID: 38515202 PMCID: PMC10956291 DOI: 10.1186/s40170-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.
Collapse
Affiliation(s)
- Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Frech
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Visnja Bubalo
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Konrad
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, 5020, Salzburg, Austria
| | - Philipp Stiegler
- Division of General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Stefanie Lackner
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010, Graz, Austria
| | - Thomas Eichmann
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
17
|
Liu Y, Li L, Yang Z, Liao LX, Yao XJ, Tu PF, Zeng KW. Allosteric regulation of the lid domain of PCK2 as a novel strategy for modulating mitochondrial dynamics. Chem Commun (Camb) 2023; 59:13514-13517. [PMID: 37885376 DOI: 10.1039/d3cc02781c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Aberrant PCK2 overexpression has been linked to an unfavorable prognosis and shorter survival, particularly in hepatocellular carcinoma (HCC). Thus, the inactivation of PCK2 provides a promising strategy for HCC treatment. In this study, we used a chemical genetic strategy to identify a natural-derived small-molecule cucurbitacin B (CuB) as a selective PCK2 inhibitor. CuB covalently bound to PCK2 at a unique Cys63 site, blocking the Ω-loop lid domain formation via a previously undisclosed allosteric mechanism. Additionally, targeted lipidomics analysis also revealed that CuB destroyed mitochondrial membrane integrity, leading to the disruption of mitochondrial fusion-fission dynamics. Taken together, this study highlights the discovery of a small-molecule CuB, which reprograms lipid metabolism for controlling mitochondrial dynamics via targeting PCK2 in cancer cells.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
18
|
Shah A, Wondisford FE. Gluconeogenesis Flux in Metabolic Disease. Annu Rev Nutr 2023; 43:153-177. [PMID: 37603427 DOI: 10.1146/annurev-nutr-061121-091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Gluconeogenesis is a critical biosynthetic process that helps maintain whole-body glucose homeostasis and becomes altered in certain medical diseases. We review gluconeogenic flux in various medical diseases, including common metabolic disorders, hormonal imbalances, specific inborn genetic errors, and cancer. We discuss how the altered gluconeogenic activity contributes to disease pathogenesis using data from experiments using isotopic tracer and spectroscopy methodologies. These in vitro, animal, and human studies provide insights into the changes in circulating levels of available gluconeogenesis substrates and the efficiency of converting those substrates to glucose by gluconeogenic organs. We highlight ongoing knowledge gaps, discuss emerging research areas, and suggest future investigations. A better understanding of altered gluconeogenesis flux may ultimately identify novel and targeted treatment strategies for such diseases.
Collapse
Affiliation(s)
- Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| |
Collapse
|
19
|
Cheung AHK, Wong KY, Liu X, Ji F, Hui CHL, Zhang Y, Kwan JSH, Chen B, Dong Y, Lung RWM, Yu J, Lo KW, Wong CC, Kang W, To KF. MLK4 promotes glucose metabolism in lung adenocarcinoma through CREB-mediated activation of phosphoenolpyruvate carboxykinase and is regulated by KLF5. Oncogenesis 2023; 12:35. [PMID: 37407566 DOI: 10.1038/s41389-023-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
MLK4, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, has been implicated in cancer progression. However, its role in lung adenocarcinoma has not been characterized. Here, we showed that MLK4 was overexpressed in a significant subset of lung adenocarcinoma, associated with a worse prognosis, and exerted an oncogenic function in vitro and in vivo. Bioinformatics analyses of clinical datasets identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a novel target of MLK4. We validated that MLK4 regulated PCK1 expression at transcriptional level, by phosphorylating the transcription factor CREB, which in turn mediated PCK1 expression. We further demonstrated that PCK1 is an oncogenic factor in lung adenocarcinoma. Given the importance of PCK1 in the regulation of cellular metabolism, we next deciphered the metabolic effects of MLK4. Metabolic and mass spectrometry analyses showed that MLK4 knockdown led to significant reduction of glycolysis and decreased levels of glycolytic pathway metabolites including phosphoenolpyruvate and lactate. Finally, the promoter analysis of MLK4 unravelled a binding site of transcription factor KLF5, which in turn, positively regulated MLK4 expression in lung adenocarcinoma. In summary, we have revealed a KLF5-MLK4-PCK1 signalling pathway involved in lung tumorigenesis and established an unusual link between MAP3K signalling and cancer metabolism.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kit-Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fenfen Ji
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yihan Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yujuan Dong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
20
|
Mendes C, Lemos I, Francisco I, Almodôvar T, Cunha F, Albuquerque C, Gonçalves LG, Serpa J. NSCLC presents metabolic heterogeneity, and there is still some leeway for EGF stimuli in EGFR-mutated NSCLC. Lung Cancer 2023; 182:107283. [PMID: 37379672 DOI: 10.1016/j.lungcan.2023.107283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Metabolic remodeling is crucial in carcinogenesis and cancer progression. Oncogenic mutations may promote metabolic reprogramming in cancer cells to support their energy and biomass requirements. EGFR mutations are commonly found in non-small cell lung cancer (NSCLC) and may induce NSCLC metabolic rewiring. Whether EGFR-driven metabolic reprogramming triggers cell vulnerabilities with therapeutic potential remains unknown. METHODS The role of EGFR signaling activation by EGF was investigated using NSCLC cell lines with different EGFR and KRAS status: A549 (EGFR WT and KRAS c.34G > A), H292 (EGFR WT and KRAS WT) and PC-9 (EGFR exon 19 E746-A750 deletion and KRAS WT). The effect of EGF on NSCLC cell death and cell cycle was evaluated using flow cytometry, and cell migration was assessed through wound healing. EGFR, HER2, MCT1, and MCT4 expression was analyzed through immunofluorescence or western blotting. We explored the impact of glucose and lactate bioavailability on NSCLC cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy. Moreover, the expression of several relevant metabolic genes in NSCLC cells or patient samples was determined by RT-qPCR. RESULTS We showed that cell lines presented different metabolic profiles, and PC-9 cells were the most responsive to EGF stimulus, as they showed higher rates of cell proliferation and migration, together with altered metabolic behavior. By inhibiting EGFR with gefitinib, a decrease in glucose consumption was observed, which may be related to the fact that despite PC-9 harbor EGFR mutation, they still express the EGFR WT allele. The analysis of NSCLC patients' RNA showed a correlation between MCT1/MCT4 and GLUT1 expression in most cases, indicating that the metabolic information can serve as a reference in patients' follow-up. CONCLUSION Together, this study shows that NSCLC cell lines have heterogeneous metabolic profiles, which may be underlaid by different genetic profiles, revealing an opportunity to identify and stratify patients who can benefit from metabolism-targeted therapies.
Collapse
Affiliation(s)
- Cindy Mendes
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Inês Francisco
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Teresa Almodôvar
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Fernando Cunha
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cristina Albuquerque
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB Nova), Oeiras, Portugal
| | - Jacinta Serpa
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
21
|
Yu Y, Li J, Ren K. Phosphoenolpyruvate carboxykinases as emerging targets in cancer therapy. Front Cell Dev Biol 2023; 11:1196226. [PMID: 37250903 PMCID: PMC10217351 DOI: 10.3389/fcell.2023.1196226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Metabolic reprogramming is commonly accompanied by alterations in the expression of metabolic enzymes. These metabolic enzymes not only catalyze the intracellular metabolic reaction, but also participate in a series of molecular events to regulate tumor initiation and development. Thus, these enzymes may act as promising therapeutic targets for tumor management. Phosphoenolpyruvate carboxykinases (PCKs) are the key enzymes involved in gluconeogenesis, which mediates the conversion of oxaloacetate into phosphoenolpyruvate. Two isoforms of PCK, namely cytosolic PCK1 and mitochondrial PCK2, has been found. PCK not only participates in the metabolic adaptation, but also regulates immune response and signaling pathways for tumor progression. In this review, we discussed the regulatory mechanisms of PCKs expression including transcription and post-translational modification. We also summarized the function of PCKs in tumor progression in different cellular contexts and explores its role in developing promising therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Kang Y, Yeo M, Choi H, Jun H, Eom S, Park SG, Yoon H, Kim E, Kang S. Lactate oxidase/vSIRPα conjugates efficiently consume tumor-produced lactates and locally produce tumor-necrotic H 2O 2 to suppress tumor growth. Int J Biol Macromol 2023; 231:123577. [PMID: 36758763 DOI: 10.1016/j.ijbiomac.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
23
|
Hu W, Liu L, Forn-Cuní G, Ding Y, Alia A, Spaink HP. Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related Metabolism in Unchallenged Zebrafish Larvae ( Danio rerio). BIOLOGY 2023; 12:biology12020323. [PMID: 36829598 PMCID: PMC9952914 DOI: 10.3390/biology12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Toll-like receptors (TLRs) have been implicated in the regulation of various metabolism pathways, in addition to their function in innate immunity. Here, we investigate the metabolic function of TLR2 in a larval zebrafish system. We studied larvae from a tlr2 mutant and the wild type sibling controls in an unchallenged normal developmental condition using transcriptomic and metabolomic analyses methods. RNAseq was used to evaluate transcriptomic differences between the tlr2 mutant and wild-type control zebrafish larvae and found a signature set of 149 genes to be significantly altered in gene expression. The expression level of several genes was confirmed by qPCR analyses. Gene set enrichment analysis (GSEA) revealed differential enrichment of genes between the two genotypes related to valine, leucine, and isoleucine degradation and glycolysis and gluconeogenesis. Using 1H nuclear magnetic resonance (NMR) metabolomics, we found that glucose and various metabolites related with glucose metabolism were present at higher levels in the tlr2 mutant. Furthermore, we confirmed that the glucose level is higher in tlr2 mutants by using a fluorometric assay. Therefore, we have shown that TLR2, in addition to its function in immunity, has a function in controlling metabolism during vertebrate development. The functions are associated with transcriptional regulation of various enzymes involved in glucose metabolism that could explain the different levels of glucose, lactate, succinate, and malate in larvae of a tlr2 mutant.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Li Liu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yi Ding
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alia Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
24
|
Yu D, Zhou L, Liu X, Xu G. Stable isotope-resolved metabolomics based on mass spectrometry: Methods and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
25
|
Anderson R, Pladna KM, Schramm NJ, Wheeler FB, Kridel S, Pardee TS. Pyruvate Dehydrogenase Inhibition Leads to Decreased Glycolysis, Increased Reliance on Gluconeogenesis and Alternative Sources of Acetyl-CoA in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15020484. [PMID: 36672433 PMCID: PMC9857304 DOI: 10.3390/cancers15020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease characterized by poor outcomes and therapy resistance. Devimistat is a novel agent that inhibits pyruvate dehydrogenase complex (PDH). A phase III clinical trial in AML patients combining devimistat and chemotherapy was terminated for futility, suggesting AML cells were able to circumvent the metabolic inhibition of devimistat. The means by which AML cells resist PDH inhibition is unknown. AML cell lines treated with devimistat or deleted for the essential PDH subunit, PDHA, showed a decrease in glycolysis and decreased glucose uptake due to a reduction of the glucose transporter GLUT1 and hexokinase II. Both devimistat-treated and PDHA knockout cells displayed increased sensitivity to 2-deoxyglucose, demonstrating reliance on residual glycolysis. The rate limiting gluconeogenic enzyme phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly upregulated in devimistat-treated cells, and its inhibition increased sensitivity to devimistat. The gluconeogenic amino acids glutamine and asparagine protected AML cells from devimistat. Non-glycolytic sources of acetyl-CoA were also important with fatty acid oxidation, ATP citrate lyase (ACLY) and acyl-CoA synthetase short chain family member 2 (ACSS2) contributing to resistance. Finally, devimistat reduced fatty acid synthase (FASN) activity. Taken together, this suggests that AML cells compensate for PDH and glycolysis inhibition by gluconeogenesis for maintenance of essential glycolytic intermediates and fatty acid oxidation, ACLY and ACSS2 for non-glycolytic production of acetyl-CoA. Strategies to target these escape pathways should be explored in AML.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kristin M. Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nathaniel J. Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frances B. Wheeler
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Steven Kridel
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Timothy S. Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
- Cornerstone Pharmaceuticals Inc., Cranbury, NJ 08512, USA
- Correspondence: ; Tel.: +1-336-716-5847; Fax: +1-336-716-5687
| |
Collapse
|
26
|
Choi H, Yeo M, Kang Y, Kim HJ, Park SG, Jang E, Park SH, Kim E, Kang S. Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth. J Nanobiotechnology 2023; 21:5. [PMID: 36597089 PMCID: PMC9811728 DOI: 10.1186/s12951-022-01762-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The aggressive proliferation of tumor cells often requires increased glucose uptake and excessive anaerobic glycolysis, leading to the massive production and secretion of lactate to form a unique tumor microenvironment (TME). Therefore, regulating appropriate lactate levels in the TME would be a promising approach to control tumor cell proliferation and immune suppression. To effectively consume lactate in the TME, lactate oxidase (LOX) and catalase (CAT) were displayed onto Aquifex aeolicus lumazine synthase protein nanoparticles (AaLS) to form either AaLS/LOX or AaLS/LOX/CAT. These complexes successfully consumed lactate produced by CT26 murine colon carcinoma cells under both normoxic and hypoxic conditions. Specifically, AaLS/LOX generated a large amount of H2O2 with complete lactate consumption to induce drastic necrotic cell death regardless of culture condition. However, AaLS/LOX/CAT generated residual H2O2, leading to necrotic cell death only under hypoxic condition similar to the TME. While the local administration of AaLS/LOX to the tumor site resulted in mice death, that of AaLS/LOX/CAT significantly suppressed tumor growth without any severe side effects. AaLS/LOX/CAT effectively consumed lactate to produce adequate amounts of H2O2 which sufficiently suppress tumor growth and adequately modulate the TME, transforming environments that are favorable to tumor suppressive neutrophils but adverse to tumor-supportive tumor-associated macrophages. Collectively, these findings showed that the modular functionalization of protein nanoparticles with multiple metabolic enzymes may offer the opportunity to develop new enzyme complex-based therapeutic tools that can modulate the TME by controlling cancer metabolism.
Collapse
Affiliation(s)
- Hyukjun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Mirae Yeo
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Yujin Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Hyo Jeong Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Guk Park
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Eunjung Jang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sung Ho Park
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Eunhee Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sebyung Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
27
|
Li Z, Yue M, Liu X, Liu Y, Lv L, Zhang P, Zhou Y. The PCK2-glycolysis axis assists three-dimensional-stiffness maintaining stem cell osteogenesis. Bioact Mater 2022; 18:492-506. [PMID: 35415308 PMCID: PMC8971594 DOI: 10.1016/j.bioactmat.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding mechanisms underlying the heterogeneity of multipotent stem cells offers invaluable insights into biogenesis and tissue development. Extracellular matrix (ECM) stiffness has been acknowledged as a crucial factor regulating stem cell fate. However, how cells sense stiffness cues and adapt their metabolism activity is still unknown. Here we report the novel role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in enhancing osteogenesis in 3D ECM via glycolysis. We experimentally mimicked the physical characteristics of 3D trabeculae network of normal and osteoporotic bone with different microstructure and stiffness, observing that PCK2 promotes osteogenesis in 3D ECM with tunable stiffness in vitro and in vivo. Mechanistically, PCK2 enhances the rate-limiting metabolic enzyme pallet isoform phosphofructokinase (PFKP) in 3D ECM, and further activates AKT/extracellular signal-regulated kinase 1/2 (ERK1/2) cascades, which directly regulates osteogenic differentiation of MSCs. Collectively, our findings implicate an intricate crosstalk between cell mechanics and metabolism, and provide new perspectives for strategies of osteoporosis. As the key rate-limiting enzyme of gluconeogenesis, PCK2 manipulates osteogenesis in stiff and soft ECM in vitro and in vivo. PCK2 regulates osteogenic capacity of BMMSCs in 3D ECM with different stiffness, via modulating glycolysis and regulating PFKP-AKT/ERK signaling pathways.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Corresponding author. Vice Professor of Department of Prosthodontics, School and Hospital of Stomatology of Peking University, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Corresponding author. President of School and Hospital of Stomatology of Peking University, Professor of Department of Prosthodontics, Vice-Director for National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Vice-Director for the National Clinical Research Center of Oral Diseases (PKU), 22 Zhongguancun South Avenue, Haidian District, Beijing, 10081, PR China.
| |
Collapse
|
28
|
Hyroššová P, Aragó M, Muñoz-Pinedo C, Viñals F, García-Rovés PM, Escolano C, Méndez-Lucas A, Perales JC. Glycosylation defects, offset by PEPCK-M, drive entosis in breast carcinoma cells. Cell Death Dis 2022; 13:730. [PMID: 36002449 PMCID: PMC9402552 DOI: 10.1038/s41419-022-05177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
On glucose restriction, epithelial cells can undergo entosis, a cell-in-cell cannibalistic process, to allow considerable withstanding to this metabolic stress. Thus, we hypothesized that reduced protein glycosylation might participate in the activation of this cell survival pathway. Glucose deprivation promoted entosis in an MCF7 breast carcinoma model, as evaluated by direct inspection under the microscope, or revealed by a shift to apoptosis + necrosis in cells undergoing entosis treated with a Rho-GTPase kinase inhibitor (ROCKi). In this context, curbing protein glycosylation defects with N-acetyl-glucosamine partially rescued entosis, whereas limiting glycosylation in the presence of glucose with tunicamycin or NGI-1, but not with other unrelated ER-stress inducers such as thapsigargin or amino-acid limitation, stimulated entosis. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M; PCK2) is upregulated by glucose deprivation, thereby enhancing cell survival. Therefore, we presumed that PEPCK-M could play a role in this process by offsetting key metabolites into glycosyl moieties using alternative substrates. PEPCK-M inhibition using iPEPCK-2 promoted entosis in the absence of glucose, whereas its overexpression inhibited entosis. PEPCK-M inhibition had a direct role on total protein glycosylation as determined by Concanavalin A binding, and the specific ratio of fully glycosylated LAMP1 or E-cadherin. The content of metabolites, and the fluxes from 13C-glutamine label into glycolytic intermediates up to glucose-6-phosphate, and ribose- and ribulose-5-phosphate, was dependent on PEPCK-M content as measured by GC/MS. All in all, we demonstrate for the first time that protein glycosylation defects precede and initiate the entosis process and implicates PEPCK-M in this survival program to dampen the consequences of glucose deprivation. These results have broad implications to our understanding of tumor metabolism and treatment strategies.
Collapse
Affiliation(s)
- Petra Hyroššová
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Marc Aragó
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Cristina Muñoz-Pinedo
- grid.418284.30000 0004 0427 2257Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (Oncobell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Francesc Viñals
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain ,grid.418284.30000 0004 0427 2257Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (Oncobell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Pablo M. García-Rovés
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Carmen Escolano
- grid.5841.80000 0004 1937 0247Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Andrés Méndez-Lucas
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain ,grid.418284.30000 0004 0427 2257Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (Oncobell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Jose C. Perales
- grid.5841.80000 0004 1937 0247Department of Physiological Sciences, School of Medicine, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain ,grid.418284.30000 0004 0427 2257Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (Oncobell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Spain
| |
Collapse
|
29
|
Hsu H, Chu P, Chang T, Huang K, Hung W, Jiang SS, Lin H, Tsai H. Mitochondrial phosphoenolpyruvate carboxykinase promotes tumor growth in estrogen receptor-positive breast cancer via regulation of the mTOR pathway. Cancer Med 2022; 12:1588-1601. [PMID: 35757841 PMCID: PMC9883444 DOI: 10.1002/cam4.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer. METHODS We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer. RESULTS PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown. CONCLUSION PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.
Collapse
Affiliation(s)
- Hui‐Ping Hsu
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan,National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan,Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Tsung‐Ming Chang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Medical Laboratory ScienceCollege of Medical Science and Technology, I‐Shou UniversityKaohsiungTaiwan
| | - Kuo‐Wei Huang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Wen‐Chun Hung
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Shih Sheng Jiang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐You Lin
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐Jen Tsai
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Oncology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan,Department of Internal Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
30
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
31
|
Ma X, Gao Y, Liu JH, Xu L, Liu WL, Huna A, Wang XL, Gong WJ. Low expression of PCK2 in breast tumors contributes to better prognosis via inducing senescence of cancer cells. IUBMB Life 2022; 74:896-907. [PMID: 35580079 DOI: 10.1002/iub.2651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
Cell cycle arrest, one of the main character of cellular senescence, has been described as a crucial barrier that needs to be bypassed for cancer progression. Typically, cellular senescence can be induced by multiple stresses including telomere shortening, oncogenic activation as well as therapy treatment; and contributes to the inhibition of epithelial-mesenchymal transition (EMT), tumor suppression or progression depending on the senescence associated secretory phenotype (SASP) components. However, the mechanisms underlying cancer cell senescence remain partially understood. Here, according to METABRIC database, we identified that patients with senescent-like breast tumors show better short term survival, lower tendency of neoplasm histological grades, lower tumor stages and negative status of estrogen receptor (ER) and progesterone receptor (PR) comparing with non-senescent ones. Interestingly, kyoto encyclopedia of genes and genomes (KEGG) analysis identified insulin signaling was significantly repressed in senescent breast tumors. Further verification in cultured breast cancer cells indicated that phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly inhibited after therapy treatment. In addition, knockdown of PCK2 induced a senescent phenotype of breast cancer cells. Moreover, comparing with non-senescent group, the senescent breast cancers displayed lower EMT capacity both in patients and breast cancer cell lines after knocking down PCK2. In conclusion, we described for the first time that low expression level of PCK2 may contribute to better prognosis via triggering senescent phenotype and thereby inhibiting EMT capacity in breast cancers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, Department of The Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yue Gao
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jian-Hua Liu
- Department of Laboratory Medicine, Linyi Central Hospital, Linyi, China
| | - Lei Xu
- Department of Intensive Care, Department of The Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei-Li Liu
- Department of Intensive Care, Department of The Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Xiao-Ling Wang
- School of Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, China
| | - Wei-Juan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Brain Endothelial Cells Utilize Glycolysis for the Maintenance of the Transcellular Permeability. Mol Neurobiol 2022; 59:4315-4333. [PMID: 35508867 DOI: 10.1007/s12035-022-02778-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Among the components of the blood-brain barrier (BBB), endothelial cells (ECs) play an important role in supplying limited materials, especially glucose, to the brain. However, the mechanism by which glucose is metabolized in brain ECs is still elusive. To address this topic, we assessed the metabolic signature of glucose utilization using live-cell metabolic assays and liquid chromatography-tandem mass spectrometry metabolomic analysis. We found that brain ECs are highly dependent on aerobic glycolysis, generating lactate as its final product with minimal consumption of glucose. Glucose treatment decreased the oxygen consumption rate in a dose-dependent manner, indicating the Crabtree effect. Moreover, when glycolysis was inhibited, brain ECs showed impaired permeability to molecules utilizing transcellular pathway. In addition, we found that the blockade of glycolysis in mouse brain with 2-deoxyglucose administration resulted in decreased transcellular permeability of the BBB. In conclusion, utilizing glycolysis in brain ECs has critical roles in the maintenance and permeability of the BBB. Overall, we could conclude that brain ECs are highly glycolytic, and their energy can be used to maintain the transcellular permeability of the BBB.
Collapse
|
33
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
34
|
Mehrgou A, Teimourian S. Update of gene expression/methylation and MiRNA profiling in colorectal cancer; application in diagnosis, prognosis, and targeted therapy. PLoS One 2022; 17:e0265527. [PMID: 35333898 PMCID: PMC8956198 DOI: 10.1371/journal.pone.0265527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/02/2022] [Indexed: 01/22/2023] Open
Abstract
Background
Colorectal cancer is one of the most deadliest malignancies worldwide. Due to the dearth of appropriate biomarkers, the diagnosis of this mortal disease is usually deferred, in its turn, culminating in the failure of prevention. By the same token, proper biomarkers are at play in determining the quality of prognosis. In other words, the survival rate is contingent upon the regulation of such biomarkers.
Materials and methods
The information regarding expression (GSE41258, and GSE31905), methylation (GSE101764), and miRNA (dbDEMC) were downloaded. MEXPRESS and GEPIA confirmed the validated differentially expressed/methylated genes using TCGA data. Taking advantage of the correlation plots and receiver-operating-characteristic (ROC) curves, expression and methylation profiles were compared. The interactions between validated differentially expressed genes and differentially expressed miRNA were recognized and visualized by miRTarBase and Cytoscape, respectively. Then, the protein-protein interaction (PPI) network and hub genes were established via STRING and Cytohubba plugin. Utilizing R packages (DOSE, Enrichplot, and clusterProfiler) and DAVID database, the Functional Enrichment analysis and the detection of KEGG pathways were performed. Ultimately, in order to recognize the prognostic value of found biomarkers, they were evaluated through drawing survival plots for CRC patients.
Results
In this research, we found an expression profile (with 13 novel genes), a methylation profile (with two novel genes), and a miRNA profile with diagnostic value. Concerning diagnosis, the expression profile was evaluated more powerful in comparison with the methylation profile. Furthermore, a prognosis-related expression profile was detected.
Conclusion
In addition to diagnostic- and prognostic-applicability, the discerned profiles can assist in targeted therapy and current therapeutic strategies.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
35
|
Bian X, Jiang H, Meng Y, Li YP, Fang J, Lu Z. Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends Cell Biol 2022; 32:786-799. [PMID: 35300892 DOI: 10.1016/j.tcb.2022.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Gene transcription and cell metabolism are two fundamental biological processes that mutually regulate each other. Upregulated or altered expression of glucose metabolic genes in glycolysis and gluconeogenesis is a major driving force of enhanced aerobic glycolysis in tumor cells. Importantly, glycolytic and gluconeogenic enzymes in tumor cells acquire moonlighting functions and directly regulate gene expression by modulating chromatin or transcriptional complexes. The mutual regulation between cellular metabolism and gene expression in a feedback mechanism constitutes a unique feature of tumor cells and provides specific molecular and functional targets for cancer treatment.
Collapse
Affiliation(s)
- Xueli Bian
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang 330031, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ying-Ping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
36
|
A Novel Prognostic Four-Gene Signature of Breast Cancer Identified by Integrated Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:5925982. [PMID: 35265226 PMCID: PMC8898848 DOI: 10.1155/2022/5925982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022]
Abstract
Molecular analysis facilitates the prediction of overall survival (OS) of breast cancer and decision-making of the treatment plan. The current study was designed to identify new prognostic genes for breast cancer and construct an effective prognostic signature with integrated bioinformatics analysis. Differentially expressed genes in breast cancer samples from The Cancer Genome Atlas (TCGA) dataset were filtered by univariate Cox regression analysis. The prognostic model was optimized by the Akaike information criterion and further validated using the TCGA dataset (n = 1014) and Gene Expression Omnibus (GEO) dataset (n = 307). The correlation between the risk score and clinical information was assessed by univariate and multivariate Cox regression analyses. Functional pathways in relation to high-risk and low-risk groups were analyzed using gene set enrichment analysis (GSEA). Four prognostic genes (EXOC6, GPC6, PCK2, and NFATC2) were screened and used to construct a prognostic model, which showed robust performance in classifying the high-risk and low-risk groups. The risk score was significantly related to clinical features and OS. We identified 19 functional pathways significantly associated with the risk score. This study constructed a new prognostic model with a high prediction performance for breast cancer. The four-gene prognostic signature could serve as an effective tool to predict prognosis and assist the management of breast cancer patients.
Collapse
|
37
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
38
|
Dong H, Feng Y, Yang Y, Hu Y, Jia Y, Yang S, Zhao N, Zhao R. A Novel Function of Mitochondrial Phosphoenolpyruvate Carboxykinase as a Regulator of Inflammatory Response in Kupffer Cells. Front Cell Dev Biol 2022; 9:726931. [PMID: 34970539 PMCID: PMC8712867 DOI: 10.3389/fcell.2021.726931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
Background: There has been a recent appreciation that some metabolic enzymes can profoundly influence the nature of the immune response produced in macrophages. However, the role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in immune response remains unknown. This study aims to investigate the role of PCK2 in lipopolysaccharides (LPS)-induced activation in Kupffer cells. Methods: Inflammatory cytokines were determined by real-time quantitative reverse transcription-polymerase chain action (qRT-PCR) and flow cytometric analysis using a cytometric bead array. Western blotting and immunofluorescence staining were used to determine PCK2 expression and subcellular distribution under confocal laser microscopy. qRT-PCR, flow cytometry, and high-performance liquid chromatography (HPLC) were used to determine mitochondrial function. Pharmacological inhibition, knockdown, and overexpression of PCK2 were used to confirm its function. Co-immunoprecipitation (Co-IP) was performed to determine MAPK/NF-κB phosphorylation. Results: Inflammatory response was significantly increased in LPS-treated mice and Kupffer cells. During the inflammatory process, the protein level of PCK2 was significantly upregulated in Kupffer cells. Interestingly, the localization of PCK2 was mainly in cytosol rather than mitochondria after LPS stimulation. Gain-of-function and loss-of-function analyses found that PCK2 overexpression significantly upregulated the levels of inflammation markers, whereas PCK2 knockdown or inhibition significantly mitigated LPS-induced inflammatory response in Kupffer cells. Furthermore, PCK2 promoted protein phosphorylation of NF-κB and AKT/MAPK, the major signaling pathways, controlling inflammatory cascade activation. Conclusion: We identified a novel function of PCK2 in mediating LPS-induced inflammation and provided mechanistic insights into the regulation of inflammatory response in Kupffer cells. Therefore, PCK2 may serve as a novel therapeutic target for the regulation of Kupffer cells-mediated inflammatory responses.
Collapse
Affiliation(s)
- Haibo Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis 2021; 10:82. [PMID: 34845203 PMCID: PMC8630180 DOI: 10.1038/s41389-021-00373-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
Collapse
|
40
|
Bluemel G, Planque M, Madreiter-Sokolowski CT, Haitzmann T, Hrzenjak A, Graier WF, Fendt SM, Olschewski H, Leithner K. PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells. Free Radic Biol Med 2021; 176:34-45. [PMID: 34520823 DOI: 10.1016/j.freeradbiomed.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Cancer cells frequently lack nutrients like glucose, due to insufficient vascular networks. Mitochondrial phosphoenolpyruvate carboxykinase, PCK2, has recently been found to mediate partial gluconeogenesis and hence anabolic metabolism in glucose starved cancer cells. Here we show that PCK2 acts as a regulator of mitochondrial respiration and maintains the redox balance in nutrient-deprived human lung cancer cells. PCK2 silencing increased the abundance and interconversion of tricarboxylic acid (TCA) cycle intermediates, augmented mitochondrial respiration and enhanced glutathione oxidation under glucose and serum starvation, in a PCK2 re-expression reversible manner. Moreover, enhancing the TCA cycle by PCK2 inhibition severely reduced colony formation of lung cancer cells under starvation. As a conclusion, PCK2 contributes to maintaining a reduced glutathione pool in starved cancer cells besides mediating the biosynthesis of gluconeogenic/glycolytic intermediates. The study sheds light on adaptive responses in cancer cells to nutrient deprivation and shows that PCK2 confers protection against respiration-induced oxidative stress.
Collapse
Affiliation(s)
- Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
41
|
Zeng X, Li Z, Zhu C, Xu L, Sun Y, Han S. Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors. Drug Deliv 2021; 28:2329-2347. [PMID: 34730054 PMCID: PMC8567922 DOI: 10.1080/10717544.2021.1995081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the incidence of various types of tumors has gradually increased, and it has also been found that there is a certain correlation between abnormal glucose and lipid metabolism and tumors. Glycolipid metabolism can promote tumor progression through multiple pathways, and the expression of related genes also directly or indirectly affects tumor metabolism, metastasis, invasion, and apoptosis. There has been much research on targeted drug delivery systems designed for abnormal glucose and lipid metabolism due to their accuracy and efficiency when used for tumor therapy. In addition, gene mutations have become an important factor in tumorigenesis. For this reason, gene therapy consisting of drugs designed for certain specifically expressed genes have been transfected into target cells to express or silence the corresponding proteins. Targeted gene drug vectors that achieve their corresponding therapeutic purposes are also rapidly developing. The genes related to glucose and lipid metabolism are considered as the target, and a corresponding gene drug carrier is constructed to influence and interfere with the expression of related genes, so as to block the tumorigenesis process and inhibit tumor growth. Designing drugs that target genes related to glucose and lipid metabolism within tumors is considered to be a promising strategy for the treatment of tumor diseases. This article summarizes the chemical drugs/gene drug delivery systems and the corresponding methods used in recent years for the treatment of abnormal glucose and lipid metabolism of tumors, and provides a theoretical basis for the development of glucolipid metabolism related therapeutic methods.
Collapse
Affiliation(s)
- Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Chunrong Zhu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lisa Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Zhu XR, Peng SQ, Wang L, Chen XY, Feng CX, Liu YY, Chen MB. Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer. Cell Death Dis 2021; 12:918. [PMID: 34620839 PMCID: PMC8497628 DOI: 10.1038/s41419-021-04201-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Le Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Yu Chen
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Chun-Xia Feng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
43
|
Effect of AAV-mediated overexpression of ATF5 and downstream targets of an integrated stress response in murine skeletal muscle. Sci Rep 2021; 11:19796. [PMID: 34611283 PMCID: PMC8492641 DOI: 10.1038/s41598-021-99432-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
We previously reported that growth promoter-induced skeletal muscle hypertrophy co-ordinately upregulated expression of genes associated with an integrated stress response (ISR), as well as potential ISR regulators. We therefore used Adeno-Associated Virus (AAV)-mediated overexpression of these genes, individually or in combination, in mouse skeletal muscle to test whether they induced muscle hypertrophy. AAV of each target gene was injected into mouse Tibialis anterior (TA) and effects on skeletal muscle growth determined 28 days later. Individually, AAV constructs for Arginase-2 (Arg2) and Activating transcription factor-5 (Atf5) reduced hindlimb muscle weights and upregulated expression of genes associated with an ISR. AAV-Atf5 also decreased Myosin heavy chain (MyHC)-IIB mRNA, but increased MyHC-IIA and isocitrate dehydrogenase-2 (Idh2) mRNA, suggesting ATF5 is a novel transcriptional regulator of Idh2. AAV-Atf5 reduced the size of both TA oxidative and glycolytic fibres, without affecting fibre-type proportions, whereas Atf5 combined with Cebpg (CCAAT enhancer binding protein-gamma) only reduced the size of glycolytic fibres and tended to increase the proportion of oxidative fibres. It is likely that persistent Atf5 overexpression maintains activation of the ISR, thereby reducing protein synthesis and/or increasing protein degradation and possibly apoptosis, resulting in inhibition of muscle growth, with overexpression of Arg2 having a similar effect.
Collapse
|
44
|
Guan Z, Lan H, Cai X, Zhang Y, Liang A, Li J. Blood-Brain Barrier, Cell Junctions, and Tumor Microenvironment in Brain Metastases, the Biological Prospects and Dilemma in Therapies. Front Cell Dev Biol 2021; 9:722917. [PMID: 34504845 PMCID: PMC8421648 DOI: 10.3389/fcell.2021.722917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastasis is the most commonly seen brain malignancy, frequently originating from lung cancer, breast cancer, and melanoma. Brain tumor has its unique cell types, anatomical structures, metabolic constraints, and immune environment, which namely the tumor microenvironment (TME). It has been discovered that the tumor microenvironment can regulate the progression, metastasis of primary tumors, and response to the treatment through the particular cellular and non-cellular components. Brain metastasis tumor cells that penetrate the brain–blood barrier and blood–cerebrospinal fluid barrier to alter the function of cell junctions would lead to different tumor microenvironments. Emerging evidence implies that these tumor microenvironment components would be involved in mechanisms of immune activation, tumor hypoxia, antiangiogenesis, etc. Researchers have applied various therapeutic strategies to inhibit brain metastasis, such as the combination of brain radiotherapy, immune checkpoint inhibitors, and monoclonal antibodies. Unfortunately, they hardly access effective treatment. Meanwhile, most clinical trials of target therapy patients with brain metastasis are always excluded. In this review, we summarized the clinical treatment of brain metastasis in recent years, as well as their influence and mechanisms underlying the differences between the composition of tumor microenvironments in the primary tumor and brain metastasis. We also look forward into the feasibility and superiority of tumor microenvironment-targeted therapies in the future, which may help to improve the strategy of brain metastasis treatment.
Collapse
Affiliation(s)
- Zhiyuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyu Lan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichi Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Annan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Kang M, Han SK, Kim S, Park S, Jo Y, Kang H, Ko J. Role of small leucine zipper protein in hepatic gluconeogenesis and metabolic disorder. J Mol Cell Biol 2021; 13:361-373. [PMID: 33355643 PMCID: PMC8373270 DOI: 10.1093/jmcb/mjaa069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic gluconeogenesis is the central pathway for glucose generation in the body. The imbalance between glucose synthesis and uptake leads to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Small leucine zipper protein (sLZIP) is an isoform of LZIP and it mainly functions as a transcription factor. Although sLZIP is known to regulate the transcription of genes involved in various cellular processes, the role of sLZIP in hepatic glucose metabolism is not known. In this study, we investigated the regulatory role of sLZIP in hepatic gluconeogenesis and its involvement in metabolic disorder. We found that sLZIP expression was elevated during glucose starvation, leading to the promotion of phosphoenolpyruvate carboxylase and glucose-6-phosphatase expression in hepatocytes. However, sLZIP knockdown suppressed the expression of the gluconeogenic enzymes under low glucose conditions. sLZIP also enhanced glucose production in the human liver cells and mouse primary hepatic cells. Fasting-induced cyclic adenosine monophosphate impeded sLZIP degradation. Results of glucose and pyruvate tolerance tests showed that sLZIP transgenic mice exhibited abnormal blood glucose metabolism. These findings suggest that sLZIP is a novel regulator of gluconeogenic enzyme expression and plays a role in blood glucose homeostasis during starvation.
Collapse
Affiliation(s)
- Minsoo Kang
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sun Kyoung Han
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sungyeon Park
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Yerin Jo
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Hyeryung Kang
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| |
Collapse
|
46
|
Detection of Lung Cancer via Blood Plasma and 1H-NMR Metabolomics: Validation by a Semi-Targeted and Quantitative Approach Using a Protein-Binding Competitor. Metabolites 2021; 11:metabo11080537. [PMID: 34436478 PMCID: PMC8401204 DOI: 10.3390/metabo11080537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
Metabolite profiling of blood plasma, by proton nuclear magnetic resonance (1H-NMR) spectroscopy, offers great potential for early cancer diagnosis and unraveling disruptions in cancer metabolism. Despite the essential attempts to standardize pre-analytical and external conditions, such as pH or temperature, the donor-intrinsic plasma protein concentration is highly overlooked. However, this is of utmost importance, since several metabolites bind to these proteins, resulting in an underestimation of signal intensities. This paper describes a novel 1H-NMR approach to avoid metabolite binding by adding 4 mM trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) as a strong binding competitor. In addition, it is demonstrated, for the first time, that maleic acid is a reliable internal standard to quantify the human plasma metabolites without the need for protein precipitation. Metabolite spiking is further used to identify the peaks of 62 plasma metabolites and to divide the 1H-NMR spectrum into 237 well-defined integration regions, representing these 62 metabolites. A supervised multivariate classification model, trained using the intensities of these integration regions (areas under the peaks), was able to differentiate between lung cancer patients and healthy controls in a large patient cohort (n = 160), with a specificity, sensitivity, and area under the curve of 93%, 85%, and 0.95, respectively. The robustness of the classification model is shown by validation in an independent patient cohort (n = 72).
Collapse
|
47
|
Rao J, Wan X, Tou F, He Q, Xiong A, Chen X, Cui W, Zheng Z. Molecular Characterization of Advanced Colorectal Cancer Using Serum Proteomics and Metabolomics. Front Mol Biosci 2021; 8:687229. [PMID: 34386520 PMCID: PMC8353147 DOI: 10.3389/fmolb.2021.687229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a growing public health concern due to its high mortality rate. Currently, there is a lack of valid diagnostic biomarkers and few therapeutic strategies are available for CRC treatment, especially for advanced CRC whose underlying pathogenic mechanisms remain poorly understood. In the present study, we investigated the serum samples from 20 patients with stage III or IV advanced CRC using data-independent acquisition (DIA)-based proteomics and ultra-performance liquid chromatography coupled to time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) metabolomics techniques. Overall, 551 proteins and 719 metabolites were identified. Hierarchical clustering analysis revealed that the serum proteomes of advanced CRC are more diversified than the metabolomes. Ten biochemical pathways associated with cancer cell metabolism were enriched in the detected proteins and metabolites, including glycolysis/gluconeogenesis, biosynthesis of amino acids, glutathione metabolism, and arachidonic acid metabolism, etc. A protein-protein interaction network in advanced CRC serum was constructed with 80 proteins and 21 related metabolites. Correlation analysis revealed conserved roles of lipids and lipid-like molecules in a regulatory network of advanced CRC. Three metabolites (hydroquinone, leucenol and sphingomyelin) and two proteins (coagulation factor XIII A chain and plasma kallikrein) were selected to be potential biomarkers for advanced CRC, which are positively and significantly correlated with CEA and/or CA 19-9. Altogether, the results expanded our understanding of the physiopathology of advanced CRC and discovered novel potential biomarkers for further validation and application to improve the diagnosis and monitoring of advanced CRC.
Collapse
Affiliation(s)
- Jun Rao
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xianghui Wan
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Fangfang Tou
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Qinsi He
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Aihua Xiong
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Cui
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zhi Zheng
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Zhu P, Lu J, Zhi X, Zhou Y, Wang X, Wang C, Gao Y, Zhang X, Yu J, Sun YB, Zhou P. tRNA-derived fragment tRF Lys-CTT-010 promotes triple-negative breast cancer progression by regulating glucose metabolism via G6PC. Carcinogenesis 2021; 42:1196-1207. [PMID: 34216208 DOI: 10.1093/carcin/bgab058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a novel class of small non-coding RNAs (sncRNAs) whose biological roles are not well defined. Here, using multiple approaches, we investigated its role in human triple-negative breast cancer (TNBC). Our genome-wide transcriptome analysis of sncRNAs revealed that tRF Lys-CTT-010 was significantly increased in human TNBC. It promoted TNBC proliferation and migration. It also closely associated with starch and sucrose metabolism pathways (KEGG analysis) and positively regulated the expression of glucose-6-phosphatase catalytic subunit (G6PC), one of the related genes in the pathway. G6PC, a complex of glucose-6-phosphatase in gluconeogenesis and glycogenolysis, is upregulated in human TNBC samples. Further studies demonstrated that overexpression of G6PC in tRF Lys-CTT-010 inhibitor transfected TNBC cell lines can reverse malignant biological behavior and knockdown of G6PC in TNBC cell lines inhibited tumor progression and reversed the oncogenic function of tRF Lys-CTT-010. In addition, tRF Lys-CTT-010 interacted with G6PC to regulate cellular lactate production and glycogen consumption, resulting in cell survival and proliferation. Thus, fine-tuneing glucose metabolism and the tRF Lys-CTT-010 /G6PC axis may provide a therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingjing Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Clinical medical research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabiao Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiufen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jerry Yu
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yang Bai Sun
- Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021; 519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.
Collapse
Affiliation(s)
- Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangfei Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
50
|
Frank AC, Raue R, Fuhrmann DC, Sirait-Fischer E, Reuse C, Weigert A, Lütjohann D, Hiller K, Syed SN, Brüne B. Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment. Am J Cancer Res 2021; 11:7570-7588. [PMID: 34158867 PMCID: PMC8210612 DOI: 10.7150/thno.58380] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Collapse
|