1
|
Li H, Li P, Li F, Wang T. Application of CellSearch technique in detection of peripheral blood circulating tumour cell count in patients with head and neck cancer and its association with prognosis. Oncol Lett 2025; 29:100. [PMID: 39717066 PMCID: PMC11664308 DOI: 10.3892/ol.2024.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 12/25/2024] Open
Abstract
The aim of the present study was to employ CELLSEARCH® technology for the detection of circulating tumor cells (CTCs) in the peripheral blood of head and neck cancer (HNC) patients, and to assess the association between CTC count and patient prognosis. In this retrospective study, a cohort of 56 patients diagnosed with HNC and receiving treatment at the Department of Otolaryngology, Head and Neck Surgery (Beijing Tongren Hospital) between December 2013 and June 2018 were selected. Utilizing CELLSEARCH® technology, the presence of CTCs were detected in samples of peripheral blood from patients with head and neck cancer (HNC) patients, and CTC counts were documented. CTC positivity was defined as CTCs ≥1/7.5 ml of peripheral blood. Comprehensive data encompassing general demographic profiles, pathological classifications, tumor node metastasis (TNM) staging, tumor histology and treatment modalities were gathered for each participant. The study employed the Kaplan-Meier method to scrutinize and compare survival rates between CTC-positive and CTC-negative cohorts, while both univariate and multivariate Cox regression analyses were conducted to discern the factors impacting the overall survival (OS) of individuals diagnosed with HNC. Out of the 56 patients examined, 14 individuals exhibited detectable levels of CTCs, resulting in a positivity rate of 25%. The analysis revealed a significant association between the levels of CTCs in patients with HNC and the utilization of non-surgical treatment (P<0.05), while no substantial associations were observed concerning sex, age, smoking habits, alcohol consumption, pathological classifications, TNM staging, tumor attributes and surgical interventions (all P>0.05). Survival analysis revealed a reduction in the OS among patients with HNC harboring CTC positivity in contrast to their CTC-negative counterparts. The comprehensive multivariate Cox regression analysis underscored the independent prognostic impact of CTC presence (HR=1.274; 95% CI, 1.119-1.451; P<0.001) and the implementation of non-surgical treatment (HR=0.268; 95% CI, 0.119-0.607; P=0.002) on the prognosis of individuals grappling with HNC. In conclusion, the levels of CTCs were an independent factor affecting outcomes in patients with HNC, with CTC-positive patients showing significantly shorter survival compared with CTC-negative cases.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Otolaryngology, Beijing Daxing District People's Hospital, Beijing 102600, P.R. China
| | - Pingdong Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Ministry of Education, Beijing Institute of Otorhinolaryngology, Beijing 100730, P.R. China
| | - Feng Li
- Department of Otolaryngology, Beijing Daxing District People's Hospital, Beijing 102600, P.R. China
| | - Tao Wang
- Department of Otolaryngology, Beijing Daxing District People's Hospital, Beijing 102600, P.R. China
| |
Collapse
|
2
|
Zhang C, Xu L, Miao X, Zhang D, Xie Y, Hu Y, Zhang Z, Wang X, Wu X, Liu Z, Zang W, He C, Li Z, Ren W, Chen T, Xu C, Zhang Y, Wu A, Lin J. Machine learning assisted dual-modal SERS detection for circulating tumor cells. Biosens Bioelectron 2025; 268:116897. [PMID: 39488132 DOI: 10.1016/j.bios.2024.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Detecting circulating tumor cells (CTCs) from blood has become a promising approach for cancer diagnosis. Surface-enhanced Raman Spectroscopy (SERS) has rapidly developed as a significant detection technology for CTCs, offering high sensitivity and selectivity. Encoded SERS bioprobes have gained attention due to their excellent specificity and ability to identify tumor cells using Raman signals. Machine learning has also made significant contributions to biomedical applications, especially in medical diagnosis. In this study, we developed a detection strategy combining encoded SERS bioprobes and machine learning models to identify CTCs. Dual-modal SERS bioprobes were designed and co-incubated with tumor cells by the "cocktail" method. An identification model for CTCs was constructed using principal component analysis (PCA) and the Random Forest classification algorithm. This innovative strategy endows SERS bioprobes with both effective magnetic separation and highly sensitive identification of CTCs, even at low concentrations of 2 cells/mL. It achieved a high detection rate of 98% for CTCs and effectively eliminated interference from peripheral WBCs. This simple and efficient strategy provides a new approach for CTCs detection and holds important significance for cancer diagnosis.
Collapse
Affiliation(s)
- Chenguang Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Lei Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Xinyu Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Dinghu Zhang
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Yue Hu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Zhouxu Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Xinfangzi Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Xiaoxia Wu
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Zhusheng Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Wen Zang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Chenglong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
4
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Chacko N, Ankri R. Non-invasive early-stage cancer detection: current methods and future perspectives. Clin Exp Med 2024; 25:17. [PMID: 39708168 DOI: 10.1007/s10238-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
This review paper explores the realm of non-invasive methods for early cancer detection. Early identification is crucial for effective therapeutic intervention, and non-invasive techniques have emerged as promising tools to enhance diagnostic accuracy and improve patient outcomes. The paper thoroughly examines the advantages, limitations, and prospects of various non-invasive approaches, including blood tests, non-blood-based tests, and diverse imaging modalities. It discusses the biomarkers found in blood for early-stage cancer detection, specifying the types of cancer associated with each biomarker. The non-blood-based tests focus on components in saliva, urine, and breath for cancer detection, alongside current studies and future perspectives on various cancers. Optical imaging methods covered in this review include fluorescence imaging in the near-infrared (NIR) region, bioluminescence imaging, and Raman spectroscopy for early-stage cancer detection. The review also highlights the pros and cons of ultrasound imaging in early-stage cancer detection. Additionally, the clinical implications of using AI for cancer detection, both present and future, are explored. This paper provides valuable insights for researchers and clinicians working in the field of non-invasive early-stage cancer detection.
Collapse
Affiliation(s)
- Neelima Chacko
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel
| | - Rinat Ankri
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
6
|
Padovano F, Villa C. The development of drug resistance in metastatic tumours under chemotherapy: An evolutionary perspective. J Theor Biol 2024; 595:111957. [PMID: 39369787 DOI: 10.1016/j.jtbi.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
We present a mathematical model of the evolutionary dynamics of a metastatic tumour under chemotherapy, comprising non-local partial differential equations for the phenotype-structured cell populations in the primary tumour and its metastasis. These equations are coupled with a physiologically-based pharmacokinetic model of drug administration and distribution, implementing a realistic delivery schedule. The model is carefully calibrated from the literature, focusing on BRAF-mutated melanoma treated with Dabrafenib as a case study. By means of long-time asymptotic and global sensitivity analyses, as well as numerical simulations, we explore the impact of cell migration from the primary to the metastatic site, physiological aspects of the tumour tissues and drug dose on the development of chemoresistance and treatment efficacy. Our findings provide a possible explanation for empirical evidence indicating that chemotherapy may foster metastatic spread and that metastases may be less impacted by the chemotherapeutic agent.
Collapse
Affiliation(s)
- Federica Padovano
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, 4 place Jussieu, 75005 Paris, France.
| | - Chiara Villa
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR 7598, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
7
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024; 17:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
8
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
9
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
10
|
Maqueda JJ, De Feo A, Scotlandi K. Evaluating Circulating Biomarkers for Diagnosis, Prognosis, and Tumor Monitoring in Pediatric Sarcomas: Recent Advances and Future Directions. Biomolecules 2024; 14:1306. [PMID: 39456239 PMCID: PMC11506719 DOI: 10.3390/biom14101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Pediatric sarcomas present a significant challenge in oncology. There is an urgent need for improved therapeutic strategies for high-risk patients and better management of long-term side effects for those who survive the disease. Liquid biopsy is emerging as a promising tool to optimize treatment in these patients by offering non-invasive, repeatable assessments of disease status. Circulating biomarkers can provide valuable insights into tumor genetics and treatment response, potentially facilitating early diagnosis and dynamic disease monitoring. This review examines the potential of liquid biopsies, focusing on circulating biomarkers in the most common pediatric sarcomas, i.e., osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. We also highlight the current research efforts and the necessary advancements required before these technologies can be widely adopted in clinical practice.
Collapse
Affiliation(s)
- Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (K.S.)
| | | | | |
Collapse
|
11
|
Polivka J, Gouda M, Sharif M, Pesta M, Huang H, Treskova I, Woznica V, Windrichova J, Houfkova K, Kucera R, Fikrle T, Ricar J, Pivovarcikova K, Topolcan O, Janku F. Predictive Significance of Combined Plasmatic Detection of BRAF Mutations and S100B Tumor Marker in Early-Stage Malignant Melanoma. Cancer Med 2024; 13:e70313. [PMID: 39387479 PMCID: PMC11465285 DOI: 10.1002/cam4.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Melanoma is the most aggressive skin cancer with ability to recur also after early-stage tumor surgery. The aim was to identify early-stage melanoma patients at high risk of recurrence using liquid biopsy, estimating of mutated BRAF ctDNA and the level of tumor marker S100B in plasma. METHODS Eighty patients were enrolled in the study. BRAF V600E mutation was determined in FFPE tissue and plasma samples using ultrasensitive ddPCR with pre-amplification. The level of S100B was determined in plasma by immunoassay chemiluminescent method. RESULTS The best prediction of melanoma recurrence after surgery was observed in patients with combined high level of S100B (S100Bhigh) and ctDNA BRAFV600E (BRAFmut) in preoperative (57.1% vs. 12.5%, p = 0.025) as well as postoperative blood samples (83.3% vs. 14.3%, resp., p = 0.001) in comparison with low S100B and BRAF wild-type. Similarly, patients with preoperative and postoperative S100Bhigh and BRAFmut experienced worse prognosis (DFI p = 0.05, OS p = 0.131 and DFI p = 0.001, OS = 0.001, resp.). CONCLUSION We observed the benefit of the estimation of combination of S100B and ctDNA BRAFmut in peripheral blood for identification of patients at high risk of recurrence and unfavorable prognosis. SIGNIFICANCE There is still no general consensus on molecular markers for deciding the appropriateness of adjuvant treatment of early-stage melanoma. We have shown for the first time that the combined determination of the ctDNA BRAFmut oncogene (liquid biopsy) and the high level of tumor marker S100B in pre- and postoperative plasma samples can identify patients with the worst prognosis and the highest risk of tumor recurrence. Therefore, modern adjuvant therapy would be appropriate for these patients with resectable melanoma, regardless of disease stage.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Mohamed A. Gouda
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mahyar Sharif
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Helen Huang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Inka Treskova
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Vlastimil Woznica
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Jindra Windrichova
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Radek Kucera
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
- Department of Pharmacology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Tomas Fikrle
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | - Jan Ricar
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | | | - Ondrej Topolcan
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Filip Janku
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
12
|
Taherifard E, Tran K, Saeed A, Yasin JA, Saeed A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2054. [PMID: 39335733 PMCID: PMC11431712 DOI: 10.3390/diagnostics14182054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver malignancy and the sixth most common cancer globally, remains fatal for many patients with inappropriate responses to treatment. Recent advancements in immunotherapy have transformed the treatment landscape for advanced HCC. However, variability in patient responses to immunotherapy highlights the need for biomarkers that can predict treatment outcomes. This manuscript comprehensively reviews the evolving role of biomarkers in immunotherapy efficacy, spanning from blood-derived indicators-alpha-fetoprotein, inflammatory markers, cytokines, circulating tumor cells, and their DNA-to tissue-derived indicators-programmed cell death ligand 1 expression, tumor mutational burden, microsatellite instability, and tumor-infiltrating lymphocytes. The current body of evidence suggests that these biomarkers hold promise for improving patient selection and predicting immunotherapy outcomes. Each biomarker offers unique insights into disease biology and the immune landscape of HCC, potentially enhancing the precision of treatment strategies. However, challenges such as methodological variability, high costs, inconsistent findings, and the need for large-scale validation in well-powered two-arm trial studies persist, making them currently unsuitable for integration into standard care. Addressing these challenges through standardized techniques and implementation of further studies will be critical for the future incorporation of these biomarkers into clinical practice for advanced HCC.
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Krystal Tran
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Jehad Amer Yasin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
13
|
Guan Y, Liu X, Tian J, Yang G, Xu F, Guo N, Guo L, Wan Z, Huang Z, Gao M, Chong T. CCL5 promotes the epithelial-mesenchymal transition of circulating tumor cells in renal cancer. J Transl Med 2024; 22:817. [PMID: 39227943 PMCID: PMC11370314 DOI: 10.1186/s12967-024-05297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal in tumor metastasis across cancers, yet their specific role in renal cancer remains unclear. METHODS This study investigated C-C motif chemokine ligand 5 (CCL5)'s tumorigenic impact on renal cancer cells and CTCs using bioinformatics, in vivo, and in vitro experiments. It also assessed renal cancer patients' CTCs prognostic value through Lasso regression and Kaplan-Meier survival curves. RESULTS Bioinformatics analysis revealed differential genes focusing on cellular adhesion and migration between CTCs and tumor cells. CCL5 exhibited high expression in various CTCs, correlating with poor prognosis in renal cancer. In 786-O-CTCs, CCL5 enhanced malignancy, while in renal cell carcinoma cell line CAKI-2 and 786-O, it promoted epithelial-mesenchymal transition (EMT) via smad2/3, influencing cellular characteristics. The nude mouse model suggested CCL5 increased CTCs and intensified EMT, enhancing lung metastasis. Clinical results shown varying prognostic values for different EMT-typed CTCs, with mesenchymal CTCs having the highest value. CONCLUSIONS In summary, CCL5 promoted EMT in renal cancer cells and CTCs through smad2/3, enhancing the malignant phenotype and facilitating lung metastasis. Mesenchymal-type CTC-related factors can construct a risk model for renal cancer patients, allowing personalized treatment based on metastatic risk prediction.
Collapse
Affiliation(s)
- Yibing Guan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Juanhua Tian
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Guang Yang
- Henan Key Lab Reprod & Genet, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Fangshi Xu
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ni Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Lingyu Guo
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ziyan Wan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhixin Huang
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Mei Gao
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Tie Chong
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
14
|
Bagheri-Hosseinabadi Z, Eshkevari SMS, Khalighfard S, Alizadeh AM, Khori V, Amiriani T, Poorkhani A, Sadani S, Esmati E, Lashgari M, Mahmoodi M, Hajizadeh MR. A systematic approach introduced some immune system targets in rectal cancer by considering cell-free DNA methylation in response to radiochemotherapy. Cytokine 2024; 181:156666. [PMID: 38906038 DOI: 10.1016/j.cyto.2024.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND This study aims to investigate cell-free DNA (cfDNA) methylation of genes involved in some immune system targets as biomarkers of radioresistance in patients with non-metastatic rectal cancer. METHODS Gene expression (GSE68204, GPL6480, and GSE15781) and DNA methylation profiles (GSE75548 and GSE139404) of rectal cancer patients were obtained from the Gene Expression Omnibus (GEO) database. GEO2R and FunRich software were first used to identify genes with significant expression differences. Enricher softwer was then used to analyze Gene Ontology and detect pathway enrichment of hub genes. Blood samples were then taken from 43 rectal cancer patients. After cfDNA extraction from samples, it was treated with bisulfite and analyzed by methylation-specific PCR. RESULTS 1088 genes with high and 629 with low expression were identified by GEO2R and FunRich software. A total of five high-expression hub genes, including CDH24, FGF18, CCND1, IFITM1, UBE2V1, and three low-expression hub genes, including CBLN2, VIPR2, and IRF4, were identified from UALCAN and DNMIVD databases. Methylation-specific PCR indicated a significant difference in hub gene methylation between cancerous and non-cancerous individuals. Radiochemotherapy significantly affected hub gene methylation. There was a considerable difference in the methylation rate of hub genes between patients who responded to radiochemotherapy and those who did not. CONCLUSIONS Evaluating gene methylation patterns might be an appropriate diagnostic tool to predict radiochemotherapy response and develop targeted therapeutic agents.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Ali Mohammad Alizadeh
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzih Lashgari
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
15
|
Kojima L, Akabane M, Murray M, Fruscione M, Soma D, Snyder A, McVey J, Firl DJ, Hernandez-Alejandro R, Kubal CA, Markmann JF, Aucejo FN, Tomiyama K, Kimura S, Sasaki K. Reappraisal of tacrolimus levels after liver transplant for HCC: A multicenter study toward personalized immunosuppression regimen. Liver Transpl 2024:01445473-990000000-00439. [PMID: 39172007 DOI: 10.1097/lvt.0000000000000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Post-liver transplant (LT) immunosuppression is necessary to prevent rejection; however, a major consequence of this is tumor recurrence. Although recurrence is a concern after LT for patients with HCC, the oncologically optimal tacrolimus (FK) regimen is still unknown. This retrospective study included 1406 patients with HCC who underwent LT (2002-2019) at 4 US institutions using variable post-LT immunosuppression regimens. Receiver operating characteristic analyses were performed to investigate the influences of post-LT time-weighted average FK (TWA-FK) level on HCC recurrence. A competing risk analysis was employed to evaluate the prognostic influence of TWA-FK while adjusting for patient and tumor characteristics. The AUC for TWA-FK was greatest at 2 weeks (0.68), followed by 1 week (0.64) after LT. Importantly, this was consistently observed across the institutions despite immunosuppression regimen variability. In addition, the TWA-FK at 2 weeks was not associated with rejection within 6 months of LT. A competing risk regression analysis showed that TWA-FK at 2 weeks after LT is significantly associated with recurrence (HR: 1.31, 95% CI: 1.21-1.41, p < 0.001). The TWA-FK effect on recurrence varied depending on the exposure level and the individual's risk of recurrence, including vascular invasion and tumor morphology. Although previous studies have explored the influence of FK levels at 1-3 months after LT on HCC recurrence, this current study suggests that earlier time points and exposure levels must be evaluated. Each patient's oncological risk must also be considered in developing an individualized immunosuppression regimen.
Collapse
Affiliation(s)
- Lisa Kojima
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Miho Akabane
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, California, USA
| | - Matthew Murray
- Department of Surgery, Division of Abdominal Transplantation and Hepatobiliary Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Fruscione
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daiki Soma
- Division of Abdominal Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Snyder
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - John McVey
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel J Firl
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, Division of Abdominal Transplantation and Hepatobiliary Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Chandrashekhar A Kubal
- Division of Abdominal Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James F Markmann
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Federico N Aucejo
- Department of Hepato-pancreato-biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Koji Tomiyama
- Department of Surgery, Division of Abdominal Transplantation and Hepatobiliary Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Shoko Kimura
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazunari Sasaki
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Pace J, Lee JJ, Srinivasarao M, Kallepu S, Low PS, Niedre M. In Vivo Labeling and Detection of Circulating Tumor Cells in Mice Using OTL38. Mol Imaging Biol 2024; 26:603-615. [PMID: 38594545 PMCID: PMC11281960 DOI: 10.1007/s11307-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.
Collapse
Affiliation(s)
- Joshua Pace
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jane J Lee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 047906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Krsek A, Baticic L, Braut T, Sotosek V. The Next Chapter in Cancer Diagnostics: Advances in HPV-Positive Head and Neck Cancer. Biomolecules 2024; 14:925. [PMID: 39199313 PMCID: PMC11352962 DOI: 10.3390/biom14080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is an increasingly prevalent pathology worldwide, especially in developed countries. For diagnosing HPV in HNSCC, the combination of p16 immunohistochemistry (IHC) and polymerase chain reaction (PCR) offers high sensitivity and specificity, with p16 IHC being a reliable initial screen and PCR confirming HPV presence. Advanced techniques like next-generation sequencing (NGS) and RNA-based assays provide detailed insights but are primarily used in research settings. Regardless of HPV status, standard oncological treatments currently include surgery, radiation, and/or chemotherapy. This conventional approach does not account for the typically better prognosis of HPV-positive HNSCC patients, leading to increased chemo/radiation-induced secondary morbidities and reduced quality of life. Therefore, it is crucial to identify and detect HPV positivity and other molecular characteristics of HNSCC to personalize treatment strategies. This comprehensive review aims to summarize current knowledge on various HPV detection techniques and evaluate their advantages and disadvantages, with a focus on developing methodologies to identify new biomarkers in HPV-positive HNSCC. The review discusses direct and indirect HPV examination in tumor tissue, DNA- and RNA-based detection techniques, protein-based markers, liquid biopsy potentials, immune-related markers, epigenetic markers, novel biomarkers, and emerging technologies, providing an overall insight into the current state of knowledge.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Yang H, Wang H, He Y, Yang Y, Thompson EW, Xia D, Burke LJ, Cao L, Hooper JD, Roberts MS, Crawford DHG, Liang X. Identification and characterization of TM4SF1 + tumor self-seeded cells. Cell Rep 2024; 43:114512. [PMID: 39003738 DOI: 10.1016/j.celrep.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Tumor self-seeding is a process whereby circulating tumor cells (CTCs) recolonize the primary tumor, which promotes tumor growth, angiogenesis, and invasion. However, the detailed nature and functions of tumor self-seeded cells (TSCs) have not been well defined due to challenges in tracking and isolating TSCs. Here, we report an accurate animal model using photoconvertible tagging to recapitulate the spontaneous process of tumor self-seeding and identify TSCs as a subpopulation of primary tumor cells with enhanced invasiveness and survival. We demonstrate transmembrane-4-L-six-family-1 (TM4SF1) as a marker of TSCs, which promotes migration, invasion, and anchorage-independent survival in cancer cells. By analyzing single-cell RNA sequencing datasets, we identify a potential TSC population with a metastatic profile in patients with cancer, which is detectable in early-stage disease and expands during cancer progression. In summary, we establish a framework to study TSCs and identify emerging cell targets with diagnostic, prognostic, or therapeutic potential in cancers.
Collapse
Affiliation(s)
- Haotian Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Haolu Wang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yang Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Queensland University of Technology and Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leslie J Burke
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael S Roberts
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Xiaowen Liang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia.
| |
Collapse
|
20
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
21
|
Chu X, Zhong X, Zang S, Wang M, Li P, Ma Y, Tian X, Yang Y, Wang C, Yang Y. Stem cell-like circulating tumor cells identified by Pep@MNP and their clinical significance in pancreatic cancer metastasis. Front Oncol 2024; 14:1327280. [PMID: 38983932 PMCID: PMC11231205 DOI: 10.3389/fonc.2024.1327280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Objective The circulating tumor cells (CTCs) could be captured by the peptide functionalized magnetic nanoparticles (Pep@MNP) detection system in pancreatic ductal adenocarcinoma (PDAC). CTCs and the CXCR4 expression were detected to explore their clinical significance. The CXCR4+ CTCs, this is highly metastatic-prone stem cell-like subsets of CTCs (HM-CTCs), were found to be associated with the early recurrence and metastasis of PDAC. Methods CTCs were captured by Pep@MNP. CTCs were identified via immunofluorescence with CD45, cytokeratin antibodies, and the CXCR4 positive CTCs were assigned to be HM-CTCs. Results The over-expression of CXCR4 could promote the migration of pancreatic cancer cell in vitro and in vivo. In peripheral blood (PB), CTCs were detected positive in 79.0% of all patients (49/62, 9 (0-71)/2mL), among which 63.3% patients (31/49, 3 (0-23)/2mL) were HM-CTCs positive. In portal vein blood (PVB), CTCs were positive in 77.5% of patients (31/40, 10 (0-40)/2mL), and 67.7% of which (21/31, 4 (0-15)/2mL) were HM-CTCs positive CTCs enumeration could be used as diagnostic biomarker of pancreatic cancer (AUC = 0.862), and the combination of CTCs positive and CA19-9 increase shows improved diagnostic accuracy (AUC = 0.963). in addition, PVB HM-CTCs were more accurate to predict the early recurrence and liver metastasis than PB HM-CTCs (AUC 0.825 vs. 0.787 and 0.827 vs. 0.809, respectively). Conclusions The CTCs identified by Pep@MNP detection system could be used as diagnostic and prognostic biomarkers of PDAC patients. We identified and defined the CXCR4 over-expressed CTC subpopulation as highly metastatic-prone CTCs, which was proved to identify patients who were prone to suffering from early recurrence and metastasis.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xiejian Zhong
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Shouge Zang
- Department of General Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Mengting Wang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ping Li
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yanlian Yang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Chen X, Hu X, Liu T. Development of liquid biopsy in detection and screening of pancreatic cancer. Front Oncol 2024; 14:1415260. [PMID: 38887233 PMCID: PMC11180763 DOI: 10.3389/fonc.2024.1415260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Pancreatic cancer is a highly lethal malignant tumor, which has the characteristics of occult onset, low early diagnosis rate, rapid development and poor prognosis. The reason for the high mortality is partly that pancreatic cancer is usually found in the late stage and missed the best opportunity for surgical resection. As a promising detection technology, liquid biopsy has the advantages of non-invasive, real-time and repeatable. In recent years, the continuous development of liquid biopsy has provided a new way for the detection and screening of pancreatic cancer. The update of biomarkers and detection tools has promoted the development of liquid biopsy. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA) and extracellular vesicles (EVs) provide many biomarkers for liquid biopsy of pancreatic cancer, and screening tools around them have also been developed. This review aims to report the application of liquid biopsy technology in the detection of pancreatic cancer patients, mainly introduces the biomarkers and some newly developed tools and platforms. We have also considered whether liquid biopsy technology can replace traditional tissue biopsy and the challenges it faces.
Collapse
Affiliation(s)
- Xiangcheng Chen
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyi Hu
- School of The First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Wang X, Zeng Y, Zhu N, Yu Y, Yi Q, Wu Y. In vitro detection of circulating tumor cells using the nicking endonuclease-assisted lanthanide metal luminescence amplification strategy. Talanta 2024; 273:125909. [PMID: 38490020 DOI: 10.1016/j.talanta.2024.125909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The in vitro detection of circulating tumor cells (CTCs) has been proven as a vital method for early diagnosis and evaluation of cancer metastasis, since the existence and number fluctuation of CTCs have shown close correlation with clinical outcomes. However, it remains difficult and technically challenging to realize accurate CTCs detection, due to the rarity of CTCs in the blood samples with complex components. Herein, we reported a CTCs in vitro detection strategy, utilizing a loop amplification strategy based on DNA tetrahedron and nicking endonuclease reaction, as well as the anti-background interference based on lanthanide metal luminescence strategy. In this work, a detection system (ATDN-MLLPs) composed of an aptamer-functionalized tetrahedral DNA nanostructure (ATDN) and magnetic lanthanide luminescent particles (MLLPs) was developed. ATDN targeted the tumor cells via aptamer-antigen recognition and extended three hybridizable target DNA segments from the apex of a DNA tetrahedron to pair with probe DNA on MLLPs. Then, the nicking endonuclease (Nt.BbvCI) recognized the formed double-strand DNA and nicked the probe DNA to release the target DNA for recycling, and the released TbNps served as a high signal-to-noise ratio fluorescence signal source for CTCs detection. With a detection limit of 5 cells/mL, CTCs were selectively screened throughout a linear response range of low orders of magnitude. In addition, the ATDN-MLLPs system was attempted to detect possible existence of CTCs in biological samples in vitro.
Collapse
Affiliation(s)
- Xuekang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Yating Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
24
|
Qiao Z, Teng X, Liu A, Yang W. Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review. MICROMACHINES 2024; 15:706. [PMID: 38930676 PMCID: PMC11206030 DOI: 10.3390/mi15060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Circulating tumor cells (CTCs), derived from the primary tumor and carrying genetic information, contribute significantly to the process of tumor metastasis. The analysis and detection of CTCs can be used to assess the prognosis and treatment response in patients with tumors, as well as to help study the metastatic mechanisms of tumors and the development of new drugs. Since CTCs are very rare in the blood, it is a challenging problem to enrich CTCs efficiently. In this paper, we provide a comprehensive overview of microfluidics-based enrichment devices for CTCs in recent years. We explore in detail the methods of enrichment based on the physical or biological properties of CTCs; among them, physical properties cover factors such as size, density, and dielectric properties, while biological properties are mainly related to tumor-specific markers on the surface of CTCs. In addition, we provide an in-depth description of the methods for enrichment of single CTCs and illustrate the importance of single CTCs for performing tumor analyses. Future research will focus on aspects such as improving the separation efficiency, reducing costs, and increasing the detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Zezheng Qiao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| |
Collapse
|
25
|
Choi HS, Jang HJ, Kristensen MK, Kwon TH. TAZ is involved in breast cancer cell migration via regulating actin dynamics. Front Oncol 2024; 14:1376831. [PMID: 38774409 PMCID: PMC11106448 DOI: 10.3389/fonc.2024.1376831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-β treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Hong Seok Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Mathilde K. Kristensen
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- Faculty of Health, Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| |
Collapse
|
26
|
Zhang E, Li H, Liu C, Zhou H, Liu B, Feng C. Clinical value of circulating tumour cells in evaluating the efficacy of continuous hepatic arterial infusion among colorectal cancer patients. J Chemother 2024:1-9. [PMID: 38711365 DOI: 10.1080/1120009x.2024.2333650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
Few studies have been conducted to evaluate the efficacy of HAIC using circulating tumour cells (CTCs). In this study, a total of 100 patients who received HAIC treatment and CTC detection were selected. The results showed that after HAIC treatment, the levels of CTC, carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) decreased. Postoperative progression-free survival (PFS) rates between patients with positive and negative preoperative CTC results, and for CA19-9, CEA were significantly different. The positive rate of CTCs was 61% before chemotherapy and 23% after chemotherapy, and the correlation coefficient between the two was 0.385. Those whose CTC values increased after chemotherapy had shorter PFS rates. CTCs are an independent predictor of recurrence. Patients with CTC-positive results are more susceptible to recurrence. The CTC count in peripheral blood has a close bearing on the postoperative chemotherapy efficacy of patients with CRC and affects patients' PFS.
Collapse
Affiliation(s)
- Erying Zhang
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Haifei Li
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Caiyun Liu
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Haikun Zhou
- Department of Surgery Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Bo Liu
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Chengbao Feng
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| |
Collapse
|
27
|
Huang X, Meng L, Cao G, Prominski A, Hu Y, Yang C, Chen M, Shi J, Gallagher C, Cao T, Yue J, Huang J, Tian B. Multimodal probing of T-cell recognition with hexapod heterostructures. Nat Methods 2024; 21:857-867. [PMID: 38374262 DOI: 10.1038/s41592-023-02165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
Studies using antigen-presenting systems at the single-cell and ensemble levels can provide complementary insights into T-cell signaling and activation. Although crucial for advancing basic immunology and immunotherapy, there is a notable absence of synthetic material toolkits that examine T cells at both levels, and especially those capable of single-molecule-level manipulation. Here we devise a biomimetic antigen-presenting system (bAPS) for single-cell stimulation and ensemble modulation of T-cell recognition. Our bAPS uses hexapod heterostructures composed of a submicrometer cubic hematite core (α-Fe2O3) and nanostructured silica branches with diverse surface modifications. At single-molecule resolution, we show T-cell activation by a single agonist peptide-loaded major histocompatibility complex; distinct T-cell receptor (TCR) responses to structurally similar peptides that differ by only one amino acid; and the superior antigen recognition sensitivity of TCRs compared with that of chimeric antigen receptors (CARs). We also demonstrate how the magnetic field-induced rotation of hexapods amplifies the immune responses in suspended T and CAR-T cells. In addition, we establish our bAPS as a precise and scalable method for identifying stimulatory antigen-specific TCRs at the single-cell level. Thus, our multimodal bAPS represents a unique biointerface tool for investigating T-cell recognition, signaling and function.
Collapse
Affiliation(s)
- Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Min Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Thao Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
29
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
30
|
Zeng W, Wang Y, Zhang Q, Hu C, Li J, Feng J, Hu C, Su Y, Lou J, Long L, Zhou X. Neutrophil Nanodecoys Inhibit Tumor Metastasis by Blocking the Interaction between Tumor Cells and Neutrophils. ACS NANO 2024; 18:7363-7378. [PMID: 38422392 DOI: 10.1021/acsnano.3c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer metastasis is the main cause of cancer-related deaths and involves the interaction between tumor cells and neutrophils. In this study, we developed activated neutrophil membrane-coated nanoparticles (aNEM NPs) as nanodecoys to block neutrophil-mediated cancer metastasis. The aNEM NPs were fabricated by cloaking poly(lactic acid) nanoparticles with membranes derived from activated neutrophils and inherited the functional proteins of activated neutrophils. We demonstrated that aNEM NPs could interfere with the recruitment of neutrophils to the primary tumor and premetastatic niches, inhibit the adhesion of neutrophils to tumor vascular endothelium and circulating tumor cells (CTCs), and disrupt the formation of CTC-neutrophil clusters in vitro and in vivo. In 4T1-bearing mice, aNEM NPs could effectively reduce breast cancer metastasis to various organs in mice. Our results suggest that aNEM NPs are a promising nanomedicine for preventing or treating cancer metastasis by acting as neutrophil nanodecoys.
Collapse
Affiliation(s)
- Weiya Zeng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ying Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
- Leibo County People's Hospital, Sichuan 616500, China
| | - Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yong Su
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ling Long
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
31
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
32
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
33
|
Huang L, Xu Y, Wang N, Yi K, Xi X, Si H, Zhang Q, Xiang M, Rong Y, Yuan Y, Wang F. Next-Generation Preclinical Functional Testing Models in Cancer Precision Medicine: CTC-Derived Organoids. SMALL METHODS 2024; 8:e2301009. [PMID: 37882328 DOI: 10.1002/smtd.202301009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Basic and clinical cancer research requires tumor models that consistently recapitulate the characteristics of prima tumors. As ex vivo 3D cultures of patient tumor cells, patient-derived tumor organoids possess the biological properties of primary tumors and are therefore excellent preclinical models for cancer research. Patient-derived organoids can be established using primary tumor tissues, peripheral blood, pleural fluid, ascites, and other samples containing tumor cells. Circulating tumor cells acquired by non-invasive sampling feature dynamic circulation and high heterogeneity. Circulating tumor cell-derived organoids are prospective tools for the dynamic monitoring of tumor mutation evolution profiles because they reflect the heterogeneity of the original tumors to a certain extent. This review discusses the advantages and applications of patient-derived organoids. Meanwhile, this work highlights the biological functions of circulating tumor cells, the latest advancement in research of circulating tumor cell-derived organoids, and potential application and challenges of this technology.
Collapse
Affiliation(s)
- Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huaqi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Xiang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
34
|
Tan X, Li Z, Xie H, Chen J, Xiao J, Zhi Y, Mo H, Huang Y, Liu A. Pan-cancer analysis of homeodomain-containing gene C10 and its carcinogenesis in lung adenocarcinoma. Aging (Albany NY) 2023; 15:15243-15266. [PMID: 38154103 PMCID: PMC10781453 DOI: 10.18632/aging.205348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
We found elevated homeodomain-containing gene C10 (HOXC10) showed dual roles in cancers' prognosis. Some signal pathways associated with tumor were totally positively enriched in HOXC10 for whole cancers. On the contrary, Notch signaling, Wnt-beta catenin signaling, myogenesis, and Hedgehog signaling were almost negatively enriched in HOXC10. Some pathways showed dual roles such as Kras signaling, interferon gram and alpha response, IL6/JAK/STAT3, IL2/STAT5 signaling. HOXC10 was associated with tumor mutation burden and microsatellite instability. HOXC10 also was associated with tumor microenvironment and immune status. HOXC10 was negatively associated with immune score in most cancers except colon adenocarcinoma. The correlations of HOXC10 with immune-related genes presented dual roles in different cancers. Results from our clinical samples indicated that HOXC10 was an independent predictor for distant metastasis-free survival in lung adenocarcinoma (LUAD). Notably, the high levels of HOXC10 were positively correlated with the expression of angiogenic markers, vascular endothelial growth factor and microvessel density, and the number of CTC clusters. Our results demonstrated that aberrant expression happened in most cancers, which also affected the clinical prognosis and involved in progression via multiple signal pathways cancers. HOXC10 overexpression plays an important role in the aggression and metastasis in LUAD, which indicated a potential therapeutic target and an independent factor for the prognosis for LUAD patients.
Collapse
Affiliation(s)
- Xiangyuan Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Huayan Xie
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, Heyuan, China
| | - Jiarong Chen
- Department of Oncology, Jiangmen Central Hospital, Jiangmen 529030, Guangdong, China
| | - Jian Xiao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yaofeng Zhi
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, Guangdong, China
| | - Haixin Mo
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, Guangdong, China
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, Guangdong, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
35
|
Wójcik B, Zawadzka K, Sawosz E, Sosnowska M, Ostrowska A, Wierzbicki M. Cell Line-Dependent Adhesion and Inhibition of Proliferation on Carbon-Based Nanofilms. Nanotechnol Sci Appl 2023; 16:41-57. [PMID: 38111798 PMCID: PMC10726834 DOI: 10.2147/nsa.s439185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Disorganisation of the extracellular matrix (ECM) is strongly connected to tumor progression. Even small-scale changes can significantly influence the adhesion and proliferation of cancer cells. Therefore, the use of biocompatible nanomaterials capable of supporting and partially replenishing degraded ECM might be essential to recover the niche after tumor resection. The objective of this study was to evaluate the influence of graphene, graphene oxide, fullerene, and diamond nanofilms on breast cancer and glioblastoma grade IV cell lines. Methods Nanomaterials were characterized using SEM and TEM techniques; zeta potential analysis was also performed. Nanofilms of graphene, fullerene, and diamond nanoparticles were also characterized using AFM. The toxicity was tested on breast cancer MDA.MB.231 and glioblastoma grade IV U-87 MG cell lines, using LDH assay and by counting stained dead cells in bioprinted 3D models. The following parameters were analyzed: proliferation, adhesion to the nanofilm, and adhesion to particular ECM components covered with diamond nanoparticles. Results and Discussion Our studies demonstrated that nanofilms of graphene and diamond nanoparticles are characterized by cell-specific toxicity. Those nanomaterials were non-toxic to MDA.MB.231 cells. After applying bioprinted 3D models, diamond nanoparticles were not toxic for both cell lines. Nanofilms made of diamond nanoparticles and graphene inhibit the proliferation of MDA.MB.231 cells after 48 and 72 hours. Increased adhesion on nanofilm made of diamond nanoparticles was only observed for MDA.MB.231 cells after 30 and 60 minutes from seeding the cells. However, analysis of adhesion to certain ECM components coated with diamond nanoparticles revealed enhanced adhesion to tenascin and vitronectin for both tested cell lines. Conclusion Our studies show that nanofilm made of diamond nanoparticles is a non-toxic and pro-adhesive nanomaterial that might stabilize and partially replenish the niche after breast tumor resection as it enhances the adhesion of breast cancer cells and inhibits their proliferation.
Collapse
Affiliation(s)
- Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
36
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
37
|
Long W, Li S, Yang Y, Chen A, Xu M, Zhai H, Cai T, Peng Y. Self-Cross-Linked Chitosan/Albumin-Bound Nanoparticle Hydrogel for Inhibition of Postsurgery Malignant Glioma Recurrence. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038221 DOI: 10.1021/acsami.3c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The development of chemoimmunotherapy with reduced systemic toxicity using local formulations is an effective strategy for combating tumor recurrence. Herein, we reported a localized hydrogel system for antitumor chemoimmunotherapy, formed by doxorubicin (DXR)-loaded bovine serum albumin (BSA) nanoparticles self-cross-linked with natural polysaccharide chitosan (CS). The drug-loaded hydrogel (DXR-CBGel) with antiswelling performance and prolonged drug-release profile was combined with antiprogrammed cell death protein 1 (aPD-1) as an in situ vaccine for treating glioblastoma multiforme (GBM) lesions. The antiswelling hydrogel system shows excellent biosafety for volume-sensitive GBM lesions. Both the albumin-bound formulation and the in situ gelation design facilitate the local retention and sustained release of DXR to generate long-term chemoimmunotherapy with reduced systemic toxicity. The chemotherapy-induced immunogenic cell death of DXR with the assistance of immunotherapeutic CS can trigger tumor-specific immune responses, which are further amplified by an immune checkpoint blockade to effectively inhibit cancer recurrence. The strategy of combining albumin-bound drug formulation and biocompatible polymer-based hydrogel for localized chemoimmunotherapy shows great potential against postsurgery glioblastoma recurrence.
Collapse
Affiliation(s)
- Wei Long
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shangfei Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhan Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Menghan Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Zhai
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yayun Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
38
|
Bohaumilitzky L, Gebert J, Doeberitz MVK, Kloor M, Ahadova A. Liquid biopsy-based early tumor and minimal residual disease detection : New perspectives for cancer predisposition syndromes. MED GENET-BERLIN 2023; 35:259-268. [PMID: 38835740 PMCID: PMC11006388 DOI: 10.1515/medgen-2023-2049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Genetic predisposition is one of the major measurable cancer risk factors. Affected patients have an enhanced risk for cancer and require life-long surveillance. However, current screening measures are mostly invasive and only available for certain tumor types. Particularly in hereditary cancer syndromes, liquid biopsy, in addition to monitoring therapy response and assessing minimal residual disease, holds great potential for surveillance at the precancerous stage and potentially even diagnostics. Exploring these options and future clinical translation could help reduce cancer risk and mortality in high-risk individuals and enhance patients' adherence to tailored surveillance protocols.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
- University Hospital Heidelberg Department of Applied Tumor Biology, Institute of Pathology Heidelberg Germany
| | - Johannes Gebert
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
- University Hospital Heidelberg Department of Applied Tumor Biology, Institute of Pathology Heidelberg Germany
| | - Magnus von Knebel Doeberitz
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
- University Hospital Heidelberg Department of Applied Tumor Biology, Institute of Pathology Heidelberg Germany
| | - Matthias Kloor
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
- University Hospital Heidelberg Department of Applied Tumor Biology, Institute of Pathology Heidelberg Germany
| | - Aysel Ahadova
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
- University Hospital Heidelberg Department of Applied Tumor Biology, Institute of Pathology Heidelberg Germany
| |
Collapse
|
39
|
Kocheise L, Schoenlein M, Behrends B, Joerg V, Casar C, Fruendt TW, Renné T, Heumann A, Li J, Huber S, Lohse AW, Pantel K, Riethdorf S, Wege H, Schulze K, von Felden J. EpCAM-positive circulating tumor cells and serum AFP levels predict outcome after curative resection of hepatocellular carcinoma. Sci Rep 2023; 13:20827. [PMID: 38012205 PMCID: PMC10682153 DOI: 10.1038/s41598-023-47580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has high recurrence rates exceeding 50% despite curative resection. The serum biomarker alpha-fetoprotein (AFP) is a well-known prognostic marker for HCC. EpCAM-positive circulating tumor cells (CTC) have a high predictive value for early HCC recurrence after curatively intended resection, most likely indicating micro-metastases at the time of resection. However, sensitivity remains low. The objective of this study was to evaluate a composite test comprising both CTC and AFP to identify patients at high risk for early HCC recurrence. We prospectively enrolled 58 patients undergoing curative intended resection for HCC at a tertiary referral center. Blood specimens were obtained prior to resection and analyzed for EpCAM-positive CTC and serum AFP levels. A positive result was defined as either detection of CTC or AFP levels ≥ 400 ng/ml. Eight patients tested positive for CTC, seven for AFP, and two for both markers. A positive composite test was significantly associated with shorter early recurrence-free survival (5 vs. 16 months, p = 0.005), time to recurrence (5 vs. 16 months, p = 0.011), and overall survival (37 vs. not reached, p = 0.034). Combining CTC and AFP identified patients with poor outcome after surgical resection, for whom adjuvant or neoadjuvant therapies may be particularly desirable.
Collapse
Affiliation(s)
- Lorenz Kocheise
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Schoenlein
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berit Behrends
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincent Joerg
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorben W Fruendt
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Cancer Center Esslingen, Klinikum Esslingen, Esslingen, Germany
| | - Kornelius Schulze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Johann von Felden
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
40
|
Oh PS, Kim EM, Boud F, Lim S, Jeong HJ. Blue Light Inhibits Proliferation of Metastatic Cancer Cells by Regulating Translational Initiation: A Synergistic Property with Anticancer Drugs. Photochem Photobiol 2023; 99:1438-1447. [PMID: 36732943 DOI: 10.1111/php.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The aim of this study was to examine the inhibitory effect of blue light (BL) on the proliferation of metastatic cancer cells and synergistic properties with chemo-drugs. BL significantly inhibited the proliferation of B cell lymphoma (A20 and RAMOS) cells in a dose-dependent manner. Anti-proliferative effect of BL irradiation was identified to be associated with the inhibition of proliferating-cell nuclear antigen expression and cell cycle by decreasing S-phase cells. Consistent with its inhibitory effects, BL irradiation at 20 J/cm2 daily for 10 days inhibited metastasis of cancer cells which were distributed and invaded to other organs including bone marrow, liver, kidney, etc., and induced paraplegia, thereby leading to an increased survival rate of tumor-bearing mice. Anti-proliferative activity of BL was expanded in solid tumor cells including pancreatic carcinoma (Mia PaCa-2, PANC-1), lung carcinoma A549 and colorectal carcinoma HCT116 cells. Additionally, combination with chemo-drugs such as 5-FU and gemcitabine resulted in an increase in the anti-proliferative activity after BL irradiation accompanied by regulating mRNA translational process via inhibition of p70S6K, 4EBP-1 and eIF4E phosphorylation during cellular proliferation. These results indicate the anti-metastatic and photo-biogoverning abilities of BL irradiation as a potent therapeutic potential for repressing the progression of tumor cells.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Republic of Korea
| | - Eun-Mi Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Republic of Korea
| | - Fatima Boud
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Republic of Korea
| | - SeokTae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Republic of Korea
| |
Collapse
|
41
|
Zhang D, Lin J, Xu Y, Wu X, Xu X, Xie Y, Pan T, He Y, Luo J, Zhang Z, Fan L, Li S, Chen T, Wu A, Shao G. A novel dual-function SERS-based identification strategy for preliminary screening and accurate diagnosis of circulating tumor cells. J Mater Chem B 2023; 11:9666-9675. [PMID: 37779509 DOI: 10.1039/d3tb01545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Non-specific adsorption of bioprobes based on surface-enhanced Raman spectroscopy (SERS) technology inevitably endows white blood cells (WBC) in the peripheral blood with Raman signals, which greatly interfere the identification accuracy of circulating tumor cells (CTCs). In this study, an innovative strategy was proposed to effectively identify CTCs by using SERS technology assisted by a receiver operating characteristic (ROC) curve. Firstly, a magnetic Fe3O4-Au complex SERS bioprobe was developed, which could effectively capture the triple negative breast cancer (TNBC) cells and endow the tumor cells with distinct SERS signals. Then, the ROC curve obtained based on the comparison of SERS intensity of TNBC cells and WBC was used to construct a tumor cell identification model. The merit of the model was that the detection sensitivity and specificity could be intelligently switched according to different identification purposes such as accurate diagnosis or preliminary screening of tumor cells. Finally, the difunctional recognition ability of the model for accurate diagnosis and preliminary screening of tumor cells was further validated by using the healthy human blood added with TNBC cells and blood samples of real tumor patients. This novel difunctional identification strategy provides a new perspective for identification of CTCs based on the SERS technology.
Collapse
Affiliation(s)
- Dinghu Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Jie Lin
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Yanping Xu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Xiaoxia Wu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Xiawei Xu
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Yujiao Xie
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Ting Pan
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yiwei He
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Jun Luo
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhewei Zhang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - LinYin Fan
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Shunxiang Li
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Tianxiang Chen
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Aiguo Wu
- Ningbo Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Guoliang Shao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
42
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
43
|
Ildiz ES, Gvozdenovic A, Kovacs WJ, Aceto N. Travelling under pressure - hypoxia and shear stress in the metastatic journey. Clin Exp Metastasis 2023; 40:375-394. [PMID: 37490147 PMCID: PMC10495280 DOI: 10.1007/s10585-023-10224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Cancer cell invasion, intravasation and survival in the bloodstream are early steps of the metastatic process, pivotal to enabling the spread of cancer to distant tissues. Circulating tumor cells (CTCs) represent a highly selected subpopulation of cancer cells that tamed these critical steps, and a better understanding of their biology and driving molecular principles may facilitate the development of novel tools to prevent metastasis. Here, we describe key research advances in this field, aiming at describing early metastasis-related processes such as collective invasion, shedding, and survival of CTCs in the bloodstream, paying particular attention to microenvironmental factors like hypoxia and mechanical stress, considered as important influencers of the metastatic journey.
Collapse
Affiliation(s)
- Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Werner J Kovacs
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
44
|
Salehi M, Lavasani ZM, Keshavarz Alikhani H, Shokouhian B, Hassan M, Najimi M, Vosough M. Circulating Tumor Cells as a Promising Tool for Early Detection of Hepatocellular Carcinoma. Cells 2023; 12:2260. [PMID: 37759483 PMCID: PMC10527869 DOI: 10.3390/cells12182260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is a significant contributor to the cancer burden, and its incidence rates have recently increased in almost all countries. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is the second leading cause of cancer-related deaths worldwide. Because of the late diagnosis and lack of efficient therapeutic modality for advanced stages of HCC, the death rate continues to increase by ~2-3% per year. Circulating tumor cells (CTCs) are promising tools for early diagnosis, precise prognosis, and follow-up of therapeutic responses. They can be considered to be an innovative biomarker for the early detection of tumors and targeted molecular therapy. In this review, we briefly discuss the novel materials and technologies applied for the practical isolation and detection of CTCs in HCC. Also, the clinical value of CTC detection in HCC is highlighted.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Zohre Miri Lavasani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran;
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
45
|
Pirone D, Montella A, Sirico D, Mugnano M, Del Giudice D, Kurelac I, Tirelli M, Iolascon A, Bianco V, Memmolo P, Capasso M, Miccio L, Ferraro P. Phenotyping neuroblastoma cells through intelligent scrutiny of stain-free biomarkers in holographic flow cytometry. APL Bioeng 2023; 7:036118. [PMID: 37753527 PMCID: PMC10519746 DOI: 10.1063/5.0159399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
To efficiently tackle certain tumor types, finding new biomarkers for rapid and complete phenotyping of cancer cells is highly demanded. This is especially the case for the most common pediatric solid tumor of the sympathetic nervous system, namely, neuroblastoma (NB). Liquid biopsy is in principle a very promising tool for this purpose, but usually enrichment and isolation of circulating tumor cells in such patients remain difficult due to the unavailability of universal NB cell-specific surface markers. Here, we show that rapid screening and phenotyping of NB cells through stain-free biomarkers supported by artificial intelligence is a viable route for liquid biopsy. We demonstrate the concept through a flow cytometry based on label-free holographic quantitative phase-contrast microscopy empowered by machine learning. In detail, we exploit a hierarchical decision scheme where at first level NB cells are classified from monocytes with 97.9% accuracy. Then we demonstrate that different phenotypes are discriminated within NB class. Indeed, for each cell classified as NB its belonging to one of four NB sub-populations (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH) is evaluated thus achieving accuracy in the range 73.6%-89.1%. The achieved results solve the realistic problem related to the identification circulating tumor cell, i.e., the possibility to recognize and detect tumor cells morphologically similar to blood cells, which is the core issue in liquid biopsy based on stain-free microscopy. The presented approach operates at lab-on-chip scale and emulates real-world scenarios, thus representing a future route for liquid biopsy by exploiting intelligent biomedical imaging.
Collapse
Affiliation(s)
| | | | - Daniele Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | | | | | | | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Mario Capasso
- Authors to whom correspondence should be addressed: and
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
46
|
Ebrahimi S, Alishiri M, Pishbin E, Afjoul H, Shamloo A. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. J Chromatogr A 2023; 1705:464200. [PMID: 37429078 DOI: 10.1016/j.chroma.2023.464200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The rare presence of circulating tumor cells (CTCs) in the bloodstream has made their recording and separation one of the major challenges in the recent decade. Inertia-based microfluidic systems have received more attention in CTCs separation due to their feasibility and low cost. In this research, an inertial microfluidic system is proposed using a curved expansion-contraction array (CEA) microchannel to separate CTCs from white blood cells (WBCs). First, the optimal flow rate of the proposed microfluidic device was determined to maximize the separation efficiency of the target cells (CTCs) from the non-target ones (WBCs). Then, the efficiency and purity of the straight and curved-CEA microchannels were assessed. The experimental results indiated that the proposed system (curved-CEA microchannel) can offer the highest efficiency (-80.31%) and purity (-91.32%) at the flow rate of -7.5 ml/min, exhibiting ∼11.48% increment in the efficiency compared to its straight peer.
Collapse
Affiliation(s)
- Sina Ebrahimi
- Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mojgan Alishiri
- Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran
| | - Esmail Pishbin
- Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran; Bio-microfluidics lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Homa Afjoul
- Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| |
Collapse
|
47
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
48
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
49
|
Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets 2023; 27:1195-1206. [PMID: 38108262 DOI: 10.1080/14728222.2023.2293757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) have contributed to the challenges of accurately monitoring advanced disease. Profiling of the tumor microenvironment with large-scale transcriptomic studies have identified gene signatures that predict biochemical recurrence, lymph node invasion, metastases, and development of therapeutic resistance through critical determinants driving CRPC. AREAS COVERED This review encompasses understanding of the role of different molecular determinants of PCa progression to lethal disease including the phenotypic dynamic of cell plasticity, EMT-MET interconversion, and signaling-pathways driving PCa cells to advance and metastasize. The value of liquid biopsies encompassing circulating tumor cells and extracellular vesicles to detect disease progression and emergence of therapeutic resistance in patients progressing to lethal disease is discussed. Relevant literature was added from PubMed portal. EXPERT OPINION Despite progress in the tumor-targeted therapeutics and biomarker discovery, distant metastasis and therapeutic resistance remain the major cause of mortality in patients with advanced CRPC. No single signature can encompass the tremendous phenotypic and genomic heterogeneity of PCa, but rather multi-threaded omics-derived and phenotypic markers tailored and validated into a multimodal signature.
Collapse
Affiliation(s)
- Jason Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Yang
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Rong W, Shao S, Pu Y, Ji Q, Zhu H. Circulating extracellular vesicle-derived MARCKSL1 is a potential diagnostic non-invasive biomarker in metastatic colorectal cancer patients. Sci Rep 2023; 13:9957. [PMID: 37340044 DOI: 10.1038/s41598-023-37008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Extracellular vesicle-derived proteins are closely related to colorectal cancer metastasis, and early detection and diagnosis of colorectal cancer metastasis is very important to improve the prognosis. In this study, we evaluated the clinical significance of plasma EV-derived MARCKSL1 in differentiating patients with metastatic and nonmetastatic CRC. This study included 78 patients, including 40 patients with nonmetastatic colorectal cancer, 38 patients with metastatic colorectal cancer, and 15 healthy volunteers. The extracellular vesicles extracted from the participants' plasma were characterized through transmission electron microscopy, nanoparticle tracking analysis and western blotting. MARCKSL1 protein expression in the EVs was detected by ELISA, and the diagnostic efficacy of MARCKSL1 alone or in combination with CA125 and lymphocyte levels was evaluated by receiver operating characteristic curve (ROC) analysis. Pearson's correlation test was performed to detect the correlation between MARCKSL1, CA125, lymphocyte level and clinicopathological characteristics of tumors. The present study demonstrated that the level of circulating EV-derived MARCKSL1 in patients with metastatic colorectal cancer was significantly higher than that in patients with nonmetastatic colorectal cancer and healthy people. Combined with CA125 and lymphocyte levels, the best diagnostic effect was achieved, and the area under the ROC curve was 0.7480. Together, our findings indicated that circulating EV-derived MARCKSL1 could be used as a new potential diagnostic biomarker for metastatic CRC.
Collapse
Affiliation(s)
- Wenqing Rong
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|