1
|
El Boustani M, Mouawad N, Alezz MA. AP3M2: A key regulator from the nervous system modulates autophagy in colorectal cancer. Tissue Cell 2024; 91:102593. [PMID: 39488930 DOI: 10.1016/j.tice.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Colorectal cancer (CRC) affects approximately a million people annually with a mortality rate of 50 %, accounting for 8 % of cancer-related deaths globally. Molecular characterization by The Cancer Genome Atlas could be useful in these tumor subtypes to reveal "druggable" genes. Our study focuses on the significance of the AP3M2 gene (adaptor-related protein complex 3 subunit mu 2) as a potential oncogene by employing RNA interference to inactivate AP3M2. AP3M2, inplicated in protein trafficking to lysosomes pathway and specialized organelles in neuronal cells, was amplified in CRC cell lines. The Knockdown of AP3M2 significantly reduced the viability of three CRC cell lines HCT-116, CACO2, and HT29. Intriguingly, our findings revealed an interaction between AP3M2 expression and autophagy-related genes, as well as reactive oxygen species (ROS) levels in CRC cell lines. These results suggest that targeting AP3M2 could provide a powerful strategy for CRC treatment through autophagy-ROS mechanism.
Collapse
Affiliation(s)
- Maguie El Boustani
- Nephrology and Dialysis Unit, Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nayla Mouawad
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Shrivastava A, Magani SKJ, Lokhande KB, Chintakhindi M, Singh A. Exploring the role of TLK2 mutation in tropical calcific pancreatitis: an in silico and molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-20. [PMID: 38500246 DOI: 10.1080/07391102.2024.2329797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Tropical calcific pancreatitis (TCP) is a juvenile form of non-alcoholic chronic pancreatitis seen exclusively in tropical countries. The disease poses a high risk of complications, including pancreatic diabetes and cancer, leading to significant mortality due to poor diagnosis and ineffective treatments. This study employed whole exome sequencing (WES) of 5 TCP patient samples to identify genetic variants associated with TCP. Advanced computational techniques were used to gain atomic-level insights into disease progression, including microsecond-scale long MD simulations and essential dynamics. In silico virtual screening was performed to identify potential therapeutic compounds targeting the mutant protein using the Asinex and DrugBank compound library. WES analysis predicted several single nucleotide variants (SNVs) associated with TCP, including a novel missense variant (c.T1802A or p.V601E) in the TLK2 gene. Computational analysis revealed that the p.V601E mutation significantly affected the structure of the TLK2 kinase domain and its conformational dynamics, altering the interaction profile between ATP and the binding pocket. These changes could impact TLK2's kinase activity and functions, potentially correlating with TCP progression. Promising lead compounds that selectively bind to the TLK2 mutant protein were identified, offering potential for therapeutic interventions in TCP. These findings hold great potential for future research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Sri Krishna Jayadev Magani
- Cancer Biology Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | | | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| |
Collapse
|
3
|
Oyer HM, Steck AR, Longen CG, Venkat S, Bayrak K, Munger EB, Fu D, Castagnino PA, Sanders CM, Tancler NA, Mai MT, Myers JP, Schiewer MJ, Chen N, Mostaghel EA, Kim FJ. Sigma1 Regulates Lipid Droplet-mediated Redox Homeostasis Required for Prostate Cancer Proliferation. CANCER RESEARCH COMMUNICATIONS 2023; 3:2195-2210. [PMID: 37874216 PMCID: PMC10615122 DOI: 10.1158/2767-9764.crc-22-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/01/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lipid droplets (LD) are dynamic organelles that serve as hubs of cellular metabolic processes. Emerging evidence shows that LDs also play a critical role in maintaining redox homeostasis and can mitigate lipid oxidative stress. In multiple cancers, including prostate cancer, LD accumulation is associated with cancer aggressiveness, therapy resistance, and poor clinical outcome. Prostate cancer arises as an androgen receptor (AR)-driven disease. Among its myriad roles, AR mediates the biosynthesis of LDs, induces autophagy, and modulates cellular oxidative stress in a tightly regulated cycle that promotes cell proliferation. The factors regulating the interplay of these metabolic processes downstream of AR remain unclear. Here, we show that Sigma1/SIGMAR1, a unique ligand-operated scaffolding protein, regulates LD metabolism in prostate cancer cells. Sigma1 inhibition triggers lipophagy, an LD selective form of autophagy, to prevent accumulation of LDs which normally act to sequester toxic levels of reactive oxygen species (ROS). This disrupts the interplay between LDs, autophagy, buffering of oxidative stress and redox homeostasis, and results in the suppression of cell proliferation in vitro and tumor growth in vivo. Consistent with these experimental results, SIGMAR1 transcripts are strongly associated with lipid metabolism and ROS pathways in prostate tumors. Altogether, these data reveal a novel, pharmacologically responsive role for Sigma1 in regulating the redox homeostasis required by oncogenic metabolic programs that drive prostate cancer proliferation. SIGNIFICANCE To proliferate, cancer cells must maintain productive metabolic and oxidative stress (eustress) while mitigating destructive, uncontrolled oxidative stress (distress). LDs are metabolic hubs that enable adaptive responses to promote eustress. Targeting the unique Sigma1 protein can trigger distress by disrupting the LD-mediated homeostasis required for proliferation.
Collapse
Affiliation(s)
- Halley M. Oyer
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Alexandra R. Steck
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Charles G. Longen
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Sanjana Venkat
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Konuralp Bayrak
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Eleanor B. Munger
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Paola A. Castagnino
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Christina M. Sanders
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Nathalia A. Tancler
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - My T. Mai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Justin P. Myers
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Matthew J. Schiewer
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nan Chen
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| | - Elahe A. Mostaghel
- Department of Medicine, University of Washington, Seattle, Washington
- Geriatric Research, Education and Clinical Center, U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Felix J. Kim
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Gu X, Dai X, Huang Y, Zhang Y, Dong L, Gao C, Wang F. Differential roles of highly expressed PFKFB4 in colon adenocarcinoma patients. Sci Rep 2023; 13:16284. [PMID: 37770581 PMCID: PMC10539362 DOI: 10.1038/s41598-023-43619-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Colon adenocarcinoma (COAD) is a common malignant tumor, and the role of the protein PFKFB4 in glycolysis and pentose phosphate pathways is crucial. Researchers investigated the clinical significance of PFKFB4 in COAD by studying its expression in 79 tissue samples using immunohistochemistry. We found that PFKFB4 expression was significantly higher in COAD patients, particularly in the sigmoid colon. Interestingly, high PFKFB4 expression was associated with both improved overall survival (OS) and worse progression-free survival (PPS) in COAD patients. Further analysis revealed that genes associated with PFKFB4 were linked to various metabolic pathways, including amino acid biosynthesis, glycolysis, gluconeogenesis, glucose metabolism, and inflammatory response. PFKFB4 expression also showed correlations with the infiltration of different immune cell types in COAD patients, such as CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), macrophages, neutrophils, dendritic cells, active mast cells, and resting NK cells. Overall, the relationship between PFKFB4 expression and the prognosis of COAD is complex and diverse, possibly playing different roles at different stages of the disease. Moreover, its mechanism might involve interactions with various metabolic pathways and immune infiltration in the tumor microenvironment. These findings provide valuable insights into the potential role of PFKFB4 as a biomarker or therapeutic target in COAD.
Collapse
Affiliation(s)
- Xiaojing Gu
- Department of Gastroenterology, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xingchen Dai
- Department of Gastroenterology, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yongli Huang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhuan Zhang
- Department of Gastroenterology, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lintao Dong
- Department of Gastroenterology, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chanchan Gao
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Fang Wang
- Department of Gastroenterology, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
6
|
Sittewelle M, Kappès V, Zhou C, Lécuyer D, Monsoro-Burq AH. PFKFB4 interacts with ICMT and activates RAS/AKT signaling-dependent cell migration in melanoma. Life Sci Alliance 2022; 5:5/12/e202201377. [PMID: 35914811 PMCID: PMC9348664 DOI: 10.26508/lsa.202201377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Glycolysis regulator PFKFB4 promotes cell migration in metastatic melanoma and normal melanocytes by a non-conventional glycolysis-independent function involving ICMT, RAS, and AKT signaling. Cell migration is a complex process, tightly regulated during embryonic development and abnormally activated during cancer metastasis. RAS-dependent signaling is a major nexus controlling essential cell parameters including proliferation, survival, and migration, utilizing downstream effectors such as the PI3K/AKT signaling pathway. In melanoma, oncogenic mutations frequently enhance RAS, PI3K/AKT, or MAP kinase signaling and trigger other cancer hallmarks among which the activation of metabolism regulators. PFKFB4 is one of these critical regulators of glycolysis and of the Warburg effect. Here, however, we explore a novel function of PFKFB4 in melanoma cell migration. We find that PFKFB4 interacts with ICMT, a posttranslational modifier of RAS. PFKFB4 promotes ICMT/RAS interaction, controls RAS localization at the plasma membrane, activates AKT signaling and enhances cell migration. We thus provide evidence of a novel and glycolysis-independent function of PFKFB4 in human cancer cells. This unconventional activity links the metabolic regulator PFKFB4 to RAS-AKT signaling and impacts melanoma cell migration.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Vincent Kappès
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Chenxi Zhou
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Déborah Lécuyer
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France .,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| |
Collapse
|
7
|
Lu C, Qiao P, Fu R, Wang Y, Lu J, Ling X, Liu L, Sun Y, Ren C, Yu Z. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis. Cell Death Dis 2022; 13:790. [PMID: 36109523 PMCID: PMC9477845 DOI: 10.1038/s41419-022-05241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EM) is one of the vanquished wonted causes of chronic pelvic sting in women and is closely associated with infertility. The long-term, complex, systemic, and post-treatment recurrence of EM wreaks havoc on women's quality of life. Extensive metabolic reprogramming (aerobic glycolysis, glucose overweening intake, and high lactate production) and cancer-like changes have been found in EM, which bears striking similarities to tumorigenesis. The key glycolysis regulator PFKFB4 is overexpressed in EM. However, the mechanism of PFKFB4 in EM remains unknown. We found that PFKFB4 was upregulated and was closely related to the progression of EM. We identified focus PIM2 as a new pioneering adjoin protein of PFKFB4. Vigorous biochemical methods were used to confirm that PIM2 phosphorylated site Thr140 of PFKFB4. PIM2 also could enhance PFKFB4 protein expression through the ubiquitin-proteasome pathway. Moreover, PIM2 expression was really corresponding prevalent with PFKFB4 in endometriosis in vivo. Importantly, phosphorylation of PFKFB4 on Thr140 by PIM2 promoted EM glycolysis and cell growth. Our study demonstrates that PIM2 mediates PFKFB4 Thr140 phosphorylation thus regulating glycolysis and EM progression. We illustrated a new mechanism that PIM2 simulated a central upstream partnership in the regulation of PFKFB4, and reveal a novel means of PIM2-PFKFB4 setting EM growth. Our research provided new theoretical support for further clarifying the reprogramming of EM glucose metabolism, and provided new clues for exploring non-contraceptive treatments for EM.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Ruihai Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yadi Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| |
Collapse
|
8
|
Jalal S, Zhang T, Deng J, Wang J, Xu T, Zhang T, Zhai C, Yuan R, Teng H, Huang L. β-elemene Isopropanolamine Derivative LXX-8250 Induces Apoptosis Through Impairing Autophagic Flux via PFKFB4 Repression in Melanoma Cells. Front Pharmacol 2022; 13:900973. [PMID: 36034839 PMCID: PMC9399853 DOI: 10.3389/fphar.2022.900973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Melanoma is a highly aggressive skin cancer and accounts for most of the skin cancer-related deaths. The efficacy of current therapies for melanoma remains to be improved. The isopropanolamine derivative of β-elemene LXX-8250 was reported to present better water solubility and stronger toxicity to tumor cells than β-elemene. Herein, LXX-8250 treatment showed 4-5-fold more toxicity to melanoma cells than the well-known anti-melanoma drug, Dacarbazine. LXX-8250 treatment induced apoptosis remarkably, which was caused by the impairment of autophagic flux. To clarify the molecular mechanism, microarray analyses were conducted, and PFKFB4 expression was found to be suppressed by LXX-8250 treatment. The cells overexpressed with PFKFB4 exhibited resistance to apoptosis induction and autophagic flux inhibition by LXX-8250 treatment. Moreover, LXX-8250 treatment suppressed glycolysis, to which the cells overexpressed with PFKFB4 were tolerant. LXX-8250 treatment inhibited the growth of melanoma xenografts and suppressed PFKFB4 expression and glycolysis in vivo. Taken together, LXX-8250 treatment induced apoptosis through inhibiting autophagic flux and glycolysis in melanoma cells, which was mediated by suppression of PFKFB4 expression. The study provides a novel strategy to melanoma treatment.
Collapse
Affiliation(s)
- Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Jia Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
- *Correspondence: Lin Huang,
| |
Collapse
|
9
|
Shang F, Lu Y, Li Y, Han B, Wei R, Liu S, Liu Y, Liu Y, Wang X. Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes (Basel) 2022; 13:genes13081347. [PMID: 36011255 PMCID: PMC9407616 DOI: 10.3390/genes13081347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is considered to be an extremely sensitive tissue to hypoxia, and the brain of fish plays an important role in regulating growth and adapting to environmental changes. As an important aquatic organism in northern China, the economic yield of Takifugu rubripes is deeply influenced by the oxygen content of seawater. In this regard, we performed RNA-seq analysis of T. rubripes brains under hypoxia and normoxia to reveal the expression patterns of genes involved in the hypoxic response and their enrichment of metabolic pathways. Studies have shown that carbohydrate, lipid and amino acid metabolism are significant pathways for the enrichment of differentially expressed genes (DEGs) and that DEGs are significantly upregulated in those pathways. In addition, some biological processes such as the immune system and signal transduction, where enrichment is not significant but important, are also discussed. Interestingly, the DEGs associated with those pathways were significantly downregulated or inhibited. The present study reveals the mechanism of hypoxia tolerance in T. rubripes at the transcriptional level and provides a useful resource for studying the energy metabolism mechanism of hypoxia response in this species.
Collapse
Affiliation(s)
- Fengqin Shang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
| | - Yun Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Yan Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Bing Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Renjie Wei
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Shengmei Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
- Correspondence: (Y.L.); (X.W.)
| | - Xiuli Wang
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- Correspondence: (Y.L.); (X.W.)
| |
Collapse
|
10
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
11
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
12
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
13
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
14
|
Zhou J, Li XY, Liu YJ, Feng J, Wu Y, Shen HM, Lu GD. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy 2021; 18:1240-1255. [PMID: 34662529 DOI: 10.1080/15548627.2021.1984656] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily well-conserved recycling process in response to stress conditions, including a burst of reactive oxygen species (ROS) production. High level of ROS attack key cellular macromolecules. Protein cysteinyl thiols or non-protein thiols as the major redox-sensitive targets thus constitute the first-line defense. Autophagy is unique, because it removes not only oxidized/damaged proteins but also bulky ROS-generating organelles (such as mitochondria and peroxisome) to restrict further ROS production. The oxidative regulations of autophagy occur in all processes of autophagy, from induction, phagophore nucleation, phagophore expansion, autophagosome maturation, cargo delivery to the lysosome, and finally to degradation of the cargo and recycling of the products, as well as autophagy gene transcription. Mechanically, these regulations are achieved through direct or indirect manners. Direct thiol oxidation of key proteins such as ATG4, ATM and TFEB are responsible for specific regulations in phagophore expansion, cargo recognition and autophagy gene transcription, respectively. Meanwhile, oxidation of certain redox-sensitive chaperone-like proteins (e.g. PRDX family members and PARK7) may impair a nonspecifically local reducing environment in the phagophore membrane, and influence BECN1-involved phagophore nucleation and mitophagy recognition. However, ROS do exhibit some inhibitory effects on autophagy through direct oxidation of key autophagy regulators such as ATG3, ATG7 and SENP3 proteins. SQSTM1 provides an alternative antioxidant mechanism when autophagy is unavailable or impaired. However, it is yet to be unraveled how cells evolve to equip proteins with different redox susceptibility and in their correct subcellular positions, and how cells fine-tune autophagy machinery in response to different levels of ROS.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATM: ATM serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; BH3: BCL2-homology-3; CAV1: caveolin 1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CTSB: cathepsin B; CTSL: cathepsin L; DAPK: death associated protein kinase; ER: endoplasmic reticulum; ETC: electron transport chain; GSH: glutathione; GSTP1: glutathione S-transferase pi 1; H2O2: hydrogen peroxide; HK2: hexokinase 2; KEAP1: kelch like ECH associated protein 1; MAMs: mitochondria-associated ER membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAPK8/JNK1: mitogen-activated protein kinase 8; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MCOLN1: mucolipin 1; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NFKB1: nuclear factor kappa B subunit 1; NOX: NADPH oxidase; O2-: superoxide radical anion; p-Ub: phosphorylated Ub; PARK7/DJ-1: Parkinsonism associated deglycase; PE: phosphatidylethanolamine; PEX5: peroxisomal biogenesis factor 5; PINK1: PTEN induced kinase 1; PPP3CA/calcineurin: protein phosphatase 3 catalytic subunit beta; PRDX: peroxiredoxin; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKD/PKD: protein kinase D; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SENP3: SUMO specific peptidase 3; SIRT1: sirtuin 1; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SUMO: small ubiquitin like modifier; TFEB: transcription factor EB; TRAF6: TNF receptor associated factor 6; TSC2: TSC complex subunit 2; TXN: thioredoxin; TXNRD1: thioredoxin reductase 1; TXNIP: thioredoxin interacting protein; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yu-Jia Liu
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Ji Feng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Guo-Dong Lu
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China.,Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
15
|
Xu X, Zhao W, Ye Y, Cui W, Dong L, Yao Y, Li K, Han J, Liu W. Novel Nanoliposome Codelivered DHA and Anthocyanidin: Characterization, In Vitro Infant Digestibility, and Improved Cell Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9395-9406. [PMID: 34344151 DOI: 10.1021/acs.jafc.1c02817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are still many challenges in understanding the absorption and transport mechanism of liposomes in the gastrointestinal tract of infants, especially for liposome-coentrapped two or more substances. In this study, novel docosahexaenoic acid (DHA)-anthocyanidin-codelivery liposomes (DA-LPs) were fabricated and characterized, and their digestive and absorptive behaviors were evaluated using the in vitro infant digestive method combined with the Caco-2 cell model. The liposomal bilayer structure remained intact with the particles aggregated in simulated infant gastric fluid, while their phospholipid membrane underwent enzymatic lipolysis under simulated intestinal conditions. Compared to single substance-loaded liposomes (DHA- or anthocyanidin-loaded liposomes), the digested DA-LPs showed better cell viability, higher cellular uptake and membrane fluidity, and lower reactive oxygen species (ROS). It can be concluded that DA-LPs are promising carriers for simultaneously transporting hydrophobic and hydrophilic molecules and may be beneficial for improving nutrient absorption and alleviating intestinal stress oxidation.
Collapse
Affiliation(s)
- Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weixue Zhao
- Meitek Company Limited, Qingdao 266400, China
| | - Yiru Ye
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weining Cui
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lu Dong
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yixin Yao
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kexuan Li
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Trojan SE, Dudzik P, Totoń-Żurańska J, Laidler P, Kocemba-Pilarczyk KA. Expression of Alternative Splice Variants of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase-4 in Normoxic and Hypoxic Melanoma Cells. Int J Mol Sci 2021; 22:8848. [PMID: 34445551 PMCID: PMC8396304 DOI: 10.3390/ijms22168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-specific isoenzyme of phosphofructokinase II (PFKFB4), as our previous research has shown, may be one of the most important enzymes contributing to the intensification of glycolysis in hypoxic malignant melanoma cells. Although the PFKFB4 gene seems to play a crucial role in the progression of melanoma, so far there are no complete data on the expression of PFKFB4 at the isoform level and the influence of hypoxia on alternative splicing. Using RT-qPCR and semi-quantitative RT-PCR, we presented the PFKFB4 gene expression profile at the level of six isoforms described in the OMIM NCBI database in normoxic and hypoxic melanoma cells. Additionally, using VMD software, we analyzed the structure of isoforms at the protein level, concluding about the catalytic activity of individual isoforms. Our research has shown that five isoforms of PFKFB4 are expressed in melanoma cells, of which the D and F isoforms are highly constitutive, while the canonical B isoform seems to be the main isoform induced in hypoxia. Our results also indicate that the expression profile at the level of the PFKFB4 gene does not reflect the expression at the level of individual isoforms. Our work clearly indicates that the PFKFB4 gene expression profile should be definitely analyzed at the level of individual isoforms. Moreover, the analysis at the protein level allowed the selection of those isoforms whose functional validation should be performed to fully understand the importance of PFKFB4 expression in the metabolic adaptation of malignant melanoma cells.
Collapse
Affiliation(s)
- Sonia E. Trojan
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Paulina Dudzik
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Justyna Totoń-Żurańska
- Jagiellonian University Medical College, Center for Medical Genomics-OMICRON, 31-034 Krakow, Poland;
| | - Piotr Laidler
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Kinga A. Kocemba-Pilarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| |
Collapse
|
17
|
Gene Manipulation Protocols in Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34260027 DOI: 10.1007/978-981-16-2830-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Macroautophagy (referred to as autophagy hereafter) is a highly conserved catabolic process in eukaryotic cells. Autophagy is essential for cellular homeostasis through elimination and recycling of large cytoplasmic components, such as abnormal protein aggregates and damaged organelles, via lysosomal degradation. Since being originally identified by genetic screening in yeast, autophagy-related (ATG) genes have played a central role in autophagy research in different organisms, including plants, worms, flies, and mammals. Mouse models for monitoring autophagic activity or clarifying its biological functions have also been established. These mice are powerful tools to investigate roles of autophagy in vivo. Owing to the rapid technological advances in molecular biology, it is ever more efficient and simpler to manipulate autophagy-associated genes. Herein, we will introduce some commonly used approaches of gene silencing in mammalian cells, including CRIPSR/Cas9-mediated gene knockout and siRNA- and shRNA-mediated gene knockdown. We also summarized the common mouse models used for assessing autophagy. We hope to bring the researchers some useful information as they study autophagy.
Collapse
|
18
|
Abstract
Autophagy is an important intracellular lysosomal degradation process in cells, which is highly conserved from yeast to mammals. The process of autophagy is roughly divided into the following key steps: the formation of a membrane structure called ISM (isolated membrane) after stimulation, the biogenesis and maturation of autophagosomes, and finally the degradation of autophagosomes. A number of proteins are required to function in the whole process of autophagy. Since the initial genetic screening in yeast cells, multiple genes that play pivotal roles in autophagy have been discovered. These molecules have been named ATG genes (AuTophaGy related genes). The screening for new key molecules involved in autophagy has greatly promoted the characterization of the mechanism of the autophagy machinery and provides multiple targets for the development of autophagy-based regulatory drugs.
Collapse
|
19
|
Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S, Dzięgiel P. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. Cancers (Basel) 2021; 13:909. [PMID: 33671514 PMCID: PMC7926708 DOI: 10.3390/cancers13040909] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.
Collapse
Affiliation(s)
- Krzysztof Kotowski
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Stanisław Supplitt
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Daniel Wiczew
- Department of Biochemical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
- Laboratoire de physique et chimie théoriques, Université de Lorraine, F-54000 Nancy, France
| | - Karolina Jabłońska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Emilia Wiechec
- Department of Biomedical and Clinical Sciences (BKV), Division of Cell Biology, Linköping University, Region Östergötland, 581 85 Linköping, Sweden;
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 581 85 Linköping, Sweden
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
20
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
21
|
Mizushima N, Murphy LO. Autophagy Assays for Biological Discovery and Therapeutic Development. Trends Biochem Sci 2020; 45:1080-1093. [DOI: 10.1016/j.tibs.2020.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
|
22
|
Zhou Z, Zheng L, Tang C, Chen Z, Zhu R, Peng X, Wu X, Zhu P. Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Front Physiol 2020; 11:565307. [PMID: 33329019 PMCID: PMC7734032 DOI: 10.3389/fphys.2020.565307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Exercise-induced cardiac remodeling has aroused public concern for some time, as sudden cardiac death is known to occur in athletes; however, little is known about the underlying mechanism of exercise-induced cardiac injury. In the present study, we established an excessive exercise-induced pathologic cardiac hypertrophy model in zebrafish with increased myocardial fibrosis, myofibril disassembly, mitochondrial degradation, upregulated expression of the pathological hypertrophy marker genes in the heart, contractile impairment, and cardiopulmonary function impairment. High-throughput RNA-seq analysis revealed that the differentially expressed genes were enriched in the regulation of autophagy, protein folding, and degradation, myofibril development, angiogenesis, metabolic reprogramming, and insulin and FoxO signaling pathways. FOXO proteins may be the core mediator of the regulatory network needed to promote the pathological response. Further, PPI network analysis showed that pik3c3, gapdh, fbox32, fzr1, ubox5, lmo7a, kctd7, fbxo9, lonrf1l, fbxl4, nhpb2l1b, nhp2, fbl, hsp90aa1.1, snrpd3l, dhx15, mrto4, ruvbl1, hspa8b, and faub are the hub genes that correlate with the pathogenesis of pathological cardiac hypertrophy. The underlying regulatory pathways and cardiac pressure-responsive molecules identified in the present study will provide valuable insights for the supervision and clinical treatment of pathological cardiac hypertrophy induced by excessive exercise.
Collapse
Affiliation(s)
- Zuoqiong Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Runkang Zhu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiushan Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Koepke L, Winter B, Grenzner A, Regensburger K, Engelhart S, van der Merwe JA, Krebs S, Blum H, Kirchhoff F, Sparrer KMJ. An improved method for high-throughput quantification of autophagy in mammalian cells. Sci Rep 2020; 10:12241. [PMID: 32699244 PMCID: PMC7376206 DOI: 10.1038/s41598-020-68607-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Winter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Susanne Engelhart
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Stefan Krebs
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | |
Collapse
|
24
|
Martello A, Lauriola A, Mellis D, Parish E, Dawson JC, Imrie L, Vidmar M, Gammoh N, Mitić T, Brittan M, Mills NL, Carragher NO, D'Arca D, Caporali A. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep 2020; 21:e48192. [PMID: 32337819 PMCID: PMC7332983 DOI: 10.15252/embr.201948192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.
Collapse
Affiliation(s)
- Andrea Martello
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - David Mellis
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Elisa Parish
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - John C Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Lisa Imrie
- Centre for Synthetic and Systems Biology (SynthSys)University of EdinburghEdinburghUK
| | - Martina Vidmar
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tijana Mitić
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Neil O Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| |
Collapse
|
25
|
Isorhamnetin Induces Melanoma Cell Apoptosis via the PI3K/Akt and NF- κB Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1057943. [PMID: 32461960 PMCID: PMC7225865 DOI: 10.1155/2020/1057943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Malignant melanoma is characterized by its bad prognosis for aggressiveness, drug resistance, and early metastasis. Isorhamnetin (3′-methoxy-3,4′,5,7-tetrahydroxyflavone; IH) is a natural flavonoid that has been investigated for its antitumor effects in breast cancer, colon cancer, and gastric cancer through inducing cell apoptosis. Given its role in tumor inhibition, no research has been conducted concerning its effect against melanoma. In the present study, we found that IH could significantly inhibit B16F10 cell proliferation and migration and induce B16F10 cell apoptosis. The examination on molecular mechanism revealed that IH could suppress the phosphorylation of Akt and the translocation of NF-κB, which are key factors in apoptosis-related pathways. We also detected that this process was related to the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases 4 (PFKFB4) by PFKFB4 knockdown experiment. In line with in vitro study, we further provided that IH effectively inhibited tumor growth in vivo. Taken together, IH was proven to induce melanoma cell apoptosis in vitro and in vivo, which may serve as a potential agent in malignant melanoma treatment in the future.
Collapse
|
26
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
27
|
Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L. TIGAR Attenuates High Glucose-Induced Neuronal Apoptosis via an Autophagy Pathway. Front Mol Neurosci 2019; 12:193. [PMID: 31456661 PMCID: PMC6700368 DOI: 10.3389/fnmol.2019.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Hyperglycemia-induced neuronal apoptosis is one of the important reasons for diabetic neuropathy. Long-time exposure to high glucose accelerates many aberrant glucose metabolic pathways and eventually leads to neuronal injury. However, the underlying mechanisms of metabolic alterations remain unknown. TP53-inducible glycolysis and apoptosis regulator (TIGAR) is an endogenous inhibitor of glycolysis and increases the flux of pentose phosphate pathway (PPP) by regulating glucose 6-phosphate dehydrogenase (G6PD). TIGAR is highly expressed in neurons, but its role in hyperglycemia-induced neuronal injury is still unclear. In this study, we observed that TIGAR and G6PD are decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Correspondingly, in cultured primary neurons and Neuro-2a cell line, stimulation with high glucose induced significant neuronal apoptosis and down-regulation of TIGAR expression. Overexpression of TIGAR reduced the number of TUNEL-positive neurons and prevented the activation of Caspase-3 in cultured neurons. Furthermore, enhancing the expression of TIGAR rescued high glucose-induced autophagy impairment and the decrease of G6PD. Nitric oxide synthase 1 (NOS1), a negative regulator of autophagy, is also inhibited by overexpression of TIGAR. Inhibition of autophagy abolished the protective effect of TIGAR in neuronal apoptosis in Neuro-2a. Importantly, overexpression of TIGAR in the hippocampus ameliorated STZ-induced cognitive impairment in mice. Therefore, our data demonstrated that TIGAR may have an anti-apoptosis effect via up-regulation of autophagy in diabetic neuropathy.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuan Yao
- Department of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jinxing Li
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Man Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zongting Yan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Aimei Pang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Panda PK, Fahrner A, Vats S, Seranova E, Sharma V, Chipara M, Desai P, Torresi J, Rosenstock T, Kumar D, Sarkar S. Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases. Front Cell Dev Biol 2019; 7:38. [PMID: 30949479 PMCID: PMC6436197 DOI: 10.3389/fcell.2019.00038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation pathway for malfunctioning aggregation-prone proteins, damaged organelles, unwanted macromolecules and invading pathogens. This process is essential for maintaining cellular and tissue homeostasis that contribute to organismal survival. Autophagy dysfunction has been implicated in the pathogenesis of diverse human diseases, and therefore, therapeutic exploitation of autophagy is of potential biomedical relevance. A number of chemical screening approaches have been established for the drug discovery of autophagy modulators based on the perturbations of autophagy reporters or the clearance of autophagy substrates. These readouts can be detected by fluorescence and high-content microscopy, flow cytometry, microplate reader and immunoblotting, and the assays have evolved to enable high-throughput screening and measurement of autophagic flux. Several pharmacological modulators of autophagy have been identified that act either via the classical mechanistic target of rapamycin (mTOR) pathway or independently of mTOR. Many of these autophagy modulators have been demonstrated to exert beneficial effects in transgenic models of neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies as well as in lifespan extension. This review describes the commonly used chemical screening approaches in mammalian cells and the key autophagy modulators identified through these methods, and highlights the therapeutic benefits of these compounds in specific disease contexts.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Fahrner
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Somya Vats
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Vartika Sharma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Priyal Desai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tatiana Rosenstock
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Abstract
Autophagy is a lysosome-dependent catabolic process. Both extra- and intra-cellular components are engulfed in autophagic vacuoles and degraded to simple molecules, such as monosaccharides, fatty acids and amino acids. Then, these molecules can be further used to produce ATP through catabolic reactions and/or provide building blocks for the synthesis of essential proteins. Therefore, we consider autophagy a critical and fine-tuned process in maintaining energy homeostasis. The complicated relationships between autophagy and energy metabolism have raised broad interest and have been extensively studied. In this chapter, we summarize the relationships enabling autophagy to control or modulate energy metabolism and allowing metabolic pathways to regulate autophagy. Specifically, we review the correlations between autophagy and energy homeostasis in terms of oxidative phosphorylation, reactive oxygen species in mitochondria, glycolysis, metabolism of glycogen and protein, and so on. An understanding of the role of autophagy in energy homeostasis could help us better appreciate how autophagy determines cell fate under stressful conditions or pathological processes.
Collapse
|
30
|
Mueller AJ, Proikas-Cezanne T. Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Methods Mol Biol 2019; 1880:429-445. [PMID: 30610713 DOI: 10.1007/978-1-4939-8873-0_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence microscopy-based detection of intracellular LC3, p62, and/or WIPI punctate structures is a robust tool to monitor and assess macroautophagy/autophagy in single cells. This method was established for automated high-throughput/content analysis to reliably detect narrow differences in autophagy activity/capacity and to provide screening opportunities for biological and chemical libraries.
Collapse
Affiliation(s)
- Amelie J Mueller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany. .,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany.
| |
Collapse
|
31
|
Seranova E, Ward C, Chipara M, Rosenstock TR, Sarkar S. In Vitro Screening Platforms for Identifying Autophagy Modulators in Mammalian Cells. Methods Mol Biol 2019; 1880:389-428. [PMID: 30610712 DOI: 10.1007/978-1-4939-8873-0_26] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Autophagy is a vital homeostatic pathway essential for cellular survival and human health. It primarily functions as an intracellular degradation process for the turnover of aggregation-prone proteins and unwanted organelles. Dysregulation of autophagy underlying diverse human diseases reduces cell viability, whereas stimulation of autophagy is cytoprotective in a number of transgenic disease models including neurodegenerative disorders. Thus, therapeutic exploitation of autophagy is considered a potential treatment strategy in certain human diseases, and therefore, chemical inducers of autophagy have tremendous biomedical relevance. In this review, we describe the in vitro screening platforms to identify autophagy modulators in mammalian cells using various methodologies including fluorescence and high-content imaging, flow cytometry, fluorescence and luminescence detection by microplate reader, immunoblotting, and immunofluorescence. The commonly used autophagy reporters in these screening platforms are either based on autophagy marker like LC3 or autophagy substrate such as aggregation-prone proteins or p62/SQSTM1. The reporters and assays for monitoring autophagy are evolving over time to become more sensitive in measuring autophagic flux with the capability of high-throughput applications for drug discovery. Here we highlight these developments and also describe the stringent secondary autophagy assays for characterizing the autophagy modulators arising from the primary screen. Since autophagy is implicated in myriad human physiological and pathological conditions, these technologies will enable identifying novel chemical modulators or genetic regulators of autophagy that will be of biomedical and fundamental importance to human health.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tatiana R Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
32
|
Yi M, Ban Y, Tan Y, Xiong W, Li G, Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 2018; 20:1-13. [PMID: 30553771 PMCID: PMC6358545 DOI: 10.1016/j.molmet.2018.11.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Cancer cells favor the use of less efficient glycolysis rather than mitochondrial oxidative phosphorylation to metabolize glucose, even in oxygen-rich conditions, a distinct metabolic alteration named the Warburg effect or aerobic glycolysis. In adult cells, bifunctional 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB) family members are responsible for controlling the steady-state cytoplasmic levels of fructose-2,6-bisphosphate, which allosterically activates 6-phosphofructo-1-kinase, the key enzyme catalyzing the rate-limiting reaction of glycolysis. PFKFB3 and PFKFB4 are the two main isoenzymes overexpressed in various human cancers. Scope of review In this review, we summarize recent findings on the glycolytic and extraglycolytic roles of PFKFB3 and PFKFB4 in cancer progression and discuss potential therapies for targeting of PFKFB3 and PFKFB4. Major conclusions PFKFB3 has the highest kinase activity to shunt glucose toward glycolysis, whereas PFKFB4 has more FBPase-2 activity, redirecting glucose toward the pentose phosphate pathway, providing reducing power for lipid biosynthesis and scavenging reactive oxygen species. Co-expression of PFKFB3 and PFKFB4 provides sufficient glucose metabolism to satisfy the bioenergetics demand and redox homeostasis requirements of cancer cells. Various reversible post-translational modifications of PFKFB3 enable cancer cells to flexibly adapt glucose metabolism in response to diverse stress conditions. In addition to playing important roles in tumor cell glucose metabolism, PFKFB3 and PFKFB4 are widely involved in multiple biological processes, such as cell cycle regulation, autophagy, and transcriptional regulation in a non-glycolysis-dependent manner.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, The Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, 410011, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
33
|
Hu S, Jin Y, Liu Y, Ljungman M, Neamati N. Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines. Eur J Med Chem 2018; 158:884-895. [PMID: 30253345 DOI: 10.1016/j.ejmech.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Inhibition of proteasome activity blocks the degradation of dysfunctional proteins and induces cancer cell death due to cellular stress. Thus, proteasome inhibitors represent an attractive class of anticancer agents, and bortezomib, carfilzomib and ixazomib have been FDA-approved to treat multiple myeloma. However, cancer cells acquire resistance to these inhibitors through point mutations in the proteasome catalytic subunit or induction of alternative compensatory mechanisms. In this study, we identified a quinolin-chlorobenzothioate, QCBT7, as a new proteasome inhibitor showing cytotoxicity in a panel of cancer cell lines. QCBT7 is a more stable derivative of quinoline-8-thiol that targets the regulatory subunit instead of the catalytic subunit of the proteasome. QCBT7 caused the accumulation of ubiquitylated proteins in the cancer cells, indicating its proteasome inhibitory activity. Additionally, QCBT7 increased the expression of a set of genes (PFKFB4, CHOP, HMOX1 and SLC7A11) at both nascent RNA and protein levels, similarly to the known proteasome inhibitors MG132 and ixazomib. Together, QCBT7 induces proteasome inhibition, hypoxic response, endoplasmic reticulum stress and glycolysis, finally leading to cell death. Importantly, we have identified PFKFB4 as a potential biomarker of proteasome inhibitors that can be used to monitor treatment response.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yi Jin
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Key Laboratory of Medicinal Chemistry for Natural Resource, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
34
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
35
|
Morales-Hernández A, Martinat A, Chabot A, Kang G, McKinney-Freeman S. Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports 2018; 11:334-347. [PMID: 30017822 PMCID: PMC6093083 DOI: 10.1016/j.stemcr.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
C57BL/6N (N) and C57BL/6J (J) mice possess key genetic differences, including a deletion in the Nicotinamide nucleotide transhydrogenase (Nnt) gene that results in a non-functional protein in J mice. NNT regulates mitochondrial oxidative stress. Although elevated oxidative stress can compromise hematopoietic stem and progenitor cell (HSPC) function, it is unknown whether N- and J-HSPCs are functionally equivalent. Here, we report that J-HSPCs display compromised short-term hematopoietic repopulating activity relative to N-HSPCs that is defined by a delay in lymphoid reconstitution and impaired function of specific multi-potent progenitor populations post transplant. J-HSPCs also displayed elevated reactive oxygen species (ROS) relative to N-HSPCs post transplant and upregulate ROS levels more in response to hematopoietic stress. Nnt knockdown in N-HSPCs recapitulated J-HSPCs’ short-term repopulating defect, indicating that NNT loss contributes to this defect. In summary, C57BL/6N and C57BL/6J HSPCs are not functionally equivalent, which should be considered when determining the substrain most appropriate for investigations of HSPC biology. C57BL/6J-HSPCs display a repopulating disadvantage relative to C57BL/6N-HSPCs C57BL/6J-HSPCs display greater oxidative stress post transplant than C57BL/6N-HSPCs Nnt loss contributes to the functional differences between C57BL/6N and C57BL/6J-HSPCs MPP3 and MPP4 are the HSPCs populations responsible for the repopulating differences
Collapse
Affiliation(s)
| | - Alice Martinat
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
36
|
Zhang C, Yu X, Gao J, Zhang Q, Sun S, Zhu H, Yang X, Yan H. PINK1/Parkin-mediated mitophagy was activated against 1,4-Benzoquinone-induced apoptosis in HL-60 cells. Toxicol In Vitro 2018; 50:217-224. [PMID: 29567065 DOI: 10.1016/j.tiv.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Hematotoxicity of benzene is derived mainly from its active metabolite, 1,4-Benzoquinone (1,4-BQ), which induces cell apoptosis and mitochondrial damage. Damaged mitochondria are degraded through a specialized autophagy pathway, called mitophagy, which is driven by PINK1/Parkin signaling. However, whether mitophagy is involved in 1,4-BQ-induced toxicity remains unclear. This study was designed to investigate whether PINK1/Parkin-mediated mitophagy is activated in 1,4-BQ-treated HL-60 cells, and the roles mitophagy plays in 1,4-BQ-induced apoptosis. Our results demonstrated that 1,4-BQ induced autophagy in HL-60 cells, characterized by increased LC3-II/LC3-I ratio and Beclin1 expression, as well as decreased expression of p62. We confirmed the presence of mitophagosomes using electron microscopy, and found that 1,4-BQ-induced autophagy was blocked by pretreatment with the mitophagy inhibitor Cyclosporine A (CsA). In addition, we found that 1,4-BQ induced mitochondrial stress through decreased mitochondrial membrane potential (MMP) and increasedproduction of reactive oxygen species (ROS). We also confirmed that 1,4-BQ-induced mitophagy was mediated by the PINK1/Parkin pathway, illustrated by increased expression of PINK1 and Parkin mRNA and protein. Finally, we examined 1,4-BQ-induced apoptosis with or without CsA, which demonstrated that apoptosis increased after mitophagy inhibition, suggesting that mitophagy has a protective effect in this context. In conclusion, this study demonstrates that the activated PINK1/Parkin-mediated mitophagy exerts a significantly protective effect against 1,4-BQ-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Chunxiao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiuyuan Yu
- Clinical Laboratory, Traditional Chinese Medicine Hospital of Jimo City, Shandong Province 266200, PR China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiahao Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shuqiang Sun
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hua Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
37
|
A large-scale RNA interference screen identifies genes that regulate autophagy at different stages. Sci Rep 2018; 8:2822. [PMID: 29434216 PMCID: PMC5809370 DOI: 10.1038/s41598-018-21106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.
Collapse
|
38
|
Wang Q, Zeng F, Sun Y, Qiu Q, Zhang J, Huang W, Huang J, Huang X, Guo L. Etk Interaction with PFKFB4 Modulates Chemoresistance of Small-cell Lung Cancer by Regulating Autophagy. Clin Cancer Res 2017; 24:950-962. [PMID: 29208667 DOI: 10.1158/1078-0432.ccr-17-1475] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Epithelial and endothelial tyrosine kinase (Etk), also known as bone marrow X kinase (Bmx), was found to be critical in modulating the chemoresistance of small-cell lung cancer (SCLC) in our preliminary study. However, the molecular mechanisms of Etk in SCLC chemoresistance remain poorly understood.Experimental Design: We determined correlation of Etk with autophagy in SCLC. And direct inhibition of autophagy was performed to validate its effect on chemoresistance. Coimmunoprecipitation (co-IP) and GST-pull down experiments were conducted to verify the interaction of Etk and PFKFB4, after a microarray analysis. In vitro and in vivo gain or loss-of-function analyses and evaluation of PFKFB4 expression in SCLC specimens, were done to validate its role in chemoresistance. Ibrutinib was administrated in SCLC cells to verify its synergistic anti-tumor effect with chemotherapy using preclinical models including a PDX model.Results: Downregulation of Etk suppressed autophagy in chemoresistant SCLC cells, and direct inhibition of autophagy sensitized cells to chemotherapy. PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4) was identified as a downstream target of Etk and an Etk-interacting protein, which promoted chemoresistance in SCLC and was associated with poor therapeutic response and prognosis. Furthermore, ibrutinib was found to exhibit a synergistic anti-tumor effect with chemotherapy in targeting Etk.Conclusions: Our results demonstrated for the first time that Etk interacts with PFKFB4 to promote SCLC chemoresistance through regulation of autophagy. Aberrant Etk and PFKFB4 can be predictive factors for the chemotherapy response as well as potential therapeutic targets in SCLC. Clin Cancer Res; 24(4); 950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Qiongyao Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fanrui Zeng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan, P.R. China
| | - Qianqian Qiu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Xiaomin Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China.
| |
Collapse
|
39
|
Taylor C, Mannion D, Miranda F, Karaminejadranjbar M, Herrero-Gonzalez S, Hellner K, Zheng Y, Bartholomeusz G, Bast RC, Ahmed AA. Loss of PFKFB4 induces cell death in mitotically arrested ovarian cancer cells. Oncotarget 2017; 8:17960-17980. [PMID: 28152500 PMCID: PMC5392300 DOI: 10.18632/oncotarget.14910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Taxanes represent some of the most commonly used chemotherapeutic agents for ovarian cancer treatment. However, they are only effective in approximately 40% of patients. Novel therapeutic strategies are required to potentiate their effect and improve patient outcome. A hallmark of many cancers is the constitutive activation of the PI3K/AKT pathway, which drives cell survival and metabolism. We discovered a striking decrease in AKT activity coupled with a significant reduction in glucose 6-phosphate and ATP levels during mitotic arrest in the majority of ovarian cancer cell lines tested, indicating a potential metabolic vulnerability. A high-content siRNA screen to detect novel metabolic targets in mitotically arrested ovarian cancer cells identified the glycolytic enzyme PFKFB4. PFKFB4 depletion increased caspase 3/7 activity, and levels of reactive oxygen species only in mitotically arrested cells, and significantly enhanced mitotic cell death after paclitaxel treatment. Depletion of PFKFB3 demonstrated a similar phenotype. The observation that some ovarian cancer cells lose AKT activity during mitotic arrest and become vulnerable to metabolic targeting is a new concept in cancer therapy. Thus, combining mitotic-targeted therapies with glycolytic inhibitors may act to potentiate the effects of antimitotics in ovarian cancer through mitosis-specific cell death.
Collapse
Affiliation(s)
- Charlotte Taylor
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Mannion
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fabrizio Miranda
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mohammad Karaminejadranjbar
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sandra Herrero-Gonzalez
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Karin Hellner
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
40
|
Ros S, Flöter J, Kaymak I, Da Costa C, Houddane A, Dubuis S, Griffiths B, Mitter R, Walz S, Blake S, Behrens A, Brindle KM, Zamboni N, Rider MH, Schulze A. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells. Oncogene 2017; 36:3287-3299. [PMID: 28092678 DOI: 10.1038/onc.2016.477] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) controls metabolic flux through allosteric regulation of glycolysis. Here we show that p53 regulates the expression of PFKFB4 and that p53-deficient cancer cells are highly dependent on the function of this enzyme. We found that p53 downregulates PFKFB4 expression by binding to its promoter and mediating transcriptional repression via histone deacetylases. Depletion of PFKFB4 from p53-deficient cancer cells increased levels of the allosteric regulator fructose-2,6-bisphosphate, leading to increased glycolytic activity but decreased routing of metabolites through the oxidative arm of the pentose-phosphate pathway. PFKFB4 was also required to support the synthesis and regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) in p53-deficient cancer cells. Moreover, depletion of PFKFB4-attenuated cellular biosynthetic activity and resulted in the accumulation of reactive oxygen species and cell death in the absence of p53. Finally, silencing of PFKFB4-induced apoptosis in p53-deficient cancer cells in vivo and interfered with tumour growth. These results demonstrate that PFKFB4 is essential to support anabolic metabolism in p53-deficient cancer cells and suggest that inhibition of PFKFB4 could be an effective strategy for cancer treatment.
Collapse
Affiliation(s)
- S Ros
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - J Flöter
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - I Kaymak
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - C Da Costa
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - A Houddane
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - S Dubuis
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - B Griffiths
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | - R Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - S Walz
- Comprehensive Cancer Center, Core Unit Bioinformatics, Biocenter, Würzburg, Germany
| | - S Blake
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - A Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, UK
| | - K M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - N Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - M H Rider
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - A Schulze
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| |
Collapse
|
41
|
Guix FX, Sannerud R, Berditchevski F, Arranz AM, Horré K, Snellinx A, Thathiah A, Saido T, Saito T, Rajesh S, Overduin M, Kumar-Singh S, Radaelli E, Corthout N, Colombelli J, Tosi S, Munck S, Salas IH, Annaert W, De Strooper B. Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Mol Neurodegener 2017; 12:25. [PMID: 28279219 PMCID: PMC5345265 DOI: 10.1186/s13024-017-0165-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer’s disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase. Methods We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. Results Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aβ levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. Conclusions TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0165-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesc X Guix
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium. .,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium.
| | - Ragna Sannerud
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Fedor Berditchevski
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Amaia M Arranz
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Katrien Horré
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - An Snellinx
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 6062, 3501 Fifth Avenue, Pittsburgh, PA, 15213-3301, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, 351-0198, Saitama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, 351-0198, Saitama, Japan
| | - Sundaresan Rajesh
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Michael Overduin
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Enrico Radaelli
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Nikky Corthout
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c. Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c. Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sebastian Munck
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Isabel H Salas
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Wim Annaert
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium.,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease research - VIB, Leuven, Belgium. .,Center of Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KULeuven, Leuven, Gasthuisberg O&N, Belgium. .,Dementia Research Institute (DRI-UK), University College London, Queen Square, WC1N 3BG, London, UK.
| |
Collapse
|
42
|
Murdoch JD, Rostosky CM, Gowrisankaran S, Arora AS, Soukup SF, Vidal R, Capece V, Freytag S, Fischer A, Verstreken P, Bonn S, Raimundo N, Milosevic I. Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. Cell Rep 2016; 17:1071-1086. [PMID: 27720640 PMCID: PMC5080600 DOI: 10.1016/j.celrep.2016.09.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Endophilin-A, a well-characterized endocytic adaptor essential for synaptic vesicle recycling, has recently been linked to neurodegeneration. We report here that endophilin-A deficiency results in impaired movement, age-dependent ataxia, and neurodegeneration in mice. Transcriptional analysis of endophilin-A mutant mice, complemented by proteomics, highlighted ataxia- and protein-homeostasis-related genes and revealed upregulation of the E3-ubiquitin ligase FBXO32/atrogin-1 and its transcription factor FOXO3A. FBXO32 overexpression triggers apoptosis in cultured cells and neurons but, remarkably, coexpression of endophilin-A rescues it. FBXO32 interacts with all three endophilin-A proteins. Similarly to endophilin-A, FBXO32 tubulates membranes and localizes on clathrin-coated structures. Additionally, FBXO32 and endophilin-A are necessary for autophagosome formation, and both colocalize transiently with autophagosomes. Our results point to a role for endophilin-A proteins in autophagy and protein degradation, processes that are impaired in their absence, potentially contributing to neurodegeneration and ataxia. Endophilin-A is needed for autophagosome formation in mammalian neurons and brain Absence of endophilin-A upregulates the E3-ubiquitin ligase FBXO32 FBXO32-endophilin-A interaction maintains neuronal health and protein homeostasis Endophilin-A KO mice show age-dependent ataxia, motor impairments, and neurodegeneration
Collapse
Affiliation(s)
- John D Murdoch
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany; Institute of Cellular Biochemistry, University Medical Center Göttingen (UMG), 37073 Göttingen, Germany
| | | | | | | | - Sandra-Fausia Soukup
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Ramon Vidal
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Vincenzo Capece
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Siona Freytag
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany
| | - Andre Fischer
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Patrik Verstreken
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Stefan Bonn
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Göttingen (UMG), 37073 Göttingen, Germany.
| | - Ira Milosevic
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany.
| |
Collapse
|