1
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Chu X, Sun J, Dai S, Liang Y, Qian X, Xu J, Zhang J. AURKA Activates FOXO3a to Form a Positive Feedback Loop in the Proliferation and Migration of Keloid Fibroblasts. Adv Wound Care (New Rochelle) 2024. [PMID: 39078320 DOI: 10.1089/wound.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Objective: Keloids are benign fibroproliferative disorders with invasive growth exceeding the wound boundary. Aurora kinase A (AURKA) is a serine/threonine kinase highly expressed in various tumors, facilitating tumor growth and invasion. Currently, the role of AURKA in keloid remains unclear. Approach: Fibroblasts were isolated from keloid and normal skin samples. AURKA was evaluated by qPCR, Western blot, and immunohistochemistry. Transcriptome sequencing and dual-luciferase reporter assays were applied to figure out targets of AURKA. Following expression alteration and MLN8237 (an AURKA kinase inhibitor, AKI) treatment, phenotypical experiments were conducted to clarify biological functions of AURKA along with its target, and to probe into the clinical potential of AURKA inhibition. Results: AURKA was upregulated in keloid tissues and fibroblasts. Forkhead box O 3a (FOXO3a) was verified as a downstream of AURKA. Further experiments demonstrated that AURKA transactivated FOXO3a by binding to FOXO3a, while FOXO3a directly transactivated AURKA. Functionally, AURKA and FOXO3a cooperated in enhancing the proliferation and migration of keloid fibroblasts via protein kinase B (AKT) phosphorylation. Although MLN8237 weakened the proliferation and migration in keloid fibroblasts, the transactivation of AURKA on FOXO3a was independent of kinase activity. Innovation: This study reveals that AURKA and FOXO3a compose a transactivation loop in enhancing the proliferative and migrative properties of keloid fibroblasts, and proposes AURKA as a promising target. Conclusion: AURKA/FOXO3a loop promotes the proliferation and migration of keloid fibroblasts via AKT signaling. Despite the anti-keloid effects of AKIs, AURKA acts as a transcription factor independently of kinase activity, deepening our understanding on AKI insensitivity.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jiaqi Sun
- Department of Plastic Surgery, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siya Dai
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yehua Liang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
3
|
Wang WD, Zeng CY, Shang Y, Ni J, Li GJ, Li LP, Xi SH, Chen SZ. Thiostrepton suppresses triple-negative breast cancer through downregulating c-FLIP/SMAD2/3 signaling pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:945-954. [PMID: 38634704 DOI: 10.1080/10286020.2024.2343420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis of breast cancer. Thiostrepton exerts anti-tumor activities against several cancers including TNBC. Herein we discussed the new molecular mechanisms of thiostrepton in TNBC. Thiostrepton inhibited MDA-MB-231 cell viability, accompanied by a decrease of c-FLIP and p-SMAD2/3. c-FLIP overexpression reduced the sensitivity of MDA-MB-231 cells to thiostrepton, while SMAD2/3 knockdown increased the sensitivity of MDA-MB-231 cells to thiostrepton. Moreover, c-FLIP overexpression significantly increased the expression and phosphorylation of SMAD2/3 proteins and vice versa. In conclusion, our study reveals c-FLIP/SMAD2/3 signaling pathway as a novel mechanism of antitumor activity of thiostrepton.
Collapse
Affiliation(s)
- Wen-Die Wang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Chao-Yang Zeng
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yue Shang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jun Ni
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Gao-Jie Li
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Li-Ping Li
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shuo-Han Xi
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shu-Zhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
4
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
5
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
6
|
Chang CP, Yeh TK, Chen CT, Wang WP, Chen YT, Tsai CH, Chen YF, Ke YY, Wang JY, Chen CP, Hsieh TC, Wu MH, Huang CL, Chen YP, Zhuang H, Chi YH. Discovery of a Long Half-Life AURKA Inhibitor to Treat MYC-Amplified Solid Tumors as a Monotherapy and in Combination with Everolimus. Mol Cancer Ther 2024; 23:766-779. [PMID: 38592383 DOI: 10.1158/1535-7163.mct-23-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.
Collapse
Affiliation(s)
- Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yan-Fu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsung-Chih Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hong Zhuang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Ye Y, Xu L, Zhang L, Zhao P, Cai W, Fu G, Wang T, Tao Z, Shi W, Gu W, Hu J, Yuan G, Wei Y, Xu K, Bao Z, Chao H, Liu N, Zhao L, Tu Y, Ji J. Meningioma achieves malignancy and erastin-induced ferroptosis resistance through FOXM1-AURKA-NRF2 axis. Redox Biol 2024; 72:103137. [PMID: 38642502 PMCID: PMC11047291 DOI: 10.1016/j.redox.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024] Open
Abstract
The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.
Collapse
Affiliation(s)
- Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoqiang Fu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zeqiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wenqian Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guangyao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Gusu School, Nanjing Medical University, Suzhou, China; Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China.
| |
Collapse
|
8
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
9
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
10
|
Lin J, Zhang P, Liu W, Liu G, Zhang J, Yan M, Duan Y, Yang N. A positive feedback loop between ZEB2 and ACSL4 regulates lipid metabolism to promote breast cancer metastasis. eLife 2023; 12:RP87510. [PMID: 38078907 PMCID: PMC10712958 DOI: 10.7554/elife.87510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.
Collapse
Affiliation(s)
- Jiamin Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Pingping Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan UniversityGuangzhouChina
| | - Guorong Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Juan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of TechnologyGuangzhouChina
| | - Na Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
11
|
Namløs HM, Khelik K, Nakken S, Vodák D, Hovig E, Myklebost O, Boye K, Meza‐Zepeda LA. Chromosomal instability and a deregulated cell cycle are intrinsic features of high-risk gastrointestinal stromal tumours with a metastatic potential. Mol Oncol 2023; 17:2432-2450. [PMID: 37622176 PMCID: PMC10620130 DOI: 10.1002/1878-0261.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
Patients with localised, high-risk gastrointestinal stromal tumours (GIST) benefit from adjuvant imatinib treatment. Still, approximately 40% of patients relapse within 3 years after adjuvant therapy and the clinical and histopathological features currently used for risk classification cannot precisely predict poor outcomes after standard treatment. This study aimed to identify genomic and transcriptomic profiles that could be associated with disease relapse and thus a more aggressive phenotype. Using a multi-omics approach, we analysed a cohort of primary tumours from patients with untreated, resectable high-risk GISTs. We compared patients who developed metastatic disease within 3 years after finishing adjuvant imatinib treatment and patients without disease relapse after more than 5 years of follow-up. Combining genomics and transcriptomics data, we identified somatic mutations and deregulated mRNA and miRNA genes intrinsic to each group. Our study shows that increased chromosomal instability (CIN), including chromothripsis and deregulated kinetochore and cell cycle signalling, separates high-risk samples according to metastatic potential. The increased CIN seems to be an intrinsic feature for tumours that metastasise and should be further validated as a novel prognostic biomarker for high-risk GIST.
Collapse
Affiliation(s)
- Heidi Maria Namløs
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
| | - Ksenia Khelik
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Daniel Vodák
- Bioinformatics Core Facility, Department of Core Facilities, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department for Clinical ScienceUniversity of BergenBergenNorway
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department of OncologyOslo University HospitalOsloNorway
| | - Leonardo A. Meza‐Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer ResearchOslo University HospitalOsloNorway
| |
Collapse
|
12
|
Qiao X, Yang Y, Zhao Y, Wu X, Zhang L, Cai X, Ji J, Boström KI, Yao Y. Aurora Kinase A Regulates Cell Transitions in Glucocorticoid-Induced Bone Loss. Cells 2023; 12:2434. [PMID: 37887278 PMCID: PMC10605378 DOI: 10.3390/cells12202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glucocorticoid-induced bone loss is a severe and toxic effect of long-term therapy with glucocorticoids, which are currently prescribed for millions of people worldwide. Previous studies have uncovered that glucocorticoids reciprocally converted osteoblast lineage cells into endothelial-like cells to cause bone loss and showed that the modulations of Foxc2 and Osterix were the causative factors that drove this harmful transition of osteoblast lineage cells. Here, we find that the inhibition of aurora kinase A halts this transition and prevents glucocorticoid-induced bone loss. We find that aurora A interacts with the glucocorticoid receptor and show that this interaction is required for glucocorticoids to modulate Foxc2 and Osterix. Together, we identify a new potential approach to counteracting unwanted transitions of osteoblast lineage cells in glucocorticoid treatment and may provide a novel strategy for ameliorating glucocorticoid-induced bone loss.
Collapse
Affiliation(s)
- Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| |
Collapse
|
13
|
Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M. MicroRNAs as the Critical Regulators of Forkhead Box Protein Family in Pancreatic, Thyroid, and Liver Cancers. Biochem Genet 2023; 61:1645-1674. [PMID: 36781813 DOI: 10.1007/s10528-023-10346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
The metabolism of human body is mainly regulated by the pancreas, liver, and thyroid using the hormones or exocrine secretions that affect the metabolic processes from food digestion to intracellular metabolism. Therefore, metabolic organ disorders have wide clinical symptoms that severely affect the quality of patient's life. The pancreatic, liver, and thyroid cancers as the main malignancies of the metabolic system have always been considered as one of the serious health challenges worldwide. Despite the novel therapeutic modalities, there are still significant high mortality and recurrence rates, especially in liver and pancreatic cancer patients which are mainly related to the late diagnosis. Therefore, it is required to assess the molecular bases of tumor progressions to introduce novel early detection and therapeutic markers in these malignancies. Forkhead box (FOX) protein family is a group of transcription factors that have pivotal roles in regulation of cell proliferation, migration, and apoptosis. They function as oncogene or tumor suppressor during tumor progression. MicroRNAs (miRNAs) are also involved in regulation of cellular processes. Therefore, in the present review, we discussed the role of miRNAs during pancreatic, thyroid, and liver tumor progressions through FOX regulation. It has been shown that miRNAs were mainly involved in tumor progression via FOXM and FOXO targeting. This review paves the way for the introduction of miR/FOX axis as an efficient early detection marker and therapeutic target in pancreatic, thyroid, and liver tumors.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Mokhlesi A, Sharifi Z, Berimipour A, Taleahmad S, Talkhabi M. Identification of hub genes and microRNAs with prognostic values in esophageal cancer by integrated analysis. Noncoding RNA Res 2023; 8:459-470. [PMID: 37416747 PMCID: PMC10319852 DOI: 10.1016/j.ncrna.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common cancer in the world, and the sixth most common cause of cancer-related mortality. The aim of the present study was to identify cell and molecular mechanisms involved in EC, and to provide the potential targets for diagnosis and treatment. Here, a microarray dataset (GSE20347) was screened to find differentially expressed genes (DEGs). Different bioinformatic methods were used to analyze the identified DEGs. The up-regulated DEGs were significantly involved in different biological processes and pathways including extracellular matrix organization and ECM-receptor interaction. FN1, CDK1, AURKA, TOP2A, FOXM1, BIRC5, CDC6, UBE2C, TTK, and TPX2 were identified as the most important genes among the up-regulated DEGs. Our analysis showed that has-miR-29a-3p, has-miR-29b-3p, has-miR-29c-3p, and has-miR-767-5p had the largest number of common targets among the up-regulated DEGs. These findings strengthen the understanding of EC development and progression, as well as representing potential markers for EC diagnosis and treatment.
Collapse
Affiliation(s)
- Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Sharifi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Berimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Li S, Qi Y, Yu J, Hao Y, Xu L, Ding X, Zhang M, Geng J. Aurora kinase A regulates cancer-associated RNA aberrant splicing in breast cancer. Heliyon 2023; 9:e17386. [PMID: 37415951 PMCID: PMC10320321 DOI: 10.1016/j.heliyon.2023.e17386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
The contribution of oncogenes to tumor-associated RNA splicing and the relevant molecular mechanisms therein require further elaboration. Here, we show that oncogenic Aurora kinase A (AURKA) promotes breast cancer-related RNA aberrant splicing in a context-dependent manner. AURKA regulated pan-breast cancer-associated RNA splicing events including GOLGA4, RBM4 and UBQLN1. Aberrant splicing of GOLGA4 and RBM4 was closely related to breast cancer development. Mechanistically, AURKA interacted with the splicing factor YBX1 and promoted AURKA-YBX1 complex-mediated GOLGA4 exon inclusion. AURKA binding to the splicing factor hnRNPK promoted AURKA-hnRNPK complex-mediated RBM4 exon skipping. Analysis of clinical data identified an association between the AURKA-YBX1/hnRNPK complex and poor prognosis in breast cancer. Blocking AURKA nuclear translocation with small molecule drugs partially reversed the oncogenic splicing of RBM4 and GOLGA4 in breast cancer cells. In summary, oncogenic AURKA executes its function on modulating breast cancer-related RNA splicing, and nuclear AURKA is distinguished as a hopeful target in the case of treating breast cancer.
Collapse
Affiliation(s)
- Sisi Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xudong Ding
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Bhat SM, Prasad PR, Joshi MB. Novel insights into DNA methylation-based epigenetic regulation of breast tumor angiogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:63-96. [PMID: 37657860 DOI: 10.1016/bs.ircmb.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis. Hence, understanding DNA methylation-based regulation of angiogenesis in breast tumors may open new avenues for designing therapeutic targets. Our present review manuscript summarized contemporary knowledge of influence of DNA methylation in regulating angiogenesis. Further, we identified novel set of pro-angiogenic genes enriched in endothelial cells which are coregulated with DNMT isoforms in breast tumors and harboring CpG islands. Our analysis revealed promoters of pro-angiogenic genes were hypomethylated and anti-angiogenic genes were hypermethylated in tumors and further reflected on their expression patterns. Interestingly, promoter DNA methylation intensities of novel set of pro-angiogenic genes significantly correlated to patient survival outcome.
Collapse
Affiliation(s)
- Sharath Mohan Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Palla Ranga Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
17
|
Asteriti IA, Polverino F, Stagni V, Sterbini V, Ascanelli C, Naso FD, Mastrangelo A, Rosa A, Paiardini A, Lindon C, Guarguaglini G. AurkA nuclear localization is promoted by TPX2 and counteracted by protein degradation. Life Sci Alliance 2023; 6:e202201726. [PMID: 36797043 PMCID: PMC9936162 DOI: 10.26508/lsa.202201726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential. Still, the mechanisms leading to AurkA nuclear accumulation are poorly explored. Here, we investigated these mechanisms under physiological or overexpression conditions. We observed that AurkA nuclear localization is influenced by the cell cycle phase and nuclear export, but not by its kinase activity. Importantly, AURKA overexpression is not sufficient to determine its accumulation in interphase nuclei, which is instead obtained when AURKA and TPX2 are co-overexpressed or, to a higher extent, when proteasome activity is impaired. Expression analyses show that AURKA, TPX2, and the import regulator CSE1L are co-overexpressed in tumors. Finally, using MCF10A mammospheres we show that TPX2 co-overexpression drives protumorigenic processes downstream of nuclear AurkA. We propose that AURKA/TPX2 co-overexpression in cancer represents a key determinant of AurkA nuclear oncogenic functions.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Signal Transduction Unit, Rome, Italy
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Anna Mastrangelo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- < Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
19
|
Liu WW, Zhang ZY, Wang F, Wang H. Emerging roles of m6A RNA modification in cancer therapeutic resistance. Exp Hematol Oncol 2023; 12:21. [PMID: 36810281 PMCID: PMC9942381 DOI: 10.1186/s40164-023-00386-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Marvelous advancements have been made in cancer therapies to improve clinical outcomes over the years. However, therapeutic resistance has always been a major difficulty in cancer therapy, with extremely complicated mechanisms remain elusive. N6-methyladenosine (m6A) RNA modification, a hotspot in epigenetics, has gained growing attention as a potential determinant of therapeutic resistance. As the most prevalent RNA modification, m6A is involved in every links of RNA metabolism, including RNA splicing, nuclear export, translation and stability. Three kinds of regulators, "writer" (methyltransferase), "eraser" (demethylase) and "reader" (m6A binding proteins), together orchestrate the dynamic and reversible process of m6A modification. Herein, we primarily reviewed the regulatory mechanisms of m6A in therapeutic resistance, including chemotherapy, targeted therapy, radiotherapy and immunotherapy. Then we discussed the clinical potential of m6A modification to overcome resistance and optimize cancer therapy. Additionally, we proposed existing problems in current research and prospects for future research.
Collapse
Affiliation(s)
- Wei-Wei Liu
- grid.59053.3a0000000121679639Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China ,grid.27255.370000 0004 1761 1174School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhong-Yuan Zhang
- grid.59053.3a0000000121679639Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
20
|
Sanada M, Yamazaki M, Yamada T, Fujino K, Kudoh S, Tenjin Y, Saito H, Kudo N, Sato Y, Matsuo A, Suzuki M, Ito T. Heterogeneous expression and role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in small cell lung cancer. Hum Cell 2023; 36:409-420. [PMID: 36463543 DOI: 10.1007/s13577-022-00830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022]
Abstract
The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.
Collapse
Affiliation(s)
- Mune Sanada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tatsuya Yamada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Tenjin
- Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan. .,Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, 325 Izumi, Kita-Ku, Kumamoto, Kumamoto, 861-5598, Japan.
| |
Collapse
|
21
|
Zhao J, Shi Y, Ma Y, Pan L, Wang Y, Yuan L, Dong J, Ying J. Chebulagic acid suppresses gastric cancer by inhibiting the AURKA/β-catenin/Wnt pathway. Front Pharmacol 2023; 14:1143427. [PMID: 36937887 PMCID: PMC10014572 DOI: 10.3389/fphar.2023.1143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is a prevalent malignant neoplasm that poses a serious threat to human health. Overexpression of Aurora A (AURKA) is frequently associated with the self-renewal and tumorigenicity of various cancers. Chebulagic acid (CA) has been examined as a potential tumor suppressor based on its ability against numerous tumor biological activities. However, the possible mechanisms of CA inhibition of the progression of GC by mediating the AURKA/β-catenin/Wnt signaling pathway have not been investigated. The present study investigated the level of AURKA expression in GC. We further examined the effect of CA on cell proliferation, migration, and apoptosis in the MKN1 and NUGC3 GC cell lines, and its efficacy in suppressing tumor growth was assessed in tumor bearing mice model. We demonstrated that AURKA was highly expressed in GC and associated with poor prognosis. We demonstrated that treatment with CA significantly inhibited the proliferation and migration of GC cells and induced apoptosis. Compared to the vehicle group, CA treatment severely diminished the volume and weight and the metastasis of tumors. CA also inhibited the expression of AURKA and the AURKA/β-catenin/Wnt signaling pathway in vitro and in vivo. Collectively, the present results demonstrated that high expression of AURKA may be an independent factor of poor prognosis in patients with GC, and CA significantly suppressed the tumor biological functions of GC and inhibited the AURKA/β-catenin/Wnt pathway.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yunfu Shi
- Oncology Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yubo Ma
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Libin Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yanan Wang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| | - Jinyun Dong
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| | - Jieer Ying
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| |
Collapse
|
22
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
23
|
Priya, Jaswal S, Gupta GD, Verma SK. A Comprehension on Synthetic Strategies of Aurora kinase A and B Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Sequential Treatment with Activin and Hepatocyte Growth Factor Induces FOXM1 to Promote Colorectal Cancer Liver Metastasis. Can J Gastroenterol Hepatol 2022; 2022:8996203. [PMID: 36591565 PMCID: PMC9803576 DOI: 10.1155/2022/8996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are involved in liver metastasis in colorectal cancer (CRC). Activin and hepatocyte growth factor (HGF) are important regulators of stem cell properties. This study was performed to explore the effect of activin and HGF on CRC invasion and metastasis. The key genes involved in the action of activin and HGF in CRC were identified. METHODS HCT116 CRC cells were sequentially treated with activin and HGF and examined for migration and invasion in vitro and liver metastasis in vivo. RNA sequencing was performed to identify differentially expressed genes in response to activin and HGF. RESULTS Sequential treatment with activin and HGF-enhanced CRC cell migration, invasion, and metastasis. CXCR4 and AFP expressions were increased by activin and HGF treatment. Knockdown of FOXM1 blocked liver metastasis from HCT116 cells pretreated with activin and HGF and suppressed CXCR4 and AFP expression. Activin alone increased the mRNA and protein expression of FOXM1. In contrast, HGF alone enhanced the phosphorylation of FOXM1, without altering the total protein level of FOXM1. SMAD2 was required for activin-mediated FOXM1 induction. FOXM1 transactivated CXCR4 by directly binding to the promoter of CXCR4. Additionally, CXCR4 regulated AFP expression through the NF-κB pathway. CONCLUSIONS Sequential treatment with activin and HGF accelerates CRC invasion and liver metastasis, which involves the upregulation and activation of FOXM1 and induction of CXCR4 and AFP.
Collapse
|
25
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
26
|
Wang F, Zhang H, Wang H, Qiu T, He B, Yang Q. Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:180. [PMID: 36071247 DOI: 10.1007/s12032-022-01777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Researches show that Aurora kinase A (AURKA) is highly expressed in approximately 73% of breast cancer patients, which induces drug resistance in breast cancer patients and decreases the median survival time. AURKA regulates spindle assembly, centrosome maturation, and chromosome alignment. AURKA overexpression affects the occurrence and development of breast cancer. Besides AURKA overexpression, heat shock protein 90 (HSP90) maintains the survival and proliferation of tumor cells by stabilizing the structure of oncoproteins, including P53 mutants (mtP53). TP53 mutations accounted for approximately 13%, 40%, 80%, 33%, 71%, and 82% of luminal A, Luminal B, Luminal C, normal basal-like, HER2-amplified, and basal-like breast cancers, respectively. TP53 mutation can aggravate cell genome instability and enhance the invasion, migration, and resistance of cancer cell. This review describes the research status of AURKA and HSP90 in breast cancer, summarizes the structure, function, and the chaperone cycle of HSP90, elaborates the interrelation between HSP90, mtP53, P53, and AURKA, and proposes the combination of HSP90 inhibitor and AURKA inhibitor to treat breast cancer. Targeting AURKA and HSP90 to treat cancer with AURKA overexpression and TP53 mutations will help improve the specificity and efficiency of breast cancer treatment and solve the problem of drug resistance.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haotian Zhang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100000, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Binghong He
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China.
| |
Collapse
|
27
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
28
|
Liu F, Wang X, Duan J, Hou Z, Wu Z, Liu L, Lei H, Huang D, Ren Y, Wang Y, Li X, Zhuo J, Zhang Z, He B, Yan M, Yuan H, Zhang L, Yan J, Wen S, Wang Z, Liu Q. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104823. [PMID: 35652200 PMCID: PMC9353462 DOI: 10.1002/advs.202104823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.
Collapse
Affiliation(s)
- Fang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xuan Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Jianli Duan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zhijie Hou
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhouming Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Lingling Liu
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hanqi Lei
- Department of UrologyKidney and Urology CenterPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Dan Huang
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yifei Ren
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yue Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Xinyan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Junxiao Zhuo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zijian Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Bin He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Min Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinsong Yan
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Shijun Wen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zifeng Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Quentin Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
29
|
FOXM1-CD44 Signaling Is Critical for the Acquisition of Regorafenib Resistance in Human Liver Cancer Cells. Int J Mol Sci 2022; 23:ijms23147782. [PMID: 35887129 PMCID: PMC9324640 DOI: 10.3390/ijms23147782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Regorafenib is a multikinase inhibitor that was approved by the US Food and Drug administration in 2017. Cancer stem cells (CSCs) are a small subset of cancer-initiating cells that are thought to contribute to therapeutic resistance. The forkhead box protein M1 (FOXM1) plays an important role in the regulation of the stemness of CSCs and mediates resistance to chemotherapy. However, the relationship between FOXM1 and regorafenib resistance in liver cancer cells remains unknown. We found that regorafenib-resistant HepG2 clones overexpressed FOXM1 and various markers of CSCs. Patients with hepatocellular carcinoma also exhibited an upregulation of FOXM1 and resistance to regorafenib, which were correlated with a poor survival rate. We identified a close relationship between FOXM1 expression and regorafenib resistance, which was correlated with the survival of patients with hepatocellular carcinoma. Thus, a strategy that antagonizes FOXM1–CD44 signaling would enhance the therapeutic efficacy of regorafenib in these patients.
Collapse
|
30
|
Centrosome Defects in Hematological Malignancies: Molecular Mechanisms and Therapeutic Insights. BLOOD SCIENCE 2022; 4:143-151. [DOI: 10.1097/bs9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
|
31
|
Zhang Z, Xue ST, Gao Y, Li Y, Zhou Z, Wang J, Li Z, Liu Z. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Dis 2022; 8:280. [PMID: 35680842 PMCID: PMC9184618 DOI: 10.1038/s41420-022-01070-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
FOXM1 is a potent oncogenic transcription factor essential for cancer initiation, progression, and drug resistance. FOXM1 regulatory network is a major predictor of adverse outcomes in various human cancers. Inhibition of FOXM1 transcription factor function is a potential strategy in cancer treatment. In this study, we performed structure-based in silico screening to discover small molecules targeting the FOXM1 DNA-binding domain (DBD). Compound XST-20 was identified to effectively suppress FOXM1 transcriptional activities and inhibit ovarian cancer cell proliferation. XST-20 directly interacts with the FOXM1 DNA-binding domain determined by SPR assay. Furthermore, XST-20 was found to significantly reduce the colony-forming efficiency and induce cell cycle arrest and apoptosis. Our study provides a lead compound of FOXM1 inhibitor which may serve as a potential targeted therapy agent for ovarian cancer.
Collapse
Affiliation(s)
- Zaixin Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Ziying Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
32
|
Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle 2022; 21:1166-1177. [PMID: 35196196 PMCID: PMC9103642 DOI: 10.1080/15384101.2022.2042775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs) participated in the tumorigenesis, progression and recurrence of various malignancies including Gallbladder carcinoma (GBC). miR-4461 was reported to work as a tumor suppressor gene in renal cell carcinoma. However, the role of miR-4461 in GBC remains unknown. Herein, we show that miR-4461 is downregulated in gallbladder cancer stem cells (CSCs). Forced miR-4461 expression attenuates the self-renewal, tumorigenicity of gallbladder CSCs, and inhibits proliferation and metastasis of GBC cells. Conversely, miR-4461 knockdown promotes the self-renewal of gallbladder CSCs, and facilities proliferation and metastasis of GBC cells. Mechanistically, miR-4461 inhibits GBC progression via downregulating EGFR/AKT pathway. Special EGFR siRNA or AKT overexpression virus abolishes the discrepancy of self-renewal, tumorigenesis, growth, and metastasis between miR-4461 overexpression GBC cells and their control cells. In conclusion, miR-4461 suppresses GBC cells self-renewal, tumorigenicity, proliferation, and metastasis by inactivating EGFR/AKT signaling, and may therefore prove to be a potential therapeutic target for GBC patients.
Collapse
Affiliation(s)
- Xingzhou Yan
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Hu Liu
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yongyang Zhao
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Zhixiong Wu
- Department of Critical Care Medicine, Huadong Hospital, Shanghai, China
| | - Baohua Zhang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
33
|
Qiao B, Li S, Wang D, Wu D. Editorial: Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:874353. [PMID: 35463329 PMCID: PMC9019613 DOI: 10.3389/fonc.2022.874353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaize Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Di Wu
- Department of Periodontology, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Tsao AN, Chuang YS, Lin YC, Su Y, Chao TC. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep 2022; 47:105. [PMID: 35417031 DOI: 10.3892/or.2022.8316] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/01/2022] [Indexed: 11/06/2022] Open
Abstract
Cyclin‑dependent kinase (CDK)4/6 inhibitors in combination with endocrine therapy are the current standard of care used in the first‑line treatment of hormone receptor‑positive/HER2‑negative metastatic breast cancer (BC). Although CDK4/6 inhibitors mainly target the cell cycle, emerging evidence has indicated further potential roles of CDKs other than regulating cell cycle progression. The G1 and G2/M transition regulators, including cyclins D and E, as well as their catalytic partners, CDK2, CDK4 and CDK6, have been reported to play crucial roles in pluripotency maintenance and cell fate decisions of human pluripotent stem cells by controlling transcription factors, signaling pathways and epigenetic regulators. Dinaciclib, a CDK1/2/5/9 inhibitor, is currently being evaluated in clinical trials against various cancer types, including BC. However, the underlying molecular mechanisms of CDK1/2/5/9 inhibitors in regulating BC stemness remain poorly understood. The present study aimed to examine the stemness‑inhibitory effects of dinaciclib in MCF‑7 (luminal) and HCC‑1806 (triple‑negative) BC cells. We found that this drug not only effectively reduced the self‑renewal abilities and other malignant properties, but also dose‑dependently decreased the protein expression levels of three BC stem cell markers, CD44, aldehyde dehydrogenase 1 family member A1 (ALDH1A1) and BMI1 proto‑oncogene, polycomb ring finger (Bmi1), as well as three embryonic stem cell markers, Oct4, Nanog and Sox2. Moreover, the dinaciclib‑induced decrease of Oct4 and Nanog protein expression was able to be restored by co‑treatment with MG‑132, a proteasome inhibitor. Forkhead box M1 (FoxM1), both a stemness‑stimulating transcription factor and a cell cycle regulator, along with the Hedgehog signaling pathway, were identified as the therapeutic targets of dinaciclib. Collectively, the present results demonstrated a novel role of dinaciclib in suppressing BC stemness and indicated its potential use for future cancer treatments.
Collapse
Affiliation(s)
- Ai-Ni Tsao
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yu-Syuan Chuang
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yen-Chun Lin
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11200, Taiwan, R.O.C
| |
Collapse
|
35
|
Li S, Qi Y, Yu J, Hao Y, He B, Zhang M, Dai Z, Jiang T, Li S, Huang F, Chen N, Wang J, Yang M, Liang D, An F, Zhao J, Fan W, Pan Y, Deng Z, Luo Y, Guo T, Peng F, Hou Z, Wang C, Zheng F, Xu L, Xu J, Wen Q, Jin B, Wang Y, Liu Q. Nuclear Aurora kinase A switches m 6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. Signal Transduct Target Ther 2022; 7:97. [PMID: 35361747 PMCID: PMC8971511 DOI: 10.1038/s41392-022-00905-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Aberrant RNA splicing produces alternative isoforms of genes to facilitate tumor progression, yet how this process is regulated by oncogenic signal remains largely unknown. Here, we unveil that non-canonical activation of nuclear AURKA promotes an oncogenic RNA splicing of tumor suppressor RBM4 directed by m6A reader YTHDC1 in lung cancer. Nuclear translocation of AURKA is a prerequisite for RNA aberrant splicing, specifically triggering RBM4 splicing from the full isoform (RBM4-FL) to the short isoform (RBM4-S) in a kinase-independent manner. RBM4-S functions as a tumor promoter by abolishing RBM4-FL-mediated inhibition of the activity of the SRSF1-mTORC1 signaling pathway. Mechanistically, AURKA disrupts the binding of SRSF3 to YTHDC1, resulting in the inhibition of RBM4-FL production induced by the m6A-YTHDC1-SRSF3 complex. In turn, AURKA recruits hnRNP K to YTHDC1, leading to an m6A-YTHDC1-hnRNP K-dependent exon skipping to produce RBM4-S. Importantly, the small molecules that block AURKA nuclear translocation, reverse the oncogenic splicing of RBM4 and significantly suppress lung tumor progression. Together, our study unveils a previously unappreciated role of nuclear AURKA in m6A reader YTHDC1-dependent oncogenic RNA splicing switch, providing a novel therapeutic route to target nuclear oncogenic events.
Collapse
Affiliation(s)
- SiSi Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - YangFan Qi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - JiaChuan Yu
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - YuChao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - MengJuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZhenWei Dai
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - TongHui Jiang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - SuYi Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fang Huang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Ning Chen
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jing Wang
- Department of Oncology, the First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - MengYing Yang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - DaPeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - JinYao Zhao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - WenJun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - YuJia Pan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZiQian Deng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - YuanYuan Luo
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZhiJie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ChunLi Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - FeiMeng Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - LingZhi Xu
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - QingPing Wen
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - BiLian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Yang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Zhang P, Chen X, Zhang L, Cao D, Chen Y, Guo Z, Chen J. POLE2 facilitates the malignant phenotypes of glioblastoma through promoting AURKA-mediated stabilization of FOXM1. Cell Death Dis 2022; 13:61. [PMID: 35039475 PMCID: PMC8763902 DOI: 10.1038/s41419-021-04498-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is a type of brain cancer with high morbidity and mortality worldwide. The clinical significance, biological roles, and underlying molecular mechanisms of DNA poly ε-B subunit (POLE2) in GBM were investigated in the study. Firstly, the Cancer Genome Atlas (TCGA) database found that POLE2 was highly expressed in GBM. Immunohistochemistry (IHC) results further confirmed that POLE2 was abnormally elevated in GBM. In addition, loss-of-function assays revealed that POLE2 knockdown could inhibit the malignant behaviors of GBM, especially reduce cell viability, weaken cell clone formation, enhance the sensitivity of apoptosis, restrain migration and inhibit epithelial-mesenchymal transition (EMT) in vitro. In vivo experiments further clarified the suppressive effects of reduced POLE2 expression on tumors. Mechanically, POLE2 knockdown promoted the ubiquitination as well as reduced the stability of Forkhead transcription factor (FOXM1), which is a known tumor promotor in GBM, through Aurora kinase A (AURKA). Moreover, the knockdown of FOXM1 could weaken the promoting effects of POLE2 on malignant behaviors of GBM. In conclusion, our study revealed crucial roles and a novel mechanism of POLE2 involved in GBM through AURKA-mediated stability of FOXM1 and may provide the theoretical basis of molecular therapy for GBM.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, No.1 Jianshe East Road, Zhengzhou City, Henan Province, China
| | - Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China.
| | - LingYun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu City, Sichuan Province, China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - Yong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - ZhengQian Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| |
Collapse
|
37
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
38
|
Aurora Kinases as Therapeutic Targets in Head and Neck Cancer. Cancer J 2022; 28:387-400. [PMID: 36165728 PMCID: PMC9836054 DOI: 10.1097/ppo.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|
39
|
Nandi D, Cheema PS, Singal A, Bharti H, Nag A. Artemisinin Mediates Its Tumor-Suppressive Activity in Hepatocellular Carcinoma Through Targeted Inhibition of FoxM1. Front Oncol 2021; 11:751271. [PMID: 34900697 PMCID: PMC8652299 DOI: 10.3389/fonc.2021.751271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
The aberrant up-regulation of the oncogenic transcription factor Forkhead box M1 (FoxM1) is associated with tumor development, progression and metastasis in a myriad of carcinomas, thus establishing it as an attractive target for anticancer drug development. FoxM1 overexpression in hepatocellular carcinoma is reflective of tumor aggressiveness and recurrence, poor prognosis and low survival in patients. In our study, we have identified the antimalarial natural product, Artemisinin, to efficiently curb FoxM1 expression and activity in hepatic cancer cells, thereby exhibiting potential anticancer efficacy. Here, we demonstrated that Artemisinin considerably mitigates FoxM1 transcriptional activity by disrupting its interaction with the promoter region of its downstream targets, thereby suppressing the expression of numerous oncogenic drivers. Augmented level of FoxM1 is implicated in drug resistance of cancer cells, including hepatic tumor cells. Notably, FoxM1 overexpression rendered HCC cells poorly responsive to Artemisinin-mediated cytotoxicity while FoxM1 depletion in resistant liver cancer cells sensitized them to Artemisinin treatment, manifested in lower proliferative and growth index, drop in invasive potential and repressed expression of EMT markers with a concomitantly increased apoptosis. Moreover, Artemisinin, when used in combination with Thiostrepton, an established FoxM1 inhibitor, markedly reduced anchorage-independent growth and displayed more pronounced death in liver cancer cells. We found this effect to be evident even in the resistant HCC cells, thereby putting forth a novel combination therapy for resistant cancer patients. Altogether, our findings provide insight into the pivotal involvement of FoxM1 in the tumor suppressive activities of Artemisinin and shed light on the potential application of Artemisinin for improved therapeutic response, especially in resistant hepatic malignancies. Considering that Artemisinin compounds are in current clinical use with favorable safety profiles, the results from our study will potentiate its utility in juxtaposition with established FoxM1 inhibitors, promoting maximal therapeutic efficacy with minimal adverse effects in liver cancer patients.
Collapse
Affiliation(s)
| | | | - Aakriti Singal
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi, New Delhi, India
| |
Collapse
|
40
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
41
|
Zhang YL, Ma Y, Zeng YQ, Liu Y, He EP, Liu YT, Qiao FL, Yu R, Wang YS, Wu XY, Leng P. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1704. [PMID: 34988213 PMCID: PMC8667115 DOI: 10.21037/atm-21-5271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this review is to clarify the potential roles of forkhead box transcription factor M1 (FoxM1) in the occurrence and progression of breast cancer, as well as the predictive value of FoxM1 as a prognostic biomarker and potential therapeutic target for breast cancer. BACKGROUND Breast cancer, well-known as a molecularly heterogeneous cancer, is still one of the most frequently diagnosed malignant tumors among females worldwide. Tumor recurrence and metastasis are the central causes of high mortality in breast cancer patients. Many factors contribute to the occurrence and progression of breast cancer, including FoxM1. FoxM1, widely regarded as a classic proliferation-related transcription factor, plays pivotal roles in the occurrence, proliferation, invasion, migration, drug resistance, and epithelial-mesenchymal transition (EMT) processes of multiple human tumors including breast cancer. METHODS The PubMed database was searched for articles published in English from February 2008 to May 2021 using related keywords such as "forkhead box transcription factor M1", "human breast cancer", "FoxM1", and "human tumor". About 90 research papers and reports written in English were identified, most of which were published after 2015. These papers mainly concentrated on the functions of FoxM1 in the occurrence, development, drug resistance, and treatment of human breast cancer. CONCLUSIONS Considering that the abnormal expression of FoxM1 plays a significant role in the proliferation, invasion, metastasis, and chemotherapy drug resistance of breast cancer, and its overexpression is closely correlated with the unfavorable clinicopathological characteristics of breast tumor patients, it is considerably important to comprehend the regulatory mechanism of FoxM1 in breast cancer. This will provide strong evidence for FoxM1 as a potential biomarker for the targeted treatment and prognostic evaluation of breast cancer patients.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Ma
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.,Institute of Disaster Medicine, Sichuan University, Chengdu, China
| | - You-Qin Zeng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - En-Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College-Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi-Tong Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Shuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin-Yu Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Glycolysis-related gene expression profiling serves as a novel prognosis risk predictor for human hepatocellular carcinoma. Sci Rep 2021; 11:18875. [PMID: 34556750 PMCID: PMC8460833 DOI: 10.1038/s41598-021-98381-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic pattern reconstruction is an important factor in tumor progression. Metabolism of tumor cells is characterized by abnormal increase in anaerobic glycolysis, regardless of high oxygen concentration, resulting in a significant accumulation of energy from glucose sources. These changes promotes rapid cell proliferation and tumor growth, which is further referenced a process known as the Warburg effect. The current study reconstructed the metabolic pattern in progression of cancer to identify genetic changes specific in cancer cells. A total of 12 common types of solid tumors were included in the current study. Gene set enrichment analysis (GSEA) was performed to analyze 9 glycolysis-related gene sets, which are implicated in the glycolysis process. Univariate and multivariate analyses were used to identify independent prognostic variables for construction of a nomogram based on clinicopathological characteristics and a glycolysis-related gene prognostic index (GRGPI). The prognostic model based on glycolysis genes showed high area under the curve (AUC) in LIHC (Liver hepatocellular carcinoma). The findings of the current study showed that 8 genes (AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were correlated with overall survival (OS) and recurrence-free survival (RFS). Further analysis showed that the prediction model accurately distinguished between high- and low-risk cancer patients among patients in different clusters in LIHC. A nomogram with a well-fitted calibration curve based on gene expression profiles and clinical characteristics showed good discrimination based on internal and external cohorts. These findings indicate that changes in expression level of metabolic genes implicated in glycolysis can contribute to reconstruction of tumor-related microenvironment.
Collapse
|
43
|
Whately KM, Voronkova MA, Maskey A, Gandhi J, Loskutov J, Choi H, Yanardag S, Chen D, Wen S, Margaryan NV, Smolkin MB, Purazo ML, Hu G, Pugacheva EN. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene 2021; 40:5651-5664. [PMID: 34326467 PMCID: PMC9511212 DOI: 10.1038/s41388-021-01969-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic breast cancer causes most breast cancer-associated deaths, especially in triple negative breast cancers (TNBC). The metastatic drivers of TNBCs are still poorly understood, and effective treatment non-existent. Here we reveal that the presence of Aurora-A Kinase (AURKA) in the nucleus and metastatic dissemination are molecularly connected through HIF1 (Hypoxia-Inducible Factor-1) signaling. Nuclear AURKA activates transcription of "hypoxia-induced genes" under normoxic conditions (pseudohypoxia) and without upregulation of oxygen-sensitive HIF1A subunit. We uncover that AURKA preferentially binds to HIF1B and co-localizes with the HIF complex on DNA. The mass-spectrometry analysis of the AURKA complex further confirmed the presence of CBP and p300 along with other TFIIB/RNApol II components. Importantly, the expression of multiple HIF-dependent genes induced by nuclear AURKA (N-AURKA), including migration/invasion, survival/death, and stemness, promote early cancer dissemination. These results indicate that nuclear, but not cytoplasmic, AURKA is a novel driver of early metastasis. Analysis of clinical tumor specimens revealed a correlation between N-AURKA presence and decreased patient survival. Our results establish a mechanistic link between two critical pathways in cancer metastasis, identifying nuclear AURKA as a crucial upstream regulator of the HIF1 transcription complex and a target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Kristina M Whately
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Maria A Voronkova
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Abha Maskey
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jasleen Gandhi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Juergen Loskutov
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hyeran Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Sila Yanardag
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Sijin Wen
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Marc L Purazo
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Elena N Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA.
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
44
|
Wang J, Hu T, Wang Q, Chen R, Xie Y, Chang H, Cheng J. Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer. Cancer Lett 2021; 509:89-104. [PMID: 33848520 DOI: 10.1016/j.canlet.2021.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Aurora kinase A (AURKA) regulates apoptosis and autophagy in various diseases and has shown promising clinical effects. Nevertheless, the complex regulatory mechanism of AURKA and autophagy in non-small-cell lung cancer (NSCLC) radiosensitivity remains to be elucidated. Here, we showed that AURKA was upregulated in NSCLC cell lines and tissues and that AURKA overexpression was significantly related to a poor prognosis, tumor stage and lymph node metastasis in NSCLC. Interestingly, AURKA expression was significantly increased after 8Gy radiotherapy. Silencing of AURKA enhanced radiosensitivity and impaired migration and invasion in vivo and in vitro. Mechanistically, we determined that CXCL5, a member of the chemokine family, was a key downstream effector of AURKA, and the phenotype induced by AURKA silencing was partly due to CXCL5 inhibition. We further demonstrated that the AURKA-CXCL5 axis played an essential role in NSCLC autophagy and that the activation of cytotoxic autophagy attenuated the malignant biological behavior of NSCLC cells mediated by AURKA-CXCL5. In general, we revealed the role of the AURKA-CXCL5 axis and autophagy in regulating the sensitivity of NSCLC cells to radiotherapy, which may provide potential therapeutic targets and new strategies for combatting NSCLC resistance to radiotherapy.
Collapse
Affiliation(s)
- Jue Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renwang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haiyan Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Naso FD, Boi D, Ascanelli C, Pamfil G, Lindon C, Paiardini A, Guarguaglini G. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene 2021; 40:3917-3928. [PMID: 33981003 PMCID: PMC8195736 DOI: 10.1038/s41388-021-01766-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Georgiana Pamfil
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
46
|
O’Shaughnessy J, McIntyre K, Wilks S, Ma L, Block M, Andorsky D, Danso M, Locke T, Scales A, Wang Y. Efficacy and Safety of Weekly Paclitaxel With or Without Oral Alisertib in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e214103. [PMID: 33877311 PMCID: PMC8058641 DOI: 10.1001/jamanetworkopen.2021.4103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPORTANCE Elevated expression of AURKA adversely affects prognosis in estrogen receptor (ER)-positive and ERBB2 (formerly HER2)-negative and triple-negative breast cancer and is associated with resistance to taxanes. OBJECTIVE To compare paclitaxel alone vs paclitaxel plus alisertib in patients with ER-positive and ERBB2-negative or triple-negative metastatic breast cancer (MBC). DESIGN, SETTING, AND PARTICIPANTS In this randomized clinical trial conducted with the US Oncology Network, participants were randomized to intravenous (IV) paclitaxel 90 mg/m2 on days 1, 8, and 15 on a 28-day cycle or IV paclitaxel 60 mg/m2 on days 1, 8, and 15 plus oral alisertib 40 mg twice daily on days 1 to 3, 8 to 10, and 15 to 17 on a 28-day cycle. Stratification was by prior neo or adjuvant taxane and by line of metastatic therapy. Eligible patients were those who had undergone endocrine therapy, 0 or 1 prior chemotherapy regimens for MBC, more than 12 months treatment-free interval from neo or adjuvant taxane therapy, and with measurable or evaluable lytic bone-disease. Data were analyzed from March 2019 through May 2019. MAIN OUTCOMES AND MEASURES The main outcome was progression-free survival (PFS) with secondary end points of overall survival (OS), overall response rate, clinical benefit rate, safety, and analysis of archival breast cancer tissues for molecular markers associated with benefit from alisertib. RESULTS A total of 174 patients were randomized, including with 86 randomized to paclitaxel and 88 patients randomized to paclitaxel plus alisertib, and 169 patients received study treatment. The final cohort included 139 patients with a median (interquartile range [IQR]) age of 62 (27-84) years with ER-positive and ERBB2-negative MBC, with 70 randomized to paclitaxel and 69 randomized to paclitaxel plus alisertib. The TNBC cohort closed with only 35 patients enrolled due to slow accrual and were not included in efficacy analyses. The median (IQR) follow-up was 22 (10.6-25.1) months, and median (IQR) PFS was 10.2 (3.8-15.7) months with paclitaxel plus alisertib vs 7.1 (3.8-10.6) months with paclitaxel alone (HR, 0.56; 95% CI, 0.37-0.84; P = .005). Median (IQR) OS was 26.3 (12.4-37.2) months for patients who received paclitaxel plus alisertib vs 25.1 (11.0-31.4) months for paclitaxel alone (HR, 0.89; 95% CI, 0.58-1.38; P = .61). Grade 3 or 4 adverse events occurred in 56 patients (84.8%) receiving paclitaxel plus alisertib vs 34 patients (48.6%) receiving paclitaxel alone. The main grade 3 or 4 adverse events with paclitaxel plus alisertib vs paclitaxel alone were neutropenia (50 patients [59.5%] vs 14 patients [16.4%]), anemia (8 patients [9.5%] vs 1 patient [1.2%]), diarrhea (9 patients [10.7%] vs 0 patients), and stomatitis or oral mucositis (13 patients [15.5%] vs 0 patients). One patient receiving paclitaxel plus alisertib died of sepsis. CONCLUSIONS AND RELEVANCE This randomized clinical trial found that the addition of oral alisertib to a reduced dose of weekly paclitaxel significantly improved PFS compared with paclitaxel alone, and toxic effects with paclitaxel plus alisertib were manageable with alisertib dose reduction. These data support further evaluation of alisertib in patients with ER-positive, ERBB2-negative MBC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02187991.
Collapse
Affiliation(s)
- Joyce O’Shaughnessy
- Baylor University Medical Center, Dallas, Texas
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | | | - Sharon Wilks
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | - Ling Ma
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Lakewood, Colorado
| | - Margaret Block
- US Oncology, Houston, Texas
- Nebraska Cancer Specialists, Omaha
| | - David Andorsky
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Boulder, Colorado
| | - Michael Danso
- US Oncology, Houston, Texas
- Virginia Oncology Associates, Norfolk
| | | | | | | |
Collapse
|
47
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
48
|
Kim HJ, Kim J. OTUD6A Is an Aurora Kinase A-Specific Deubiquitinase. Int J Mol Sci 2021; 22:ijms22041936. [PMID: 33669244 PMCID: PMC7919836 DOI: 10.3390/ijms22041936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
Aurora kinases are serine/threonine kinases required for cell proliferation and are overexpressed in many human cancers. Targeting Aurora kinases has been a therapeutic strategy in cancer treatment. Here, we attempted to identify a deubiquitinase (DUB) that regulates Aurora kinase A (Aurora-A) protein stability and/or kinase activity as a potential cancer therapeutic target. Through pull-down assays with the human DUB library, we identified OTUD6A as an Aurora-A-specific DUB. OTUD6A interacts with Aurora-A through OTU and kinase domains, respectively, and deubiquitinates Aurora-A. Notably, OTUD6A promotes the protein half-life of Aurora-A and activates Aurora-A by increasing phosphorylation at threonine 288 of Aurora-A. From qPCR screening, we identified and validated that the cancer gene CKS2 encoding Cyclin-dependent kinases regulatory subunit 2 is the most upregulated cell cycle regulator when OTUD6A is overexpressed. The results suggest that OTUD6A may serve as a therapeutic target in human cancers.
Collapse
|
49
|
Ghannoum S, Leoncio Netto W, Fantini D, Ragan-Kelley B, Parizadeh A, Jonasson E, Ståhlberg A, Farhan H, Köhn-Luque A. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics. Int J Mol Sci 2021; 22:ijms22031399. [PMID: 33573289 PMCID: PMC7866810 DOI: 10.3390/ijms22031399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Damiano Fantini
- Department of Urology, Northwestern University, Chicago, IL 60611, USA;
| | | | - Amirabbas Parizadeh
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390 Gothenburg, Sweden
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| |
Collapse
|
50
|
Su WL, Chuang SC, Wang YC, Chen LA, Huang JW, Chang WT, Wang SN, Lee KT, Lin CS, Kuo KK. Expression of FOXM1 and Aurora-A predicts prognosis and sorafenib efficacy in patients with hepatocellular carcinoma. Cancer Biomark 2021; 28:341-350. [PMID: 32390596 PMCID: PMC7458516 DOI: 10.3233/cbm-190507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Effective prognostic biomarkers and powerful target-therapeutic drugs are needed for improving the treatment of Hepatocellular carcinoma (HCC). OBJECTIVE: This study aimed to evaluate the expression of FOXM1 and Aurora-A and their prognostic value in HCC. METHODS: We determined the differentially expressed genes signature in HCC using the Gene Set Enrichment Analysis (GSEA), and then evaluated the expression of FOXM1 and Aurora-A in TCGA and KMUH cohort. Associations between co-expression of FOXM1 and Aurora-A and clinical variables were calculated. Overall survival (OS) and recurrence-free survival (RFS) were estimated with different FOXM1 and Aurora-A expression status. RESULTS: FOXM1-related gene sets were mostly associated with cell cycle regulation in HCC tissues. We found a positive correlation between the expression of FOXM1 and Aurora-A. Overexpression of FOXM1 and Aurora-A was associated with larger tumor size, advanced stage, higher grade, and double-positive for HBV and HCV. The coordinated overexpression of FOXM1 and Aurora-A was the most significant independent prognostic factor for OS and RFS. Furthermore, the concomitant high expression of FOXM1 and Aurora-A predicted the worst OS of sorafenib-treated patients with HCC. CONCLUSIONS: The co-expression of FOXM1 and Aurora-A could be a reliable biomarker to predict the sorafenib response and prognosis of HCC patients.
Collapse
Affiliation(s)
- Wen-Lung Su
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Shih-Chang Chuang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chu Wang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-An Chen
- Department of Surgery, Health and Welfare Ministry Pingtung Hospital, Pingtung, Taiwan
| | - Jian-Wei Huang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - King-Teh Lee
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Kai Kuo
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|