1
|
Xu DG, Tan J. Interplay of genetic and clinical factors in cancer-associated thrombosis: Deciphering the prothrombotic landscape of colorectal cancer. World J Gastroenterol 2025; 31:103901. [PMID: 40248375 PMCID: PMC12001197 DOI: 10.3748/wjg.v31.i14.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, exhibits a notable association with venous thromboembolism (VTE), significantly impacting patient morbidity and mortality. We delve into the complex pathogenesis of cancer-associated thrombosis (CAT) in CRC, highlighting the interplay of clinical risk factors and tumor-specific mechanisms. Our comprehensive review synthesizes the current understanding of CRC's pro-thrombotic tendencies, examining both general clinical factors (e.g., age, gender, obesity, prior VTE history) and tumor-specific aspects (e.g., tumor location, stage, targeted therapies). Key findings illustrate how CRC cells themselves actively contribute to coagulation cascade activation through various procoagulant elements such as tissue factor, cancer procoagulant, and extracellular vesicles. We also explore how CRC influences host cells to adopt a procoagulant phenotype, thereby exacerbating thrombotic risks. This review underscores the role of genetic mutations in CRC (e.g., KRAS, p53) in modulating coagulation-related protein expression and thrombosis risks. An in-depth understanding of the genetic landscape specific to CRC subtypes is essential for developing targeted anticoagulation strategies and could significantly advance thrombosis prevention while improving the overall management of patients with CRC. This highlights the urgent need for precision in addressing CAT within clinical settings.
Collapse
Affiliation(s)
- Duo-Gang Xu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| | - Jing Tan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| |
Collapse
|
2
|
Mauro F, Bruni S, Dupont A, Schey A, Badalini A, Inurrigarro G, Figurelli S, Barchuk S, Vecchia DLD, Deza EG, Rivenson Y, Nava A, Fernandez E, Urtreger A, Russo RC, Mercogliano MF, Schillaci R. Mucin 4 expression is associated with metastasis in triple-negative breast cancer and can be tackled by soluble TNF blockade, improving immunotherapy outcome. Transl Oncol 2025; 54:102325. [PMID: 39987883 PMCID: PMC11904514 DOI: 10.1016/j.tranon.2025.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) has the worst prognosis among breast cancers. Immunotherapy is a therapeutic option, but there is no biomarker to guide promising combination treatments. Mucin 4 (MUC4) favors metastasis in preclinical cancer models. This study evaluates the efficacy of soluble TNF (sTNF) neutralization to tackle MUC4 expression preventing metastasis in combination with immunotherapy, and the potential use of MUC4 as a prognostic and predictive biomarker in TNBC patients. EXPERIMENTAL DESIGN To explore TNF modulation of MUC4 expression, a panel of TNBC cell lines was used. To assess the effect of sTNF blockade with a dominant negative molecule in combination with anti-PD-1 antibody on lung metastasis and overall survival (OS), 4T1 and LMM3 tumors were used. MUC4, PD-L1 and Ki-67 expression was evaluated by immunohistochemistry, and tumor infiltrating lymphocytes (TILs) were assessed by H&E staining, in a cohort of 49 early TNBC patients treated with chemotherapy. RESULTS TNF neutralization reduces MUC4 expression in TNBC cell lines. Only the combination of sTNF blockade with anti-PD-1 antibody prevents metastasis and increases mice survival. In early TNBC patients MUC4 expression is inversely associated with TILs presence and PD-L1 and Ki-67 expression. Finally, MUC4 is associated with metastasis and is an independent biomarker of poor OS. CONCLUSIONS We proved the existence of a sTNF/MUC4 axis in TNBC that can be actionable by sTNF neutralization, preventing metastasis. We suggest that MUC4 is a suitable biomarker to guide immunotherapy in TNBC, together with the administration of sTNF blocking drugs to improve outcome.
Collapse
Affiliation(s)
- Florencia Mauro
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Sofia Bruni
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Agustina Dupont
- Servicio de Patología Sanatorio Mater Dei, Buenos Aires, Argentina; Servicio de Patología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Aldana Schey
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Ángel H. Roffo, Área de Investigación, Buenos Aires, Argentina
| | | | | | - Silvina Figurelli
- Servicio de Patología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Sabrina Barchuk
- Servicio de Ginecología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | | | | | - Yanina Rivenson
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Agustin Nava
- DataLab, Fundación Para el Progreso de la Medicina - CONICET Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) Universidad Nacional de Córdoba, Argentina
| | - Elmer Fernandez
- DataLab, Fundación Para el Progreso de la Medicina - CONICET Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) Universidad Nacional de Córdoba, Argentina
| | - Alejandro Urtreger
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Ángel H. Roffo, Área de Investigación, Buenos Aires, Argentina
| | - Rosalia Cordo Russo
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - María Florencia Mercogliano
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina.
| |
Collapse
|
3
|
Yang J, Xu P, Zhang G, Wang D, Ye B, Wu L. Advances and potentials in platelet-circulating tumor cell crosstalk. Am J Cancer Res 2025; 15:407-425. [PMID: 40084364 PMCID: PMC11897628 DOI: 10.62347/jayk5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor metastasis leads to circulating tumor cells (CTCs) that separate from primary malignant tumors and enter blood circulation. CTCs survive and engage with other cells to cope with obstacles, including shear stress, disease, immune attacks, and drugs. Platelets are the best partners for CTCs. Platelets provide a good protective layer for CTCs to ensure that are not monitored and cleared by the native immune system, and protected from shear stress and survive better. Here, we review current reports on platelet-CTC interaction and the clinical relevance of their combination and summarize new techniques for CTC capture and treatment based on platelet-CTC interaction. We discuss current data, identify its shortcomings, and suggest future developments.
Collapse
Affiliation(s)
- Jie Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| |
Collapse
|
4
|
Zeng H, Yang X, Liao K, Zuo X, Liang L, He D, Ju R, Wang B, Yuan J. Circadian disruption reduces MUC4 expression via the clock molecule BMAL1 during dry eye development. Exp Mol Med 2024; 56:1655-1666. [PMID: 38956298 PMCID: PMC11297157 DOI: 10.1038/s12276-024-01269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian disruption, as a result of shiftwork, jet lag, and other lifestyle factors, is a common public health problem associated with a wide range of diseases, such as metabolic disorders, neurodegenerative diseases, and cancer. In the present study, we established a chronic jet lag model using a time shift method every 3 days and assessed the effects of circadian disruption on ocular surface homeostasis. Our results indicated that jet lag increased corneal epithelial defects, cell apoptosis, and proinflammatory cytokine expression. However, the volume of tear secretion and the number of conjunctival goblet cells did not significantly change after 30 days of jet lag. Moreover, further analysis of the pathogenic mechanism using RNA sequencing revealed that jet lag caused corneal transmembrane mucin deficiency, specifically MUC4 deficiency. The crucial role of MUC4 in pathogenic progression was demonstrated by the protection of corneal epithelial cells and the inhibition of inflammatory activation following MUC4 replenishment. Unexpectedly, genetic ablation of BMAL1 in mice caused MUC4 deficiency and dry eye disease. The underlying mechanism was revealed in cultured human corneal epithelial cells in vitro, where BMAL1 silencing reduced MUC4 expression, and BMAL1 overexpression increased MUC4 expression. Furthermore, melatonin, a circadian rhythm restorer, had a therapeutic effect on jet lag-induced dry eye by restoring the expression of BMAL1, which upregulated MUC4. Thus, we generated a novel dry eye mouse model induced by circadian disruption, elucidated the underlying mechanism, and identified a potential clinical treatment.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Kai Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Yu S, Xie J, Guo Q, Yan X, Wang Y, Leng T, Li L, Zhou J, Zhang W, Su X. Clostridium butyricum isolated from giant panda can attenuate dextran sodium sulfate-induced colitis in mice. Front Microbiol 2024; 15:1361945. [PMID: 38646621 PMCID: PMC11027743 DOI: 10.3389/fmicb.2024.1361945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.
Collapse
Affiliation(s)
- Shuran Yu
- College of Life Science, Southwest Forestry University, Kunming, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qiang Guo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Xia Yan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yuxiang Wang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Tangjian Leng
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jielong Zhou
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Wenping Zhang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| |
Collapse
|
6
|
Gao F, Liu F, Wang J, Bi J, Zhai L, Li D. Molecular probes targeting HER2 PET/CT and their application in advanced breast cancer. J Cancer Res Clin Oncol 2024; 150:118. [PMID: 38466436 PMCID: PMC10927773 DOI: 10.1007/s00432-023-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.
Collapse
Affiliation(s)
- Fang Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Fengxu Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Anesthesia, Armed Police Corps Hospital in Shanxi Province, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Junfang Bi
- Department of Combined Traditional Chinese Medicine and West Medicine, Traditional Chinese Medicine Hospital of Shijiazhuang City, 233 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Luoping Zhai
- Department of Nuclear Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Dong Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
8
|
Khan N, Rehman B, Almanaa TN, Aljahdali SM, Waheed Y, Ullah A, Asfandayar M, Al-Harbi AI, Naz T, Arshad M, Sanami S, Ahmad S. A novel therapeutic approach to prevent Helicobacter pylori induced gastric cancer using networking biology, molecular docking, and simulation approaches. J Biomol Struct Dyn 2023; 42:13876-13889. [PMID: 37962871 DOI: 10.1080/07391102.2023.2279276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadaa, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Asfandayar
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Muhammad Arshad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
9
|
Liu J, Xing R, Shao J, Jiao S. Relationship Between MUC4 Variants and Metastatic Recurrence in Colorectal Cancer. Int J Gen Med 2023; 16:5077-5087. [PMID: 37942474 PMCID: PMC10629456 DOI: 10.2147/ijgm.s437957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Background Recurrent metastasis after radical resection in patients of colorectal cancer (CRC) is a great challenge for the world, in which genomic alterations play a major role in tumorigenesis. MUC4 plays a significant role in recurrence and metastasis in tumor. This study is aimed at exploring the association between MUC4 variants and metastatic recurrence of CRC. Methods Forty-seven patients relapsing with metastasis and 37 patients remaining disease-free postoperatively were enrolled. Next-generation sequencing (NGS) detected mutations. Mutation and mRNA expression data were downloaded from TCGA and cBioPortal databases. We analyzed the relationship between MUC4 variants and clinical parameters, as well as possible molecular mechanisms. Results MUC4 variants rs56359992 and rs781124621 were associated with survival in patients with CRC. Rs56359992 was more common in patients with metastatic recurrence. MAPK pathway, PI3K-Akt pathway, JAK-STAT pathway, cell cycle, WNT pathway and mTOR pathway were found to correlate with MUC4 mutation by GO/KEGG analysis, as well as resting and activated mast cell related to MUC4 mutation by CIBERSORT analysis. Conclusion Genetic variants of MUC4 with CRC may constitute a molecular signature of metastatic recurrence. MUC4 may become a new target for the treatment of CRC recurrence.
Collapse
Affiliation(s)
- Jieqiong Liu
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Rongge Xing
- Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China
| | - Jiakang Shao
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Shunchang Jiao
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
- Department of Oncology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
10
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
11
|
Chen YY, Liu H, Li LY, Li LJ, Wang HQ, Song J, Wu YH, Guan J, Xing LM, Wang GJ, Qu W, Liu H, Wang XM, Shao ZH, Fu R. [Role and clinical significance of MUC4 gene mutations in thrombotic events in patients with classic paroxysmal nocturnal hemoglobinuria]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:561-566. [PMID: 37749036 PMCID: PMC10509626 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 09/27/2023]
Abstract
Objective: This study aimed to investigate the role and clinical significance of MUC4 gene mutations in thrombotic events in patients with classic paroxysmal nocturnal hemoglobinuria (PNH) patients. Methods: A retrospective analysis was conducted on the clinical data and gene sequencing results of 45 patients with classic PNH admitted to the Department of Hematology, Tianjin Medical University General Hospital, from June 2018 to February 2022. MUC4 gene mutations in patients with classic PNH were summarized, and the risk factors for thrombotic events in these patients were analyzed. Additionally, the effects of MUC4 gene mutations on the cumulative incidence and survival of thrombotic events in patients with classic PNH were determined. Results: The detection rate of MUC4 gene mutations in patients with classic PNH who experienced thrombotic events (thrombotic group) was 68.8% (11/16), which was significantly higher than that in the non-thrombotic group [10.3% (3/29) ] (P<0.001). All mutations occurred in exon 2. MUC4 mutation (OR=20.815, P=0.010) was identified as an independent risk factor for thrombotic events in patients with classic PNH. The cumulative incidence of thrombotic events was 78.6% (11/14) in the MUC4 gene mutation group (mutation group) and 16.1% (5/31) in the non-mutation group, showing a statistically significant difference between the two groups (P<0.001). Survival analysis showed a lower overall survival (OS) rate in the thrombotic group compared with that in the non-thrombotic group [ (34.4±25.2) % vs. (62.7±19.3) % ] (P=0.045). The OS rate of patients was (41.7±29.9) % in the mutation group and (59.1±18.3) % in the non-mutation group (P=0.487) . Conclusion: MUC4 gene mutations are associated with an increased incidence of thrombotic events in classic PNH patients, highlighting their role as independent risk factors for thrombosis in this population. These mutations can be considered a novel predictive factor that aids in evaluating the risk of thrombosis in patients with classic PNH.
Collapse
Affiliation(s)
- Y Y Chen
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - H Liu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - L Y Li
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - L J Li
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - H Q Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - J Song
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Y H Wu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - J Guan
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - L M Xing
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - G J Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - W Qu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - H Liu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - X M Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Z H Shao
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - R Fu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Liu CL, Huang WC, Cheng SP, Chen MJ, Lin CH, Chang SC, Chang YC. Characterization of Mammary Tumors Arising from MMTV-PyVT Transgenic Mice. Curr Issues Mol Biol 2023; 45:4518-4528. [PMID: 37367035 PMCID: PMC10297447 DOI: 10.3390/cimb45060286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Among genetically engineered mouse models of breast cancer, MMTV-PyVT is a mouse strain in which the oncogenic polyoma virus middle T antigen is driven by the mouse mammary tumor virus promoter. The aim of the present study was to perform morphologic and genetic analyses of mammary tumors arising from MMTV-PyVT mice. To this end, mammary tumors were obtained at 6, 9, 12, and 16 weeks of age for histology and whole-mount analyses. We conducted whole-exome sequencing to identify constitutional and tumor-specific mutations, and genetic variants were identified using the GRCm38/mm10 mouse reference genome. Using hematoxylin and eosin analysis and whole-mount carmine alum staining, we demonstrated the progressive proliferation and invasion of mammary tumors. Frameshift insertions/deletions (indels) were noted in the Muc4. Mammary tumors showed small indels and nonsynonymous single-nucleotide variants but no somatic structural alterations or copy number variations. In summary, we validated MMTV-PyVT transgenic mice as a multistage model for mammary carcinoma development and progression. Our characterization may be used as a reference for guidance in future research.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-H.L.); (S.-C.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-H.L.); (S.-C.C.)
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| |
Collapse
|
13
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
14
|
VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR, Carraway KL. Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res 2023; 25:52. [PMID: 37147680 PMCID: PMC10163820 DOI: 10.1186/s13058-023-01651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis. METHODS Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model. RESULTS We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics. CONCLUSIONS We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
15
|
Gehlen J, Stundl A, Debiec R, Fontana F, Krane M, Sharipova D, Nelson CP, Al-Kassou B, Giel AS, Sinning JM, Bruenger CMH, Zelck CF, Koebbe LL, Braund PS, Webb TR, Hetherington S, Ensminger S, Fujita B, Mohamed SA, Shrestha M, Krueger H, Siepe M, Kari FA, Nordbeck P, Buravezky L, Kelm M, Veulemans V, Adam M, Baldus S, Laugwitz KL, Haas Y, Karck M, Mehlhorn U, Conzelmann LO, Breitenbach I, Lebherz C, Urbanski P, Kim WK, Kandels J, Ellinghaus D, Nowak-Goettl U, Hoffmann P, Wirth F, Doppler S, Lahm H, Dreßen M, von Scheidt M, Knoll K, Kessler T, Hengstenberg C, Schunkert H, Nickenig G, Nöthen MM, Bolger AP, Abdelilah-Seyfried S, Samani NJ, Erdmann J, Trenkwalder T, Schumacher J. Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovasc Res 2023; 119:857-866. [PMID: 35727948 PMCID: PMC10153415 DOI: 10.1093/cvr/cvac099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect. METHODS AND RESULTS We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29. The single nucleotide polymorphism rs2550262 was genome-wide significant BAV associated (P = 3.49 × 10-08) and was replicated in an independent case-control sample. The risk locus encodes a deleterious missense variant in MUC4 (p.Ala4821Ser), a gene that is involved in epithelial-to-mesenchymal transformation. Mechanistical studies in zebrafish revealed that loss of Muc4 led to a delay in cardiac valvular development suggesting that loss of MUC4 may also play a role in aortic valve malformation. The GWAS also confirmed previously reported BAV risk loci at PALMD (P = 3.97 × 10-16), GATA4 (P = 1.61 × 10-09), and TEX41 (P = 7.68 × 10-04). In addition, the genetic BAV architecture was examined beyond the single-marker level revealing that a substantial fraction of BAV heritability is polygenic and ∼20% of the observed heritability can be explained by our GWAS data. Furthermore, we used the largest human single-cell atlas for foetal gene expression and show that the transcriptome profile in endothelial cells is a major source contributing to BAV pathology. CONCLUSION Our study provides a deeper understanding of the genetic risk architecture of BAV formation on the single marker and polygenic level.
Collapse
Affiliation(s)
- Jan Gehlen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Anja Stundl
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Markus Krane
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Ann-Sophie Giel
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Jan-Malte Sinning
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Carolin F Zelck
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Laura L Koebbe
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Thomas R Webb
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Buntaro Fujita
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Malakh Shrestha
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Heike Krueger
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Siepe
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Fabian Alexander Kari
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Peter Nordbeck
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Buravezky
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Verena Veulemans
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matti Adam
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Yannick Haas
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Karck
- Department of Cardiothoracic Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Mehlhorn
- Department of Cardiothoracic Surgery, Helios Klinik Karlsruhe, Karlsruhe, Germany
| | | | - Ingo Breitenbach
- Department of Cardiothoracic Surgery and Vascular Surgery, Clinic of Braunschweig, Braunschweig, Germany
| | - Corinna Lebherz
- Department of Medicine I, Cardiology/Angiology/Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Paul Urbanski
- Department of Cardiovascular Surgery, Cardiovascular Clinic, Rhön-Klinikum Campus Bad Neustadt, Neustadt, Germany
| | - Won-Keun Kim
- Department of Cardiology, Heart Center, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Joscha Kandels
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Nowak-Goettl
- Department of Clinical Chemistry, Thrombosis and Hemostasis Unit, University Hospital of Kiel and Lübeck, Kiel, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Felix Wirth
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz von Scheidt
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Katharina Knoll
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Thorsten Kessler
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Heribert Schunkert
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Aidan P Bolger
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jeanette Erdmann
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University Heart Centre Lübeck, University of Lübeck, Lübeck, Germany
| | - Teresa Trenkwalder
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Dhanisha SS, Guruvayoorappan C. Pathological Implications of Mucin Signaling in Metastasis. Curr Cancer Drug Targets 2023; 23:585-602. [PMID: 36941808 DOI: 10.2174/1568009623666230320121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 03/23/2023]
Abstract
The dynamic mucosal layer provides a selective protective barrier for the epithelial cells lining the body cavities. Diverse human malignancies exploit their intrinsic role to protect and repair epithelia for promoting growth and survival. Aberrant expression of mucin has been known to be associated with poor prognosis of many cancers. However, the emergence of new paradigms in the study of metastasis recognizes the involvement of MUC1, MUC4, MUC5AC, MUC5B, and MUC16 during metastasis initiation and progression. Hence mucins can be used as an attractive target in future diagnostic and therapeutic strategies. In this review, we discuss in detail about mucin family and its domains and the role of different mucins in regulating cancer progression and metastasis. In addition, we briefly discuss insights into mucins as a therapeutic agent.
Collapse
Affiliation(s)
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
17
|
Pollini T, Adsay V, Capurso G, Dal Molin M, Esposito I, Hruban R, Luchini C, Maggino L, Matthaei H, Marchegiani G, Scarpa A, Wood LD, Bassi C, Salvia R, Mino-Kenudson M, Maker AV. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms. Lancet Gastroenterol Hepatol 2022; 7:1141-1150. [PMID: 36057265 PMCID: PMC9844533 DOI: 10.1016/s2468-1253(22)00235-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention because they represent one of the only radiographically identifiable precursors of invasive pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the immune system in the progression of IPMNs is unclear, but understanding its role could reveal the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression or treat invasive disease. The available evidence supports a shift in the immune composition of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its microbiome.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA; Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Volcan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Gabriele Capurso
- Department of Pancreatobiliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele, Milan, Italy
| | - Marco Dal Molin
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, USA
| | - Irene Esposito
- Department of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ralph Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura Maggino
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
The diagnostic and prognostic potential of the EGFR/MUC4/MMP9 axis in glioma patients. Sci Rep 2022; 12:19868. [PMID: 36400876 PMCID: PMC9674618 DOI: 10.1038/s41598-022-24099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is the most aggressive form of brain cancer, presenting poor prognosis despite current advances in treatment. There is therefore an urgent need for novel biomarkers and therapeutic targets. Interactions between mucin 4 (MUC4) and the epidermal growth factor receptor (EGFR) are involved in carcinogenesis, and may lead to matrix metalloproteinase-9 (MMP9) overexpression, exacerbating cancer cell invasiveness. In this study, the role of MUC4, MMP9, and EGFR in the progression and clinical outcome of glioma patients was investigated. Immunohistochemistry (IHC) and immunofluorescence (IF) in fixed tissue samples of glioma patients were used to evaluate the expression and localization of EGFR, MMP9, and MUC4. Kaplan-Meier survival analysis was also performed to test the prognostic utility of the proteins for glioma patients. The protein levels were assessed with enzyme-linked immunosorbent assay (ELISA) in serum of glioma patients, to further investigate their potential as non-invasive serum biomarkers. We demonstrated that MUC4 and MMP9 are both significantly upregulated during glioma progression. Moreover, MUC4 is co-expressed with MMP9 and EGFR in the proliferative microvasculature of glioblastoma, suggesting a potential role for MUC4 in microvascular proliferation and angiogenesis. The combined high expression of MUC4/MMP9, and MUC4/MMP9/EGFR was associated with poor overall survival (OS). Finally, MMP9 mean protein level was significantly higher in the serum of glioblastoma compared with grade III glioma patients, whereas MUC4 mean protein level was minimally elevated in higher glioma grades (III and IV) compared with control. Our results suggest that MUC4, along with MMP9, might account for glioblastoma progression, representing potential therapeutic targets, and suggesting the 'MUC4/MMP9/EGFR axis' may play a vital role in glioblastoma diagnostics.
Collapse
|
19
|
Zhang Y, Sun L, Lei C, Li W, Han J, Zhang J, Zhang Y. A Sweet Warning: Mucin-Type O-Glycans in Cancer. Cells 2022; 11:cells11223666. [PMID: 36429094 PMCID: PMC9688771 DOI: 10.3390/cells11223666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosylation is a common post-translational modification process of proteins. Mucin-type O-glycosylation is an O-glycosylation that starts from protein serine/threonine residues. Normally, it is involved in the normal development and differentiation of cells and tissues, abnormal glycosylation can lead to a variety of diseases, especially cancer. This paper reviews the normal biosynthesis of mucin-type O-glycans and their role in the maintenance of body health, followed by the mechanisms of abnormal mucin-type O-glycosylation in the development of diseases, especially tumors, including the effects of Tn, STn, T antigen, and different glycosyltransferases, with special emphasis on their role in the development of gastric cancer. Finally, tumor immunotherapy targeting mucin-type O-glycans was discussed.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| | - Changda Lei
- Department of Gastroenterology, Ninth Hospital of Xi‘an, Xi’an 710054, China
| | - Wenyan Li
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jiaqi Han
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| |
Collapse
|
20
|
Rao Y, Zhu J, Zheng H, Ren Y, Ji T. Cell origin and genome profile difference of penoscrotum invasive extramammary Paget disease compared with its in situ counterpart. Front Oncol 2022; 12:972047. [PMID: 36091120 PMCID: PMC9451029 DOI: 10.3389/fonc.2022.972047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Penoscrotum extramammary Paget disease (pEMPD) is a rare cutaneous carcinoma with an unknown cell origin. pEMPD always presents as a tumor in situ with an indolent process, whereas some progress into invasive forms with more aggressive behavior. The in situ and invasive cases display different morphologies and biological behavior, and thus far, a relationship between these two components has not been demonstrated. Immunohistochemistry was used to disclose the immunotype of pEMPD, and the results revealed that invasive/in situ pEMPD possessed with some identical immunophenotypes such as CK7, P63, and CK10, which inferred the clonal relatedness. The variable expressions of GCDFP-15 and carcino embryonic antigen hinted that tumor cell origin might be an epidermal sweat gland in epiderma. In our cohort, invasive pEMPD presented increased expression of androgen receptor and decreased MUC5CA expression, and these two changes might bring to the shift of invasive phenotype. To better understanding the relationship between these distinct tumor forms, we performed whole exome sequencing testing to evaluate overlapping genomic alterations of six paired invasive/in situ pEMPDs. The results showed that missense mutation was the predominant mutation type, and C>T transition accounted for 65.1% in all SNP mutation. Among the top 20 differential genes obtained from the six paired invasive/in situ pEMPD analysis, MUC4 (one missense, one in frame del, and one multi-hit), AHNAK2 (two missense and one multi-hit), DOT1L (two missense and one multi-hit), and FRG1 (two missense and one-multi hit) mutations were most enriched in invasive pEMPDs, which postulated that these genes may play roles in the disease progression.
Collapse
Affiliation(s)
- Yamin Rao
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of the Chinese People’s Liberation Army (PLA), Wuhan, China
- *Correspondence: Tianhai Ji, ; Yong Ren,
| | - Tianhai Ji
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tianhai Ji, ; Yong Ren,
| |
Collapse
|
21
|
Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers (Basel) 2022; 14:cancers14163996. [PMID: 36010990 PMCID: PMC9406173 DOI: 10.3390/cancers14163996] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women in the United States. Around 15% of all breast cancers overexpress the HER2 protein. These HER2-positive tumors have been associated with aggressive behavior if left untreated. Drugs targeting HER2 have greatly improved the outcomes of patients with HER2-positive tumors in the last decades. Despite these improvements, many patients with early breast cancer have recurrences, and many with advanced disease experience progression of disease on HER2-targeted drugs, suggesting that patients can develop resistance to these medications. In this review, we summarize several mechanisms of resistance to HER2-targeted treatments. Understanding how the tumors grow despite these therapies could allow us to develop better treatment strategies to continue to improve patient outcomes. Abstract Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for around 15% of all breast cancers and was historically associated with a worse prognosis compared with other breast cancer subtypes. With the development of HER2-directed therapies, the outcomes of patients with HER2-positive disease have improved dramatically; however, many patients present with de novo or acquired resistance to these therapies, which leads to early recurrences or progression of advanced disease. In this narrative review, we discuss the mechanisms of resistance to different HER2-targeted therapies, including monoclonal antibodies, small tyrosine kinase inhibitors, and antibody-drug conjugates. We review mechanisms such as impaired binding to HER2, incomplete receptor inhibition, increased signaling from other receptors, cross-talk with estrogen receptors, and PIK3CA pathway activation. We also discuss the role of the tumor immune microenvironment and HER2-heterogeneity, and the unique mechanisms of resistance to novel antibody-drug conjugates. A better understanding of these mechanisms and the potential strategies to overcome them will allow us to continue improving outcomes for patients with breast cancer.
Collapse
|
22
|
Free SR, Carraway KL. Platelets in Hematogenous Breast Cancer Metastasis: Partners in Crime. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-platelets] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
24
|
Breast Cancer Prognosis Prediction and Immune Pathway Molecular Analysis Based on Mitochondria-Related Genes. Genet Res (Camb) 2022; 2022:2249909. [PMID: 35707265 PMCID: PMC9174003 DOI: 10.1155/2022/2249909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.
Collapse
|
25
|
Tian Y, Wang J, Wen Q, Gao A, Huang A, Li R, Zhang Y, Su G, Sun Y. The Significance of Tumor Microenvironment Score for Breast Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5673810. [PMID: 35528180 PMCID: PMC9071896 DOI: 10.1155/2022/5673810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022]
Abstract
Purpose This study was designed to clarify the prognostic value of tumor microenvironment score and abnormal genomic alterations in TME for breast cancer patients. Method The TCGA-BRCA data were downloaded from TCGA and analyzed with R software. The results from analyses were further validated using the dataset from GSE96058, GSE124647, and GSE25066. Results After analyzing the TCGA data and verifying it with the GEO data, we developed a TMEscore model based on the TME infiltration pattern and validated it in 3273 breast cancer patients. The results suggested that our TMEscore model has high prognostic value. TME features with the TMEscore model can help to predict breast cancer patients' response to immunotherapy and provide new strategies for breast cancer treatment. Signature 24 was first found in breast cancer. In focal SCNAs, a total of 95 amplified genes and 169 deletion genes in the TMEscore high group were found to be significantly related to the prognosis of breast cancer patients, while 61 amplified genes and 174 deletion genes in the TMEscore low group were identified. LRRC48, CFAP69, and cg25726128 were first discovered and reported to be related to the survival of breast cancer patients. We identified specific mutation signatures that correlate with TMEscore and prognosis. Conclusion TMEscore model has high predictive value regarding prognosis and patients' response to immunotherapy. Signature 24 was first found in breast cancer. Specific mutation signatures that correlate with TMEscore and prognosis might be used for providing additional indicators for disease evaluation.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- Somatic Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250023, China
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Qing Wen
- Jinan Clinical Research Center of Shandong First Medical University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
| | - Alan Huang
- Department of Oncology, Jinan Central Hospital, The Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250013, China
| | - Ran Li
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Ye Zhang
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Guohai Su
- Department of Cardiovascular Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- Phase I Clinical Trial Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250012, China
| |
Collapse
|
26
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
27
|
Berg AL, Rowson-Hodel A, Hu M, Keeling M, Wu H, VanderVorst K, Chen JJ, Hatakeyama J, Jilek J, Dreyer CA, Wheeler MR, Yu AM, Li Y, Carraway KL. The Cationic Amphiphilic Drug Hexamethylene Amiloride Eradicates Bulk Breast Cancer Cells and Therapy-Resistant Subpopulations with Similar Efficiencies. Cancers (Basel) 2022; 14:cancers14040949. [PMID: 35205696 PMCID: PMC8869814 DOI: 10.3390/cancers14040949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/07/2022] Open
Abstract
The resistance of cancer cell subpopulations, including cancer stem cell (CSC) populations, to apoptosis-inducing chemotherapeutic agents is a key barrier to improved outcomes for cancer patients. The cationic amphiphilic drug hexamethylene amiloride (HMA) has been previously demonstrated to efficiently kill bulk breast cancer cells independent of tumor subtype or species but acts poorly toward non-transformed cells derived from multiple tissues. Here, we demonstrate that HMA is similarly cytotoxic toward breast CSC-related subpopulations that are resistant to conventional chemotherapeutic agents, but poorly cytotoxic toward normal mammary stem cells. HMA inhibits the sphere-forming capacity of FACS-sorted human and mouse mammary CSC-related cells in vitro, specifically kills tumor but not normal mammary organoids ex vivo, and inhibits metastatic outgrowth in vivo, consistent with CSC suppression. Moreover, HMA inhibits viability and sphere formation by lung, colon, pancreatic, brain, liver, prostate, and bladder tumor cell lines, suggesting that its effects may be applicable to multiple malignancies. Our observations expose a key vulnerability intrinsic to cancer stem cells and point to novel strategies for the exploitation of cationic amphiphilic drugs in cancer treatment.
Collapse
Affiliation(s)
- Anastasia L. Berg
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ashley Rowson-Hodel
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Michael Keeling
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hao Wu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jenny J. Chen
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph Jilek
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Courtney A. Dreyer
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Madelyn R. Wheeler
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
28
|
Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nat Genet 2022; 54:1078-1089. [PMID: 35879412 PMCID: PMC9355872 DOI: 10.1038/s41588-022-01131-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.
Collapse
|
29
|
Dreyer CA, VanderVorst K, Free S, Rowson-Hodel A, Carraway KL. The role of membrane mucin MUC4 in breast cancer metastasis. Endocr Relat Cancer 2021; 29:R17-R32. [PMID: 34726614 PMCID: PMC8697635 DOI: 10.1530/erc-21-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022]
Abstract
A major barrier to the emergence of distant metastases is the survival of circulating tumor cells (CTCs) within the vasculature. Lethal stressors, including shear forces from blood flow, anoikis arising from cellular detachment, and exposure to natural killer cells, combine to subvert the ability of primary tumor cells to survive and ultimately seed distant lesions. Further attenuation of this rate-limiting process via therapeutic intervention offers a very attractive opportunity for improving cancer patient outcomes, in turn prompting the need for a deeper understanding of the molecular and cellular mechanisms underlying CTC viability. MUC4 is a very large and heavily glycosylated protein expressed at the apical surfaces of the epithelia of a variety of tissues, is involved in cellular growth signaling and adhesiveness, and contributes to the protection and lubrication of cellular linings. Analysis of patient-matched breast tumor specimens has demonstrated that MUC4 protein levels are upregulated in metastatic lesions relative to primary tumor among all breast tumor subtypes, pointing to a possible selective advantage for MUC4 overexpression in metastasis. Analysis of a genetically engineered mouse model of HER2-positive breast cancer has demonstrated that metastatic efficiency is markedly suppressed with Muc4 deletion and Muc4-knockout tumor cells are poorly associated with platelets and white blood cells known to support CTC viability. In this review, we discuss the diverse roles of MUC4 in tumor progression and metastasis and propose that intervening in MUC4 intercellular interactions with binding partners on blood-borne aggregating cells could potentially thwart breast cancer metastatic efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Kermit L. Carraway
- To whom correspondence should be addressed: Kermit Carraway, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA 95817, P: (916) 734-3114,
| |
Collapse
|
30
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Abdollahi S, Dehghanian SZ, Hung LY, Yang SJ, Chen DP, Medeiros LJ, Chiang JH, Chang KC. Deciphering genes associated with diffuse large B-cell lymphoma with lymphomatous effusions: A mutational accumulation scoring approach. Biomark Res 2021; 9:74. [PMID: 34635181 PMCID: PMC8504051 DOI: 10.1186/s40364-021-00330-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Earlier studies have shown that lymphomatous effusions in patients with diffuse large B-cell lymphoma (DLBCL) are associated with a very poor prognosis, even worse than for non-effusion-associated patients with stage IV disease. We hypothesized that certain genetic abnormalities were associated with lymphomatous effusions, which would help to identify related pathways, oncogenic mechanisms, and therapeutic targets. Methods We compared whole-exome sequencing on DLBCL samples involving solid organs (n = 22) and involving effusions (n = 9). We designed a mutational accumulation-based approach to score each gene and used mutation interpreters to identify candidate pathogenic genes associated with lymphomatous effusions. Moreover, we performed gene-set enrichment analysis from a microarray comparison of effusion-associated versus non-effusion-associated DLBCL cases to extract the related pathways. Results We found that genes involved in identified pathways or with high accumulation scores in the effusion-based DLBCL cases were associated with migration/invasion. We validated expression of 8 selected genes in DLBCL cell lines and clinical samples: MUC4, SLC35G6, TP53BP2, ARAP3, IL13RA1, PDIA4, HDAC1 and MDM2, and validated expression of 3 proteins (MUC4, HDAC1 and MDM2) in an independent cohort of DLBCL cases with (n = 31) and without (n = 20) lymphomatous effusions. We found that overexpression of HDAC1 and MDM2 correlated with the presence of lymphomatous effusions, and HDAC1 overexpression was associated with the poorest prognosis. Conclusion Our findings suggest that DLBCL associated with lymphomatous effusions may be associated mechanistically with TP53-MDM2 pathway and HDAC-related chromatin remodeling mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00330-8.
Collapse
Affiliation(s)
- Sina Abdollahi
- Intelligent Information Retrieval Lab, Department of Computer Science and Information Engineering, National Cheng Kung University, 701, Tainan, Taiwan
| | | | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiang-Jie Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dao-Peng Chen
- Kim Forest Enterprise Co., Ltd, New Taipei City, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jung-Hsien Chiang
- Intelligent Information Retrieval Lab, Department of Computer Science and Information Engineering, National Cheng Kung University, 701, Tainan, Taiwan. .,Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, 704, Tainan, Taiwan. .,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Gao XP, Dong JJ, Xie T, Guan X. Integrative Analysis of MUC4 to Prognosis and Immune Infiltration in Pan-Cancer: Friend or Foe? Front Cell Dev Biol 2021; 9:695544. [PMID: 34336844 PMCID: PMC8322945 DOI: 10.3389/fcell.2021.695544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
MUC4, a transmembrane mucin, plays important roles in epithelial renewal and differentiation. Recent studies suggest that MUC4 has been implicated in pancreatic cancer pathogenesis and is expressed in various normal and cancer tissues. The underlying features of MUC4 across various cancer types may allow us to ensure appropriate treatment and patient monitoring. However, the contributions of MUC4 to pan-cancer have not been well characterized. In this study, we investigated the expression pattern and prognostic value of MUC4 across multiple databases. We further explored genomic and epigenetic alterations of MUC4, its association with proliferation and metastasis, and the correlation with immune infiltration in different cancers. Our results characterized the distinct expression profile and prognostic values of MUC4 in pan-cancer. Through examining its association with genomic alteration, tumor proliferation, and metastasis, as well as tumor infiltration, we revealed multiple function effects of MUC4. MUC4 may influence prognosis, proliferation, metastasis, and immune response in opposite directions. In conclusion, our findings suggested the necessity to more carefully evaluate MUC4 as a biomarker and therapeutic target and develop the new antibodies for cancer detection and intervention.
Collapse
Affiliation(s)
- Xiao-Peng Gao
- Department of Gastrointestinal Surgery, Yuncheng Central Hospital, Yuncheng, China
| | - Jie-Jie Dong
- Department of Hepatopancreatobiliary Surgery, Yuncheng Central Hospital, Yuncheng, China
| | - Tian Xie
- Department of Pediatrics, Yuncheng Central Hospital, Yuncheng, China
| | - Xiaoqing Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital and Institute, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
33
|
Kim YD, Choi YS, Na HG, Song SY, Bae CH. MUC4 Silencing Inhibits TGF-β1-Induced Epithelial-Mesenchymal Transition via the ERK1/2 Pathway in Human Airway Epithelial NCI-H292 Cells. Mol Biol 2021; 55:565-572. [DOI: 10.1134/s0026893321030079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 07/25/2023]
|
34
|
Wang Y, Jin B, Zhou N, Sun Z, Li J, Chen Q, Wu X, Zhou Y, Shi Y, Lu X, Sang X, Mao Y, Du S, Wang W, Bai C. Identification of WDFY3 Neoantigens as Prognostic Markers in Longterm Survivors of Extrahepatic Cholangiocarcinoma. Curr Cancer Drug Targets 2020; 20:875-886. [PMID: 32957886 DOI: 10.2174/1568009620999200918121456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neoantigens are newly formed antigens that have not been previously recognized by the immune system. They may arise from altered tumor proteins that form as a result of mutations. Although neoantigens have recently been linked to antitumor immunity in long-term survivors of cancers, such as melanoma and colorectal cancer, their prognostic and immune-modulatory role in many cancer types remains undefined. OBJECTIVE The purpose of this study is to identify prognostic markers for long-term extrahepatic cholangiocarcinoma (EHCC) survival. METHODS We investigated neoantigens in EHCC, a rare, aggressive cancer with a 5-year overall survival rate lower than 10%, using a combination of whole-exome sequencing (WES), RNA sequencing (RNA-seq), computational biophysics, and immunohistochemistry. RESULTS Our analysis revealed a decreased neutrophil infiltration-related trend of high-quality neoantigen load with IC50 <500 nM (r=-0.445, P=0.043). Among 24 EHCC patients examined, we identified four long-term survivors with WDFY3 neoantigens and none with WDFY3 neoantigens in the short-term survivors. The WDFY3 neoantigens are associated with a lower infiltration of neutrophils (p=0.013), lower expression of CCL5 (p=0.025), CXCL9 (p=0.036) and TIGIT (p=0.016), and less favorable prognosis (p=0.030). In contrast, the prognosis was not significantly associated with tumor mutation burden, neoantigen load, or immune cell infiltration. CONCLUSION We suggest that the WDFY3 neoantigens may affect prognosis by regulating antitumor immunity and that the WDFY3 neoantigens may be harnessed as potential targets for immunotherapy of EHCC.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Jiayi Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiao Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Zhou
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Shi
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Ganguly K, Rauth S, Marimuthu S, Kumar S, Batra SK. Unraveling mucin domains in cancer and metastasis: when protectors become predators. Cancer Metastasis Rev 2020; 39:647-659. [PMID: 32488403 PMCID: PMC7487023 DOI: 10.1007/s10555-020-09896-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A dynamic mucosal layer shields the epithelial cells lining the body cavities and is made up of high molecular weight, heavily glycosylated, multidomain proteins called mucins. Mucins, broadly grouped into transmembrane and secreted mucins, are the first responders to any mechanical or chemical insult to the epithelia and help maintain tissue homeostasis. However, their intrinsic properties to protect and repair the epithelia are exploited during oncogenic processes, where mucins are metamorphosed to aid the tumor cells in their malignant journey. Diverse domains, like the variable number tandem repeats (VNTR), sea urchin sperm protein enterokinase and agrin (SEA), adhesion-associated domain (AMOP), nidogen-like domain (NIDO), epidermal growth factor-like domain (EGF), and von Willebrand factor type D domain (vWD) on mucins, including MUC1, MUC4, MUC5AC, MUC5B, and MUC16, have been shown to facilitate cell-to-cell and cell-to-matrix interactions, and cell-autonomous signaling to promote tumorigenesis and distant dissemination of tumor cells. Several obstacles have limited the study of mucins, including technical difficulties in working with these huge glycoproteins, the dearth of scientific tools, and lack of animal models; thus, the tissue-dependent and domain-specific roles of mucins during mucosal protection, chronic inflammation, tumorigenesis, and hematological dissemination of malignant cells are still unclear. Future studies should try to integrate information on the rheological, molecular, and biological characteristics of mucins to comprehensively delineate their pathophysiological role and evaluate their suitability as targets in future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
36
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Molecular Characterization of Astrocytoma Progression Towards Secondary Glioblastomas Utilizing Patient-Matched Tumor Pairs. Cancers (Basel) 2020; 12:cancers12061696. [PMID: 32604718 PMCID: PMC7352509 DOI: 10.3390/cancers12061696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
Astrocytomas are primary human brain tumors including diffuse or anaplastic astrocytomas that develop towards secondary glioblastomas over time. However, only little is known about molecular alterations that drive this progression. We measured multi-omics profiles of patient-matched astrocytoma pairs of initial and recurrent tumors from 22 patients to identify molecular alterations associated with tumor progression. Gene copy number profiles formed three major subcluters, but more than half of the patient-matched astrocytoma pairs differed in their gene copy number profiles like astrocytomas from different patients. Chromosome 10 deletions were not observed for diffuse astrocytomas, but occurred in corresponding recurrent tumors. Gene expression profiles formed three other major subclusters and patient-matched expression profiles were much more heterogeneous than their copy number profiles. Still, recurrent tumors showed a strong tendency to switch to the mesenchymal subtype. The direct progression of diffuse astrocytomas to secondary glioblastomas showed the largest number of transcriptional changes. Astrocytoma progression groups were further distinguished by signaling pathway expression signatures affecting cell division, interaction and differentiation. As expected, IDH1 was most frequently mutated closely followed by TP53, but also MUC4 involved in the regulation of apoptosis and proliferation was frequently mutated. Astrocytoma progression groups differed in their mutation frequencies of these three genes. Overall, patient-matched astrocytomas can differ substantially within and between patients, but still molecular signatures associated with the progression to secondary glioblastomas exist and should be analyzed for their potential clinical relevance in future studies.
Collapse
|
38
|
Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, Banerjee K, Jain M, Solheim JC, Kumar S, Batra SK. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev 2020; 38:223-236. [PMID: 30618016 DOI: 10.1007/s10555-018-09775-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucins (MUC) protect epithelial barriers from environmental insult to maintain homeostasis. However, their aberrant overexpression and glycosylation in various malignancies facilitate oncogenic events from inception to metastasis. Mucin-associated sialyl-Tn (sTn) antigens bind to various receptors present on the dendritic cells (DCs), macrophages, and natural killer (NK) cells, resulting in overall immunosuppression by either receptor masking or inhibition of cytolytic activity. MUC1-mediated interaction of tumor cells with innate immune cells hampers cross-presentation of processed antigens on MHC class I molecules. MUC1 and MUC16 bind siglecs and mask Toll-like receptors (TLRs), respectively, on DCs promoting an immature DC phenotype that in turn reduces T cell effector functions. Mucins, such as MUC1, MUC2, MUC4, and MUC16, interact with or form aggregates with neutrophils, macrophages, and platelets, conferring protection to cancer cells during hematological dissemination and facilitate their spread and colonization to the metastatic sites. On the contrary, poor glycosylation of MUC1 and MUC4 at the tandem repeat region (TR) generates cancer-specific immunodominant epitopes. The presence of MUC16 neo-antigen-specific T cell clones and anti-MUC1 antibodies in cancer patients suggests that mucins can serve as potential targets for developing cancer therapeutics. The present review summarizes the molecular events involved in mucin-mediated immunomodulation, and metastasis, as well as the utility of mucins as targets for cancer immunotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Christopher Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Bradley R Hall
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
39
|
Reynolds IS, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Burke JP. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2020; 38:237-257. [PMID: 30680581 DOI: 10.1007/s10555-019-09781-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
40
|
Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, Li D, Song H, Wang J, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med 2019; 11:e10835. [PMID: 31709724 PMCID: PMC6895612 DOI: 10.15252/emmm.201910835] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is a hallmark of metabolic reprogramming in tumor progression. However, the mechanisms regulating glycolytic gene expression remain elusive in neuroblastoma (NB), the most common extracranial malignancy in childhood. Herein, we identify that CUT‐like homeobox 1 (CUX1) and CUX1‐generated circular RNA (circ‐CUX1) contribute to aerobic glycolysis and NB progression. Mechanistically, p110 CUX1, a transcription factor generated by proteolytic processing of p200 CUX1, promotes the expression of enolase 1, glucose‐6‐phosphate isomerase, and phosphoglycerate kinase 1, while circ‐CUX1 binds to EWS RNA‐binding protein 1 (EWSR1) to facilitate its interaction with MYC‐associated zinc finger protein (MAZ), resulting in transactivation of MAZ and transcriptional alteration of CUX1 and other genes associated with tumor progression. Administration of an inhibitory peptide blocking circ‐CUX1‐EWSR1 interaction or lentivirus mediating circ‐CUX1 knockdown suppresses aerobic glycolysis, growth, and aggressiveness of NB cells. In clinical NB cases, CUX1 is an independent prognostic factor for unfavorable outcome, and patients with high circ‐CUX1 expression have lower survival probability. These results indicate circ‐CUX1/EWSR1/MAZ axis as a therapeutic target for aerobic glycolysis and NB progression.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
41
|
Umeh-Garcia M, Simion C, Ho PY, Batra N, Berg AL, Carraway KL, Yu A, Sweeney C. A Novel Bioengineered miR-127 Prodrug Suppresses the Growth and Metastatic Potential of Triple-Negative Breast Cancer Cells. Cancer Res 2019; 80:418-429. [PMID: 31694904 DOI: 10.1158/0008-5472.can-19-0656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/21/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
Abstract
miR-127 is downregulated in breast cancer, where it has been shown to suppress the proliferation, migration, and invasion of breast cancer cells. In triple-negative breast cancer (TNBC), miR-127 downregulation correlates with decreased disease-free and overall patient survival. Tumor suppressor miRNAs may hold therapeutic promise but progress has been limited by several factors, including the lability and high cost of miRNA mimics. Here, we take a novel approach to produce a miR-127 prodrug (miR-127PD), which we demonstrate is processed to mature, functional miR-127-3p in TNBC tumor cells. miR-127PD decreased the viability and motility of TNBC cells, sensitized TNBC cells to chemotherapy, and restricted the TNBC stem cell population. Furthermore, systemic delivery of miR-127PD suppressed tumor growth of MDA-MB-231 and MDA-MB-468 TNBC cells and spontaneous metastasis of MDA-MB-231 cells. In addition, CERK, NANOS1, FOXO6, SOX11, SOX12, FASN, and SUSD2 were identified as novel, functionally important targets of miR-127. In conclusion, our study demonstrates that miR-127 functions as a tumor and metastasis suppressor in TNBC and that delivery of miR-127 may hold promise as a novel therapy. SIGNIFICANCE: Exogenous administration of miR-127, which is functionally activated in target cells, inhibits growth and spontaneous metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Maxine Umeh-Garcia
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Catalina Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Pui-Yan Ho
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Aiming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
| |
Collapse
|
42
|
Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat Commun 2019; 10:3261. [PMID: 31332182 PMCID: PMC6646342 DOI: 10.1038/s41467-019-11236-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Mouse models have an essential role in cancer research, yet little is known about how various models resemble human cancer at a genomic level. Here, we complete whole genome sequencing and transcriptome profiling of two widely used mouse models of breast cancer, MMTV-Neu and MMTV-PyMT. Through integrative in vitro and in vivo studies, we identify copy number alterations in key extracellular matrix proteins including collagen 1 type 1 alpha 1 (COL1A1) and chondroadherin (CHAD) that drive metastasis in these mouse models. In addition to copy number alterations, we observe a propensity of the tumors to modulate tyrosine kinase-mediated signaling through mutation of phosphatases such as PTPRH in the MMTV-PyMT mouse model. Mutation in PTPRH leads to increased phospho-EGFR levels and decreased latency. These findings underscore the importance of understanding the complete genomic landscape of a mouse model and illustrate the utility this has in understanding human cancers. Mouse models are an essential tool in breast cancer research. Here, the authors present the genomic and transcriptomic profiles of two widely used mouse models, revealing parallels with the human disease specifically with metastasis and treatment response.
Collapse
|
43
|
Xu Y, Chen Y, Wei L, Lai S, Zheng W, Wu F. Serum tumor-associated glycoprotein 72, a helpful predictor of lymph nodes invasion in esophagogastric junction adenocarcinoma. Biochem Biophys Res Commun 2018; 509:133-137. [PMID: 30579602 DOI: 10.1016/j.bbrc.2018.12.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/11/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
Abstract
Disruption of cell-cell junction and adhesion to vessels are crucial steps in tumor metastasis. Tumor-associated glycoprotein 72 (TAG-72) is a crucial membrane mucin in gastroesophageal mucosa for microenvironment contact with cells. Thus, the TAG-72 value may be an indicator of the malignant involvement of lymph nodes in esophagogastric junction adenocarcinoma (EGAC) patients. Of the 183 patients suspected as gastroesophageal neoplasms, 129 were subsequently diagnosed as EGAC, and 54 were subsequently diagnosed as benign gastroesophageal diseases by imageological or/and histological examination. After we obtained preoperative serum TAG-72 values, the relationship between serum TAG-72 and lymphatic metastasis status, extent of invaded lymph nodes and clinical stage was tested using Spearman correlation analysis and χ2 tests. Compared with those in patients who suffered either benign gastroesophageal diseases or preinvasive carcinoma, the median serum TAG-72 values were statistically higher in EGAC patients with positive lymph nodes (Kruskal-Wallis test; P < 0.001). Serum TAG-72 values were significantly correlated with Lymph Node Ratio (LNR) (Spearman correlation; P < 0.001). Using corresponding ROC (95% CI = 0.621-0.783, P < 0.0001), serum TAG-72 values with an optimal cut-off (2.2 kU/mL) showed a sensitivity of 0.632 and a specificity of 0.690 for predicting malignant lymph node involvement in EGAC. These results suggest that the serum TAG-72 value is a clinically helpful predictor of lymph nodes invasion in resectable EGAC.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongkang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shengming Lai
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Feng Wu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|