1
|
Zhang C, Wang J, Yao T, Hu J, Sun F, Feng C, Sun Z, Shao Y, Wang Z, Wu J, Huang Y. Proteomic analysis across aged tissues reveals distinct signatures and the crucial involvement of midgut barrier function in the regulation of aging. Aging Cell 2024:e14344. [PMID: 39319447 DOI: 10.1111/acel.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The process of aging is a natural phenomenon characterized by gradual deterioration in biological functions and systemic homeostasis, which can be modulated by both genetic and environmental factors. Numerous investigations conducted on model organisms, including nematodes, flies, and mice, have elucidated several pivotal aging pathways, such as insulin signaling and AMPK signaling. However, it remains uncertain whether the regulation of the aging process is uniform or diverse across different tissues and whether manipulating the same aging factor can result in consistent outcomes in various tissues. In this study, we utilize the Drosophila organism to investigate tissue-specific proteome signatures during the aging process. Although distinct proteins undergo changes in aged tissues, certain common altered functional networks are constituently identified across different tissues, including the decline of the mitochondrial ribosomal network, autophagic network, and anti-ROS defense networks. Furthermore, downregulation of insulin receptor (InR) in the midguts, muscle, and central nervous system (CNS) of flies leads to a significant extension in fly lifespans. Notably, despite manipulating the same aging gene InR, diverse alterations in proteins are observed across different tissues. Importantly, knockdown of InR in the midguts leads to a distinct proteome compared with other tissues, resulting in enhanced actin nucleation and glutathione metabolism, while attenuating age-related elevation of serine proteases. Consequently, knockdown of InR results in rejuvenation of the integrity of the midgut barrier and augmentation of anti-ROS defense capabilities. Our findings suggest that the barrier function of the midgut plays a pivotal role in defending against aging, underscoring the paramount importance of maintaining optimal gut physiology to effectively delay the aging process. Moreover, when considering age-related changes across various tissues, it is more reasonable to identify functional networks rather than focusing solely on individual proteins.
Collapse
Affiliation(s)
- Congying Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jinlong Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Chunlu Feng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhu Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Lyu X, Wang Y, Xu Y, Zhao Z, Liu H, Hu Z. Metabolomic Profiling of Tumor Tissues Unveils Metabolic Shifts in Non-Small Cell Lung Cancer Patients with Concurrent Diabetes Mellitus. J Proteome Res 2024; 23:3746-3753. [PMID: 39162688 PMCID: PMC11385698 DOI: 10.1021/acs.jproteome.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A comprehensive understanding of the exact influence of type 2 diabetes mellitus (T2DM) on the metabolic status of non-small cell lung cancer (NSCLC) is still lacking. This study explores metabolic alterations in tumor tissues among patients with coexisting NSCLC and T2DM in comparison with NSCLC patients. A combined approach of clinical analysis and metabolomics was employed, including 20 NSCLC patients and 20 NSCLC+T2DM patients. Targeted metabolomics analysis was performed on tumor tissues using the liquid chromatography-mass spectrometry (LC-MS) approach. A clear segregation was observed between NSCLC+T2DM and matched NSCLC tissue samples in Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, the levels of 7 metabolites are found to be significantly different between diabetes/nondiabetes tumor tissue samples. The related pathways included arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, purine metabolism, biotin metabolism, and histidine metabolism. 3-Phenyllactic acid, carnitine-C5, carnitine-C12, and serotonin showed a positive linear correlation with fasting blood glucose levels in NSCLC patients. Uridine, pipecolic acid, cytosine, and fasting blood glucose levels were found to have a negative correlation. Our results suggest that NSCLC patients with concurrent T2DM exhibit distinct metabolic shifts in tumor tissues compared to those of solely NSCLC patients.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zhewei Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Kühn T, Kalotai N, Amini AM, Haardt J, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Watzl B, Zittermann A, Nimptsch K. Protein intake and cancer: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2024; 63:1471-1486. [PMID: 38643440 PMCID: PMC11329548 DOI: 10.1007/s00394-024-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE It has been proposed that a higher habitual protein intake may increase cancer risk, possibly via upregulated insulin-like growth factor signalling. Since a systematic evaluation of human studies on protein intake and cancer risk based on a standardised assessment of systematic reviews (SRs) is lacking, we carried out an umbrella review of SRs on protein intake in relation to risks of different types of cancer. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and cancer risk published before January 22th 2024, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Ten SRs were identified, of which eight included meta-analyses. Higher total protein intake was not associated with risks of breast, prostate, colorectal, ovarian, or pancreatic cancer incidence. The methodological quality of the included SRs ranged from critically low (kidney cancer), low (pancreatic, ovarian and prostate cancer) and moderate (breast and prostate cancer) to high (colorectal cancer). The outcome-specific certainty of the evidence underlying the reported findings on protein intake and cancer risk ranged from very low (pancreatic, ovarian and prostate cancer) to low (colorectal, ovarian, prostate, and breast cancer). Animal and plant protein intakes were not associated with cancer risks either at a low (breast and prostate cancer) or very low (pancreatic and prostate cancer) outcome-specific certainty of the evidence. Overall, the evidence for the lack of an association between protein intake and (i) colorectal cancer risk and (ii) breast cancer risk was rated as possible. By contrast, the evidence underlying the other reported results was rated as insufficient. CONCLUSION The present findings suggest that higher total protein intake may not be associated with the risk of colorectal and breast cancer, while conclusions on protein intake in relation to risks of other types of cancer are restricted due to insufficient evidence.
Collapse
Affiliation(s)
- Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
- Center for Public Health, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
4
|
Zhang Y, Stopsack KH, Song M, Mucci LA, Liu B, Penney KL, Tabung FK, Giovannucci E, Plym A. Healthy dietary patterns and risk of prostate cancer in men at high genetic risk. Int J Cancer 2024; 155:71-80. [PMID: 38429859 PMCID: PMC11068494 DOI: 10.1002/ijc.34898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Prostate cancer has high heritability. Healthy lifestyle has been associated with lower lethal prostate cancer risk among men at increased genetic susceptibility, but the role of healthy dietary patterns remains unknown. We prospectively followed 10,269 genotyped men in the Health Professionals Follow-up Study (1993-2019). Genetic risk was quantified using an established polygenic risk score (PRS). Five dietary patterns were investigated: healthy eating index, Mediterranean, diabetes risk-reducing, hyperinsulinemic and inflammatory diet. Overall and lethal prostate cancer rates (metastatic disease/prostate cancer-specific death) were analyzed using multivariable Cox proportional hazards models. During 26 years of follow-up, 2133 overall and 253 lethal prostate cancer events were documented. In the highest PRS quartile, higher adherence to a diabetes risk-reducing diet was associated with lower rates of overall (top vs. bottom quintile HR [95% CI], 0.74 [0.58-0.94]) and lethal prostate cancer (0.43 [0.21-0.88]). A low insulinemic diet was associated with similar lower rates (overall, 0.76 [0.60-0.95]; lethal, 0.46 [0.23-0.94]). Other dietary patterns showed weaker, but similar associations. In the highest PRS quartile, men with healthy lifestyles based on body weight, physical activity, and low insulinemic diet had a substantially lower rate (0.26 [0.13-0.49]) of lethal prostate cancer compared with men with unhealthy lifestyles, translating to a lifetime risk of 3.4% (95% CI, 2.3%-5.0%) among those with healthy lifestyles and 9.5% (5.3%-16.7%) among those with unhealthy lifestyles. Our findings indicate that lifestyle modifications lowering insulin resistance and chronic hyperinsulinemia could be relevant in preventing aggressive prostate cancer among men genetically predisposed to prostate cancer.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Discovery Science, American Cancer Society, Atlanta GA
| | - Binkai Liu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fred K. Tabung
- Division of Medicine Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anna Plym
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Su Z, Liu Y, Xia Z, Rustgi AK, Gu W. An unexpected role for the ketogenic diet in triggering tumor metastasis by modulating BACH1-mediated transcription. SCIENCE ADVANCES 2024; 10:eadm9481. [PMID: 38838145 PMCID: PMC11152127 DOI: 10.1126/sciadv.adm9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
We have found that the ketogenic (Keto) diet is able to, unexpectedly, promote the metastatic potential of cancer cells in complementary mouse models. Notably, the Keto diet-induced tumor metastasis is dependent on BTB domain and CNC homolog 1 (BACH1) and its up-regulation of pro-metastatic targets, including cell migration-inducing hyaluronidase 1, in response to the Keto diet. By contrast, upon genetic knockout or pharmacological inhibition of endogenous BACH1, the Keto diet-mediated activation of those targets is largely diminished, and the effects on tumor metastasis are completely abolished. Mechanistically, upon administration of the Keto diet, the levels of activating transcription factor 4 (ATF4) are markedly induced. Through direct interaction with BACH1, ATF4 is recruited to those pro-metastatic target promoters and enhances BACH1-mediated transcriptional activation. Together, these data implicate a distinct transcription regulatory program of BACH1 for tumor metastasis induced by the Keto diet. Our study also raises a potential health risk of the Keto diet in human patients with cancer.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Zhangchuan Xia
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| |
Collapse
|
6
|
Reda GK, Ndunguru SF, Csernus B, Lugata JK, Knop R, Szabó C, Czeglédi L, Lendvai ÁZ. Sex-specific effects of dietary restriction on physiological variables in Japanese quails. Ecol Evol 2024; 14:e11405. [PMID: 38799393 PMCID: PMC11116846 DOI: 10.1002/ece3.11405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Nutritional limitation is a common phenomenon in nature that leads to trade-offs among processes competing for limited resources. These trade-offs are mediated by changes in physiological traits such as growth factors and circulating lipids. However, studies addressing the sex-specific effect of nutritional deficiency on these physiological variables are limited in birds. We used dietary restriction to mimic the depletion of resources to various degrees and investigated sex-specific effects on circulating levels of insulin-like growth factor 1 (IGF-1) and triglycerides in Japanese quails (Coturnix japonica) subjected to ad libitum, 20%, 30% or 40% restriction of their daily requirement, for 2 weeks. We also explored the association of both physiological variables with body mass and egg production. While dietary restriction showed no effects on circulating IGF-1, this hormone exhibited a marked sexual difference, with females having 64.7% higher IGF-1 levels than males. Dietary restriction significantly reduced plasma triglyceride levels in both sexes. Females showed more than six-fold higher triglyceride levels than males. Triglyceride levels were positively associated with body mass in females while showed not association in males. Overall, our findings revealed sex-specific expression of physiological variables under dietary restriction conditions, which coincide with body size.
Collapse
Affiliation(s)
- Gebrehaweria K. Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Sawadi F. Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - James K. Lugata
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| |
Collapse
|
7
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Jahromi MK, Ahmadirad H, Farhadnejad H, Norouzzadeh M, Mokhtari E, Teymoori F, Saber N, Heidari Z, Mirmiran P, Rashidkhani B. High-protein diet scores, macronutrient substitution, and breast cancer risk: insights from substitution analysis. BMC Womens Health 2024; 24:121. [PMID: 38360741 PMCID: PMC10870721 DOI: 10.1186/s12905-024-02959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Evidence from recent studies suggested that variation in the quantity and quality of macronutrients in the diet may potentially play a role in predicting the risk of breast cancer (BC). In the current study, we aimed to assess the association of different high-protein diet scores and replacing fats and carbohydrate (CHO) with protein in the diet with the BC risk among Iranian women. METHODS The current hospital-based case-control study was conducted on 401 participants, aged ≥ 30 years old, including 134 women in the case group who had been diagnosed with histologically confirmed BC and 267 women in the control group. Dietary intake data was collected using a validated food frequency questionnaire, and high protein diet scores were determined. Logistic regression models were used to determine the odds ratios (OR) and 95% confidence interval (CI) of BC across tertiles of high protein diet scores. Also, we assessed how substituting protein with other macronutrients affected BC odds while adjusting for the various confounding variables. RESULTS Participants' mean ± SD of age and body mass index were 47.9 ± 10.3 years and 29.4 ± 5.5 kg/m2, respectively. The scores of high-protein-low-CHO and fat diet, high-protein and CHO-low-fat diet, and high-protein and fat-low-CHO diet in participants were 16.5 ± 3.8, 16.5 ± 6.7, and 16.4 ± 5.9, respectively. In the multivariable model, individuals in the highest tertile of high-protein-low-CHO and fat diet score (OR:0.71;95%CI:0.56-0.90) and high-protein and CHO-low-fat diet (OR:0.76;95%CI:0.60-0.97) had lower odds of BC compared to those in the lowest tertile (P < 0.05). However, no significant association was found between high-protein and fat-low-CHO diet and BC risk. Our results showed that replacing fat by protein (ORdifferences:-0.40;95%CI:-0.73,-0.07) and also replacing refined-CHO by plant protein (ORdifferences:-0.66;95%CI:-1.26,-0.07) in the diet are associated inversely with risk of BC(P < 0.05). CONCLUSIONS The results of our study suggested that higher adherence to a high-protein-low-CHO and fat diet, characterized by a higher intake of plant proteins and a lower intake of refined grains and saturated fat can play a protective role against the odds of BC.
Collapse
Affiliation(s)
- Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Saber
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rampioni Vinciguerra GL, Capece M, Reggiani Bonetti L, Nigita G, Calore F, Rentsch S, Magistri P, Ballarin R, Di Benedetto F, Distefano R, Cirombella R, Vecchione A, Belletti B, Baldassarre G, Lovat F, Croce CM. Nutrient restriction-activated Fra-2 promotes tumor progression via IGF1R in miR-15a downmodulated pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2024; 9:31. [PMID: 38342897 PMCID: PMC10859382 DOI: 10.1038/s41392-024-01740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, characterized by an intense desmoplastic reaction that compresses blood vessels and limits nutrient supplies. PDAC aggressiveness largely relies on its extraordinary capability to thrive and progress in a challenging tumor microenvironment. Dysregulation of the onco-suppressor miR-15a has been extensively documented in PDAC. Here, we identified the transcription factor Fos-related antigen-2 (Fra-2) as a miR-15a target mediating the adaptive mechanism of PDAC to nutrient deprivation. We report that the IGF1 signaling pathway was enhanced in nutrient deprived PDAC cells and that Fra-2 and IGF1R were significantly overexpressed in miR-15a downmodulated PDAC patients. Mechanistically, we discovered that miR-15a repressed IGF1R expression via Fra-2 targeting. In miR-15a-low context, IGF1R hyperactivated mTOR, modulated the autophagic flux and sustained PDAC growth in nutrient deprivation. In a genetic mouse model, Mir15aKO PDAC showed Fra-2 and Igf1r upregulation and mTOR activation in response to diet restriction. Consistently, nutrient restriction improved the efficacy of IGF1R inhibition in a Fra-2 dependent manner. Overall, our results point to a crucial role of Fra-2 in the cellular stress response due to nutrient restriction typical of pancreatic cancer and support IGF1R as a promising and vulnerable target in miR-15a downmodulated PDAC.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Luca Reggiani Bonetti
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Paolo Magistri
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Roberto Ballarin
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Fabrizio Di Benedetto
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, 33081, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, 33081, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
10
|
Klement RJ. Anti-tumor effects of ketogenic diets and their synergism with other treatments in mice: Bayesian evidence synthesis of 1755 individual mouse survival data. Biomed J 2024; 47:100609. [PMID: 37245566 PMCID: PMC10900256 DOI: 10.1016/j.bj.2023.100609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Ketogenic diets (KDs) are high-fat diets with putative anti-tumor effects. The aim of this study was to synthesize the evidence for the anti-tumor effects of KDs in mice, with a focus on their possible synergism with chemotherapy (CT), radiotherapy (RT), or targeted therapies (TT). METHODS Relevant studies were retrieved from a literature search. A total of 43 articles reporting on 65 mouse experiments fulfilled the inclusion criteria, and 1755 individual mouse survival times were collated from the study authors or the publications. The restricted mean survival time ratio (RMSTR) between the KD and control groups served as the effect size. Bayesian evidence synthesis models were used to estimate pooled effect sizes and to assess the impact of putative confounders and synergism between KD and other therapies. RESULTS Overall, there was a significant survival-prolonging effect of KD monotherapy (RMSTR = 1.161 ± 0.040), which was confirmed in meta-regression accounting for syngeneic versus xenogeneic models, early versus late KD start and subcutaneous versus other organ growth. Combining the KD with RT or TT, but not CT, was associated with a further 30% (RT) or 21% (TT) prolongation of survival. An analysis accounting for 15 individual tumor entities showed that KDs exerted significant survival-prolonging effects in pancreatic cancer (all treatment combinations), gliomas (KD + RT and KD + TT), head and neck cancer (KD + RT), and stomach cancer (KD+RT and KD + TT). CONCLUSIONS This analytical study confirmed the overall anti-tumor effects of KDs in a large number of mouse experiments and provides evidence for synergistic effects with RT and TT.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany.
| |
Collapse
|
11
|
Urzì AG, Tropea E, Gattuso G, Spoto G, Marsala G, Calina D, Libra M, Falzone L. Ketogenic Diet and Breast Cancer: Recent Findings and Therapeutic Approaches. Nutrients 2023; 15:4357. [PMID: 37892432 PMCID: PMC10609494 DOI: 10.3390/nu15204357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), a complex disease with several influencing factors, is significantly impacted by dietary habits. The ketogenic diet (KD), characterized by high fat and low carbohydrate intake, has gained attention as a potential therapeutic approach, but its effects on BC remain unclear. This review seeks to summarize the current knowledge on the principles of the KD, its metabolic influence on BC cells, and the findings of recent clinical trials, in order to elucidate the potential therapeutic role of the KD in BC management. For these purposes, a comprehensive literature review was conducted selecting preclinical and clinical studies that investigate the relationship between the KD and BC. The selection criteria prioritized studies exploring the KD's metabolic effects on BC cells and current clinical trials involving the KD in BC management. The reviewed studies provide a diverse range of findings, with some suggesting potential benefits of the KD in inhibiting tumor growth and improving treatment response. However, robust clinical trials providing clear evidence of the KD's efficacy as a standalone therapeutic approach in BC are still lacking. There are also significant concerns regarding the safety and long-term effects of sustained ketosis in cancer patients. The therapeutic potential of the KD in BC remains an area of active research and debate. While preliminary findings are promising, definitive conclusions are hindered by inconsistent results and limited human trial data. Future research, specifically well-structured, large-scale clinical trials, is necessary to provide a comprehensive understanding of the role of the KD in BC treatment. Until then, caution should be exercised in its application, and patients should continue prioritizing evidence-based, standard-of-care treatments.
Collapse
Affiliation(s)
- Alfio Giuseppe Urzì
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Gabriella Marsala
- Dipartimento del Farmaco, U.O.C. di Farmaceutica Convenzionata, 95100 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy;
| |
Collapse
|
12
|
Klement RJ, Sweeney RA. Metabolic factors associated with the prognosis of oligometastatic patients treated with stereotactic body radiotherapy. Cancer Metastasis Rev 2023; 42:927-940. [PMID: 37261610 DOI: 10.1007/s10555-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Over the past two decades, it has been established that cancer patients with oligometastases, i.e., only a few detectable metastases confined to one or a few organs, may benefit from an aggressive local treatment approach such as the application of high-precision stereotactic body radiotherapy (SBRT). Specifically, some studies have indicated that achieving long-term local tumor control of oligometastases is associated with prolonged overall survival. This motivates investigations into which factors may modify the dose-response relationship of SBRT by making metastases more or less radioresistant. One such factor relates to the uptake of the positron emission tomography tracer 2-deoxy-2-[18F]fluoro-D-glucose (FDG) which reflects the extent of tumor cell glycolysis or the Warburg effect, respectively. Here we review the biological mechanisms how the Warburg effect drives tumor cell radioresistance and metastasis and draw connections to clinical studies reporting associations between high FDG uptake and worse clinical outcomes after SBRT for oligometastases. We further review the evidence for distinct metabolic phenotypes of metastases preferentially seeding to specific organs and their possible translation into distinct radioresistance. Finally, evidence that obesity and hyperglycemia also affect outcomes after SBRT will be presented. While delivered dose is the main determinant of a high local tumor control probability, there might be clinical scenarios when metabolic targeting could make the difference between achieving local control or not, for example when doses have to be compromised in order to spare neighboring high-risk organs, or when tumors are expected to be highly therapy-resistant due to heavy pretreatment such as chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
13
|
Lin J, Yang L, Huang J, Liu Y, Lei X, Chen R, Xu B, Huang C, Dou W, Wei X, Liu D, Zhang P, Huang Y, Ma Z, Zhang H. Insulin-Like Growth Factor 1 and Risk of Cardiovascular Disease: Results From the UK Biobank Cohort Study. J Clin Endocrinol Metab 2023; 108:e850-e860. [PMID: 36810801 DOI: 10.1210/clinem/dgad105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
CONTEXT Relationships between insulin-like growth factor 1 (IGF-1) levels and cardiovascular disease (CVD) in the general population remain unclear. OBJECTIVE This study aims to investigate the association of circulating IGF-1 concentrations with CVD from a population-based cohort study. METHODS A total of 394 082 participants without CVD and cancer at baseline from UK Biobank were included with measurements of serum IGF-1 at baseline. Main outcomes were incidence of CVD, including CVD mortality, coronary heart disease (CHD), myocardial infarction (MI), heart failure (HF), and stroke. RESULTS Over a median 11.6 years of follow-up, UK Biobank documented 35 803 incident CVD cases, including 4231 from CVD-related death, 27 051 from CHD, 10 014 from MI, 7661 from HF, and 6802 from stroke. Dose-response analysis showed a U-shaped relationship between IGF-1 levels and cardiovascular events. Compared with the third quintile of IGF-1, the lowest category of IGF-1 was associated with increased risk of CVD (hazard ratio 1.128; 95% CI, 1.093 to 1.164), CVD mortality (1.294; 1.181 to 1.418), CHD (1.118; 1.078 to 1.159), MI (1.071; 1.008 to 1.139), HF (1.185; 1.107 to 1.268), and stroke (1.149, 1.070 to 1.235); also, the highest category was associated with increased risk of CVD (1.056; 1.020 to 1.094), CVD mortality (1.111; 1.000 to 1.236), CHD (1.070; 1.028 to 1.114), MI (1.111; 1.041 to 1.187) and HF (1.098; 1.015 to 1.188) after multivariable adjustment. CONCLUSION This study indicates that both low and high levels of circulating IGF-1 are associated with increased risk of CVD in general population. These results highlight the importance of monitoring IGF-1 status on cardiovascular health.
Collapse
Affiliation(s)
- Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Linjie Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junlin Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yating Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuzhen Lei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruxin Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weijuan Dou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhimin Ma
- Department of Endocrinology, The Affiliated Suzhou Science & Technology Town Hospital, Nanjing Medical University, Jiangsu 215153, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Very low carbohydrate ketogenic diet (KD) therapy has been associated with skeletal demineralization in children with drug-resistant epilepsy, but the cause of this association is unclear. Recently, interest in the KD has grown owing to its potential benefits for other illnesses including cancer, type 2 diabetes, obesity, and polycystic kidney disease. Summaries of the best available evidence regarding effects of a KD on skeletal health are lacking. RECENT FINDINGS Recent rodent studies found that a KD can harm the growing skeleton, which corroborates most but not all studies in pediatric patients. Proposed mechanisms include chronic metabolic acidosis and depressed osteoanabolic hormones. Relative to other weight-reducing diets, a weight-reducing KD for treatment of obesity and/or type 2 diabetes in adults has not been associated with adverse skeletal effects. By contrast, recent evidence suggests that adaptation to a eucaloric KD may impair bone remodeling in elite adult athletes. Discrepancies in the literature may relate to differences between study populations and in diet formulation. SUMMARY Attention to skeletal health is warranted when using KD therapy given the uncertainty in the literature and suggestive harms in certain populations. Future research should focus on potential mechanisms of injury.
Collapse
Affiliation(s)
- Cora M Best
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Simon Hsu
- Division of Nephrology, Department of Medicine
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Ronco AL, Storz MA. Dietary Acid Load and Cancer Risk: A Review of the Uruguayan Experience. Nutrients 2023; 15:3098. [PMID: 37513516 PMCID: PMC10385454 DOI: 10.3390/nu15143098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Dietary acid load (DAL) is recognized as a risk factor for several chronic disorders, including obesity, diabetes, and osteoporosis. Recent evidence suggests that an elevated DAL, as measured by the validated potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores, could also increase the risk for several cancers. This narrative review summarizes the potential role of DAL in Uruguayan cancer patients and outlines the potentially involved pathophysiological pathways that mediate the role of DAL in both cancer development and growth. Although Uruguay is a developing country, its average diet is a heavily meat-based Western one, translating into a supraphysiological acid burden from diet. In recent years, we have published epidemiologic evidence based on ten case-control studies involving 3736 cancer cases and 9534 hospital-based controls. Odds ratios and 95% confidence intervals were estimated for each interest variable to analyze the association between the exposure levels of DAL scores and cancer, calculated by unconditional logistic regression. In a majority of the cases, the highest DAL scores tended to double the cancer risk as compared to the lowest category. We also found high risks for methionine intake, an acidifying amino acid found in higher concentrations in animal-based foods, which may increase cancer risks at least by a joint action based on the pH and the proliferation enhancing properties of the amino acid itself.
Collapse
Affiliation(s)
- Alvaro Luis Ronco
- Unit of Oncology and Radiotherapy, Pereira Rossell Women's Hospital, Bvard. Artigas 1590, Montevideo 11600, Uruguay
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Freiburg University Hospital, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic Diet in Children and Adolescents: the Effects on Growth and Nutritional Status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Elisabetta Di Profio
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain.
| | - Gianvincenzo Zuccotti
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.
| | - Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| |
Collapse
|
17
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:ijms24043149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
|
18
|
Nunamaker EA, Reynolds PS. 'Invisible actors'-How poor methodology reporting compromises mouse models of oncology: A cross-sectional survey. PLoS One 2022; 17:e0274738. [PMID: 36264974 PMCID: PMC9584398 DOI: 10.1371/journal.pone.0274738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/28/2022] [Indexed: 11/05/2022] Open
Abstract
The laboratory mouse is a key player in preclinical oncology research. However, emphasis of techniques reporting at the expense of critical animal-related detail compromises research integrity, animal welfare, and, ultimately, the translation potential of mouse-based oncology models. To evaluate current reporting practices, we performed a cross-sectional survey of 400 preclinical oncology studies using mouse solid-tumour models. Articles published in 2020 were selected from 20 journals that specifically endorsed the ARRIVE (Animal Research: Reporting of In Vivo Experiments) preclinical reporting guidelines. We assessed reporting compliance for 22 items in five domains: ethical oversight assurance, animal signalment, husbandry, welfare, and euthanasia. Data were analysed using hierarchical generalised random-intercept models, clustered on journal. Overall, reporting of animal-related items was poor. Median compliance over all categories was 23%. There was little or no association between extent of reporting compliance and journal or journal impact factor. Age, sex, and source were reported most frequently, but verifiable strain information was reported for <10% of studies. Animal husbandry, housing environment, and welfare items were reported by <5% of studies. Fewer than one in four studies reported analgesia use, humane endpoints, or an identifiable method of euthanasia. Of concern was the poor documentation of ethical oversight information. Fewer than one in four provided verifiable approval information, and almost one in ten reported no information, or information that was demonstrably false. Mice are the "invisible actors" in preclinical oncology research. In spite of widespread endorsement of reporting guidelines, adherence to reporting guidelines on the part of authors is poor and journals fail to enforce guideline reporting standards. In particular, the inadequate reporting of key animal-related items severely restricts the utility and translation potential of mouse models, and results in research waste. Both investigators and journals have the ethical responsibility to ensure animals are not wasted in uninformative research.
Collapse
Affiliation(s)
- Elizabeth A. Nunamaker
- Animal Care Services, University of Florida, Gainesville, Florida, United States of America
| | - Penny S. Reynolds
- Department of Anesthesiology, Statistics in Anesthesiology Research (STAR) Core, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Amanollahi A, Khazdouz M, Malekahmadi M, Klement RJ, Lee D, Khodabakhshi A. Effect of Ketogenic Diets on Cardio-Metabolic Outcomes in Cancer Patients: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Nutr Cancer 2022; 75:95-111. [PMID: 36110060 DOI: 10.1080/01635581.2022.2117388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this systematic review and meta-analysis of clinical controlled trials (CCTs) we aimed to investigate the efficacy of KDs as an adjuvant therapy on cardiometabolic outcomes in patient with cancer compared to conventional non-ketogenic diets. Only CCTs involving cancer patients that were assigned to either a KD or a standard diet control group were selected. Two reviewers independently extracted the data, and a meta-analysis was performed using a random effects model to estimate weighted mean differences (WMDs) and confidence intervals (CIs) in body composition, metabolite, lipid profile, liver and kidney function parameters and quality of life. This meta-analysis showed a significant reduction in body weight (WMD= -2.99 kg; 95% CI: -4.67, -1.31; and P < 0.001), BMI (WMD= -1.08 kg/m2; 95% CI: -1.81, -0.34; P ≤ 0.002) and fat mass (WMD= -1.48 kg; 95% CI: -2.56, -0.40; and P = 0.007) by a KD. KDs significantly decreased glucose (WMD= -5.22 mg/dl; 95% CI: -9.0, -1.44; and P = 0.007), IGF-1 (WMD= -17.52 ng/ml; 95% CI: -20.24, -14.8; and P ˂0.001) and triglyceride (WMD= -24.46 mg/dl; 95% CI: -43.96, -4.95; and P = 0.014) levels. Furthermore, KDs induced ketosis by increasing β-hydroxybutyrate (WMD= 0.56 mmol/l; 95% CI: 0.37, 0.75; and P < 0.001). There were non-significant pooled effects of KDs on improving insulin, C-reactive protein and cholesterol levels and kidney and liver function. Emotional functioning was even increased significantly in the KD compared to the SD groups. In summary we found that KDs result in a greater reduction in glucose, IGF-1, triglycerides, body weight, BMI, and fat mass in cancer patients compared to traditional non-ketogenic diets and improved emotional functioning. The quality of evidence in the meta-analysis was moderate according to the Nutrigrade assessment.
Collapse
Affiliation(s)
- Alireza Amanollahi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khazdouz
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | - Derek Lee
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Adeleh Khodabakhshi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Siddiqui EM, Mehan S, Bhalla S, Shandilya A. Potential role of IGF-1/GLP-1 signaling activation in intracerebral hemorrhage. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100055. [PMID: 36685765 PMCID: PMC9846475 DOI: 10.1016/j.crneur.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
IGF-1 and GLP-1 receptors are essential in all tissues, facilitating defense by upregulating anabolic processes. They are abundantly distributed throughout the central nervous system, promoting neuronal proliferation, survival, and differentiation. IGF-1/GLP-1 is a growth factor that stimulates neurons' development, reorganization, myelination, and survival. In primary and secondary brain injury, the IGF-1/GLP-1 receptors are impaired, resulting in further neuro complications such as cerebral tissue degradation, neuroinflammation, oxidative stress, and atrophy. Intracerebral hemorrhage (ICH) is a severe condition caused by a stroke for which there is currently no effective treatment. While some pre-clinical studies and medications are being developed as symptomatic therapies in clinical trials, there are specific pharmacological implications for improving post-operative conditions in patients with intensive treatment. Identifying the underlying molecular process and recognizing the worsening situation can assist researchers in developing effective therapeutic solutions to prevent post-hemorrhagic symptoms and the associated neural dysfunctions. As a result, in the current review, we have addressed the manifestations of the disease that are aggravated by the downregulation of IGF-1 and GLP-1 receptors, which can lead to ICH or other neurodegenerative disorders. Our review summarizes that IGF-1/GLP-1 activators may be useful for treating ICH and its related neurodegeneration.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
21
|
Widiatmaja DM, Lutvyani A, Sari DR, Kurniasari H, Meiliana ID, Fasitasari M, Yamaoka Y, Rejeki PS. The effect of long-term ketogenic diet on serum adiponectin and insulin-like growth factor-1 levels in mice. J Basic Clin Physiol Pharmacol 2022; 33:611-618. [PMID: 34674405 DOI: 10.1515/jbcpp-2021-0287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Noncommunicable disease (NCD) including obesity, cancer, and diabetes has become particular concern worldwide due to its morbidity and mortality which keep increasing annually. Adiponectin and insulin-like growth factor-1 (IGF-1) are known to be substances that are involved in the development of NCD. Several diet regimens have been developed to treat NCD, one of which is the ketogenic diet (KD). This study aimed to analyze the long-term KD effect on serum adiponectin and IGF-1 levels in mice. METHODS This study was a real experimental with post-test only controls group design. The subjects were 14 male mice (2-3 months, 20-30 g) were randomly divided into two groups, K1 (n=7, standard diet) and K2 (n=7, KD with a composition of 60% fat, 30% protein, and 10% fiber). All subjects were given diet intervention for 8 weeks ad libitum. Serum adiponectin and IGF levels were measured in post-intervention using Enzyme-Linked Immunosorbent Assay. Distribution of normality was analyzed by the Shapiro-Wilk Test, mean difference using Independent T-Test, and linear correlation using Pearson's Correlation Test. Data analysis was performed using Statistic Package for Social Science Version 16. RESULTS Serum adiponectin levels in K1 (0.080 ± 0.012) pg/mL and K2 (0.099 ± 0.005) pg/mL, with p=0.003. Serum IGF-1 levels in K1 (133.535 ± 25.702) ng/mL and K2 (109.987 ± 27.118) ng/mL, with p=0.121. Coefficient correlation between serum adiponectin and serum IGF-1 levels [r]=-0.401, with p=0.155. CONCLUSIONS Long-term KD increases serum adiponectin levels and has no effect on serum IGF-1 levels. There was no significant correlation between serum adiponectin and serum IGF-1 levels.
Collapse
Affiliation(s)
- Deandra M Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alif Lutvyani
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Desi R Sari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hamidah Kurniasari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ismi D Meiliana
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Minidian Fasitasari
- Department of Nutrition, Faculty of Medicine, Universitas Islam Sultan Agung/Sultan Agung Islamic Hospital, Semarang, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Purwo S Rejeki
- Physiology Division, Department of Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
22
|
Zhang B, Gao D, Xu G, Zhu W, Liu J, Sun R, Wang L, Zhang C, Ding Q, Shi Y. Integrated multicomponent analysis based on UHPLC-Q-Exactive Orbitrap-MS and network pharmacology to elucidate the potential mechanism of Baoyuan decoction against idiopathic pulmonary fibrosis. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:678-695. [PMID: 35396886 DOI: 10.1002/pca.3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a serious lung disease with a high mortality rate. Baoyuan decoction (BYD), a classic medicinal food homology recipe, has anti-apoptotic effects, enhances immune function, and alleviates fibrosis, suggesting that it may be a potential therapeutic drug for IPF. OBJECTIVES We aimed to identify the main active ingredients of BYD, determine the basis of its efficacy, prove its anti-IPF effects, and explore the mechanisms underlying its anti-IPF effects. MATERIALS AND METHODS In this study, the active components of BYD were detected and analysed by ultra-high-performance liquid chromatography coupled with hybrid quadrupole Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). A network pharmacology analysis was performed to determine the potential targets and relevant pathways of BYD in treating IPF. Western blotting and quantitative real-time polymerase chain reaction (qPCR) were conducted to verify the efficacy of BYD against IPF. Finally, molecular docking and qPCR were performed to identify the central targets of BYD. RESULTS A total of 39 components of BYD were identified. After performing the network pharmacology analysis, 35 active components and eight presumptive targets of BYD were found to play a central role in its anti-IPF effects. The molecular docking results indicated that most of the active components of BYD exhibited good binding activity with these eight central target proteins. In addition, the expression of collagen, α-SMA, and these eight targets in human pulmonary fibroblast (HPF) cells was suppressed from treatment with BYD. CONCLUSION This study determined the efficacy of BYD against IPF and clarified its multiple-target and multiple-pathway mechanisms. Furthermore, the study also provides a new method for exploring the chemical and pharmacological bases of other traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Gonghao Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
23
|
Pokorny R, Stenehjem DD, Gilreath JA. Impact of metformin on tyrosine kinase inhibitor response in chronic myeloid leukemia. J Oncol Pharm Pract 2022; 28:916-923. [PMID: 35132891 PMCID: PMC9047107 DOI: 10.1177/10781552221077254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective Oral tyrosine kinase inhibitors (TKIs) are first line therapy for chronic myeloid leukemia (CML). A complete cytogenetic response (CCyR) correlates with increased overall survival, however only 66%–88% of patients achieve CCyR after one year of TKI treatment. Because TKI therapy alone cannot eliminate CML stem cells, strategies aimed at achieving faster and deeper responses are needed to improve long-term survival. Metformin is a widely prescribed glucose-lowering agent for patients with diabetes and in preclinical studies, has been shown to suppress cell viability, induce apoptosis, and downregulate the mTORC1 signaling pathway in imatinib resistant CML cell lines (K562R). This study aims to investigate the utility of metformin added to TKI therapy in patients with CML. Data Sources An observational study at an academic medical center (Salt Lake City, UT) was performed for adults with newly diagnosed, chronic-phase CML to evaluate attainment of CCyR from TKI therapy with or without concomitant metformin use. Descriptive analyses were used to describe baseline characteristics and attainment of response to TKI therapy. Data Summary Fifty-nine patients were evaluated. One hundred percent (5 of 5) in the metformin group and 73.6% (39 of 54) in the non-metformin group achieved CCyR. Approximately 20% of patients in both groups relapsed (defined by a loss of CCyR during study) after a median 34.5 months of follow-up. Conclusions Future research is warranted to validate these findings and determine the utility of metformin added to TKI therapy.
Collapse
Affiliation(s)
- Rebecca Pokorny
- Department of Pharmacy, 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David D Stenehjem
- Department of Pharmacy Practice and Pharmaceutical Sciences, 14713University of Minnesota, College of Pharmacy, Duluth, MN, USA
| | - Jeffrey A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Taftian M, Beigrezaei S, Arabi V, Salehi-Abargouei A. The Effect of Ketogenic Diet on Weight Loss in Adult Patients with Cancer: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Nutr Cancer 2022; 74:1222-1234. [DOI: 10.1080/01635581.2021.1942081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marzieh Taftian
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Arabi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
Mitigation of Iron Irradiation-Induced Genotoxicity and Genomic Instability by Postexposure Dietary Restriction in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2888393. [PMID: 34926683 PMCID: PMC8677402 DOI: 10.1155/2021/2888393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.
Collapse
|
26
|
Randomised controlled trial of intermittent vs continuous energy restriction during chemotherapy for early breast cancer. Br J Cancer 2021; 126:1157-1167. [PMID: 34912072 PMCID: PMC9023522 DOI: 10.1038/s41416-021-01650-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Excess adiposity at diagnosis and weight gain during chemotherapy is associated with tumour recurrence and chemotherapy toxicity. We assessed the efficacy of intermittent energy restriction (IER) vs continuous energy restriction (CER) for weight control and toxicity reduction during chemotherapy. METHODS One hundred and seventy-two women were randomised to follow IER or CER throughout adjuvant/neoadjuvant chemotherapy. Primary endpoints were weight and body fat change. Secondary endpoints included chemotherapy toxicity, cardiovascular risk markers, and correlative markers of metabolism, inflammation and oxidative stress. RESULTS Primary analyses showed non-significant reductions in weight (-1.1 (-2.4 to +0.2) kg, p = 0.11) and body fat (-1.0 (-2.1 to +0.1) kg, p = 0.086) in IER compared with CER. Predefined secondary analyses adjusted for body water showed significantly greater reductions in weight (-1.4 (-2.5 to -0.2) kg, p = 0.024) and body fat (-1.1 (-2.1 to -0.2) kg, p = 0.046) in IER compared with CER. Incidence of grade 3/4 toxicities were comparable overall (IER 31.0 vs CER 36.5%, p = 0.45) with a trend to fewer grade 3/4 toxicities with IER (18%) vs CER (31%) during cycles 4-6 of primarily taxane therapy (p = 0.063). CONCLUSIONS IER is feasible during chemotherapy. The potential efficacy for weight control and reducing toxicity needs to be tested in future larger trials. CLINICAL TRIAL REGISTRATION ISRCTN04156504.
Collapse
|
27
|
Leite TC, Watters RJ, Weiss KR, Intini G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J Transl Med 2021; 19:450. [PMID: 34715874 PMCID: PMC8555297 DOI: 10.1186/s12967-021-03122-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.
Collapse
Affiliation(s)
- Taiana Campos Leite
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Rebecca Jean Watters
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kurt Richard Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Intini
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Salvadori G, Mirisola MG, Longo VD. Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers (Basel) 2021; 13:cancers13184587. [PMID: 34572814 PMCID: PMC8472354 DOI: 10.3390/cancers13184587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The restriction of proteins, amino acids or sugars can have profound effects on the levels of hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intracellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration. Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term effects on these hormones. Here, we review the effects of nutrients and fasting on hormones and genes established to affect aging and cancer. We describe the link between dietary interventions and genetic pathways affecting the levels of these hormones and focus on the mechanisms responsible for the cancer preventive effects. We propose that IF and PF can reduce tumor incidence both by delaying aging and preventing DNA damage and immunosenescence and also by killing damaged, pre-cancerous and cancer cells.
Collapse
Affiliation(s)
- Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Mario Giuseppe Mirisola
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| | - Valter D. Longo
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
29
|
Induri SNR, Kansara P, Thomas SC, Xu F, Saxena D, Li X. The Gut Microbiome, Metformin, and Aging. Annu Rev Pharmacol Toxicol 2021; 62:85-108. [PMID: 34449247 DOI: 10.1146/annurev-pharmtox-051920-093829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metformin has been extensively used for the treatment of type 2 diabetes, and it may also promote healthy aging. Despite its widespread use and versatility, metformin's mechanisms of action remain elusive. The gut typically harbors thousands of bacterial species, and as the concentration of metformin is much higher in the gut as compared to plasma, it is plausible that microbiome-drug-host interactions may influence the functions of metformin. Detrimental perturbations in the aging gut microbiome lead to the activation of the innate immune response concomitant with chronic low-grade inflammation. With the effectiveness of metformin in diabetes and antiaging varying among individuals, there is reason to believe that the gut microbiome plays a role in the efficacy of metformin. Metformin has been implicated in the promotion and maintenance of a healthy gut microbiome and reduces many age-related degenerative pathologies. Mechanistic understanding of metformin in the promotion of a healthy gut microbiome and aging will require a systems-level approach. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sri Nitya Reddy Induri
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Payalben Kansara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; .,Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| |
Collapse
|
30
|
Santangelo R, Giuffrida ML, Satriano C, Tomasello MF, Zimbone S, Copani A. β-amyloid monomers drive up neuronal aerobic glycolysis in response to energy stressors. Aging (Albany NY) 2021; 13:18033-18050. [PMID: 34290150 PMCID: PMC8351713 DOI: 10.18632/aging.203330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer’s disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of β-amyloid protein (Aβ) enhance glucose uptake in neurons, and that endogenous Aβ is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aβ tone and re-established by the exogenous addition of synthetic Aβ monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aβ release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer’s disease could be linked to factors interfering with release and functions of Aβ monomers.
Collapse
Affiliation(s)
- Rosa Santangelo
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania 95125, Italy
| | | | - Stefania Zimbone
- Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| | - Agata Copani
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy.,Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| |
Collapse
|
31
|
Adherence to low-carbohydrate diet in relation to gastric cancer: findings from a case-control study in Iran. Eur J Cancer Prev 2021; 30:297-303. [PMID: 34103461 DOI: 10.1097/cej.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the association between adherence to low carbohydrate diet (LCD) and risk of gastric cancer (GC). This hospital-based case-control study was conducted in Iran Cancer Institute, Tehran, Iran between 2010 and 2012. Totally, 178 patients with GC and 276 apparently healthy controls participated in this study. Cases were histo-pathologically confirmed GC patients aged ≥40 years diagnosed with GC in the last year. Dietary intakes were assessed using a validated 146-item Diet History Questionnaire. We computed the LCD score trough the protocol explained by Halton. Patients with GC were older (60.8 vs. 53.2 years, P < 0.001) and more likely to be male (74.2 vs. 63.8%, P = 0.02), married (97.8 vs. 86.6%, P < 0.001) and illiterate (62.4% vs. 26.1%, P < 0.001) than controls. Before adjusting for covariates, adherence to LCD-diet was not associated with risk of GC [odds ratio (OR) 1.31; 95% confidence interval (CI) 0.82-2.09 for highest vs. lowest tertile; Ptrend < 0.26]. Adjustments for several potential confounders including H-pylori infection and BMI, participants in the highest tertile of LCD score were 7% more likely to have GC than those in the lowest tertile; however, it was not statistically significant (OR 1.07; 95% CI 0.59-1.95 for highest vs. lowest tertile; Ptrend < 0.79). No significant association was also seen between adherence to animal- or vegetable-based LCD diet and risk of GC. In conclusion, we failed to find any evidence on the association between consumption of LCD and odds of GC. Further studies, in particular of prospective design, are required to confirm these findings.
Collapse
|
32
|
Klement RJ, Meyer D, Kanzler S, Sweeney RA. Ketogenic diets consumed during radio-chemotherapy have beneficial effects on quality of life and metabolic health in patients with rectal cancer. Eur J Nutr 2021; 61:69-84. [PMID: 34175978 DOI: 10.1007/s00394-021-02615-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Interest in ketogenic diets (KDs) as complementary nutritional treatments for cancer patients is rising, although some skepticism about their safety exists. We, therefore, studied the effects of KDs on quality of life and blood parameters in rectal cancer patients undergoing radio-chemotherapy. METHODS EORTC-QLQ30 questionnaire scores and different metabolic and hormonal blood parameters were obtained prior to, in the middle of and at the end of radiotherapy within the KETOCOMP study (ClinicalTrials.gov Identifier: NCT02516501). A total of 18 patients consuming a KD were compared to 23 patients consuming their standard diet (SD). Baseline-end differences were measured using Wilcoxon tests, and repeated measures analysis was performed using linear mixed effects models. RESULTS Eighty-nine percent of patients on the KD reported subjectively feeling good or very good, but roughly half of them rated the daily routine implementation as difficult. Only the SD group experienced significant declines in physical and role functioning, while the KD group improved in role (p = 0.045), emotional (p = 0.018) and social functioning (p = 0.009).Urinary frequency, buttock pain and fatigue significantly increased in the SD group, but to a much lesser extent in the KD group. Several biomarkers of metabolic health (gamma-glutamyl-transpeptidase, triglyceride-glucose index, HDL cholesterol/triglyceride ratio, and free T3) improved in the KD, but not the SD group. CONCLUSIONS Despite being perceived as difficult to implement by ≈50% of patients, KDs are feasible as complementary therapies alongside radio-chemotherapy and associated with subjective well-being. The hypothesis that they exert beneficial effects on quality of life and metabolic health in rectal cancer patients is supported by our data. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02516501, registered Aug 6th 2015.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Detlef Meyer
- Darmzentrum Leopoldina Hospital, Schweinfurt, Germany
| | | | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.,Darmzentrum Leopoldina Hospital, Schweinfurt, Germany
| |
Collapse
|
33
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
34
|
Poljsak B, Kovač V, Levec T, Milisav I. Nature Versus Nurture: What Can be Learned from the Oldest-Old's Claims About Longevity? Rejuvenation Res 2021; 24:262-273. [PMID: 33544039 DOI: 10.1089/rej.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beneficial genetic or environmental factors that influence the length and quality of life can be evaluated while studying supercentenarians. The oldest-old can withstand serious/fatal illnesses more than their peers and/or their aging rate is decreased. Supercentenarians are an interesting group of individuals whose lifestyle is not particularly healthy according to the common guidelines, namely some of them seem to have similar harmful behaviors, but still manage to stay healthier for longer, and while eventually dying from the same degenerative diseases as the general population, they develop symptoms 20-30 years later. As there are not many supercentenarians by definition, it is worthwhile to diligently collect their data to enable future meta-analyses on larger samples; much can be learned from supercentenarians' habits and lifestyle choices about the aging process. Contributions of genetics, lifestyle choices, and epigenetics to their extended life span are discussed here.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Levec
- Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Klement RJ, Weigel MM, Sweeney RA. A ketogenic diet consumed during radiotherapy improves several aspects of quality of life and metabolic health in women with breast cancer. Clin Nutr 2021; 40:4267-4274. [DOI: 10.1016/j.clnu.2021.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
|
36
|
Klement RJ, Koebrunner PS, Meyer D, Kanzler S, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: IV. Final results of the KETOCOMP study for rectal cancer patients. Clin Nutr 2021; 40:4674-4684. [PMID: 34233255 DOI: 10.1016/j.clnu.2021.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Obesity and low muscle mass are associated with worse outcomes of colorectal cancer patients. We conducted a controlled trial to study the impact of a ketogenic diet (KD) based on natural foods versus an unspecified standard diet (SD) on body composition in rectal cancer patients undergoing radiotherapy. METHODS Patients with non-metastasized rectal cancer were allocated to either the KD (N = 24) or the SD (N = 25) group during radiotherapy. Body composition was measured weekly by bioimpedance analysis and analyzed using linear mixed effects models. Pathologic response in patients undergoing neoadjuvant treatment was evaluated at the time of surgery. RESULTS A total of 18 KD and 23 SD patients completed the study and were eligible for analysis. The SD group experienced no noteworthy changes in any body composition parameter. In contrast, patients in the KD group lost significant amounts of body weight and fat mass, averaging 0.5 and 0.65 kg/week (p < 0.0001). There was a rapid loss of intracellular water consistent with initial intramuscular glycogen and water depletion, but skeletal muscle tissue was conserved. Pathological tumor responses were somewhat greater in the KD group, with a larger mean Dworak regression grade (p = 0.072) and larger percentage of near-complete (yT0N0 or yT1N1) responses (43 versus 15%, p = 0.116) that almost reached statistical significance in intention-to-treat analysis (50% versus 14%, p = 0.018). CONCLUSIONS In rectal cancer patients undergoing curative radiotherapy, a KD significantly reduced body weight and fat mass while preserving skeletal muscle mass. We could demonstrate a trend for KDs contributing synergistically to pathological tumor response, a finding in line with preclinical data that warrants future confirmation in larger studies. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02516501, registered on August 06, 2015.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany.
| | - Petra S Koebrunner
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
| | - Detlef Meyer
- Darmkrebszentrum, Leopoldina Hospital, Schweinfurt, Germany
| | - Stefan Kanzler
- Darmkrebszentrum, Leopoldina Hospital, Schweinfurt, Germany
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany; Darmkrebszentrum, Leopoldina Hospital, Schweinfurt, Germany
| |
Collapse
|
37
|
Zhang Y, Zhang T, Yang W, Chen H, Geng X, Li G, Chen H, Wang Y, Li L, Sun B. Beneficial Diets and Pancreatic Cancer: Molecular Mechanisms and Clinical Practice. Front Oncol 2021; 11:630972. [PMID: 34123787 PMCID: PMC8193730 DOI: 10.3389/fonc.2021.630972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high invasiveness, easy metastatic ability, and chemoresistance. Patients with PC have an extremely low survival rate due to the difficulty in early diagnosis. It is estimated that nearly 90% of PC cases are caused by environmental risk factors. Approximately 50% of PC cases are induced by an unhealthy diet, which can be avoided. Given this large attribution to diet, numerous studies have assessed the relationship between various dietary factors and PC. This article reviews three beneficial diets: a ketogenic diet (KD), a Mediterranean diet (MD), and a low-sugar diet. Their composition and impact mechanism are summarized and discussed. The associations between these three diets and PC were analyzed, and we aimed to provide more help and new insights for the prevention and treatment of PC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
38
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
39
|
Low Carb and Ketogenic Diets Increase Quality of Life, Physical Performance, Body Composition, and Metabolic Health of Women with Breast Cancer. Nutrients 2021; 13:nu13031029. [PMID: 33806775 PMCID: PMC8004887 DOI: 10.3390/nu13031029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) patients often ask for a healthy diet. Here, we investigated a healthy standard diet (SD), a low carb diet (LCD), and a ketogenic diet (KD) for BC patients during the rehabilitation phase. KOLIBRI was an open-label non-randomized one-site nutritional intervention trial, combining inpatient and outpatient phases for 20 weeks. Female BC patients (n = 152; mean age 51.7 years) could select their diet. Data collected were: Quality of life (QoL), spiroergometry, body composition, and blood parameters. In total 30, 92, and 30 patients started the KD, LCD, and SD, respectively. Of those, 20, 76, and 25 completed the final examination. Patients rated all diets as feasible in daily life. All groups enhanced QoL, body composition, and physical performance. LCD participants showed the most impressive improvement in QoL aspects. KD participants finished with a very good physical performance and muscle/fat ratio. Despite increased cholesterol levels, KD patients had the best triglyceride/high-density lipoprotein (HDL) ratio and homeostatic model assessment of insulin resistance index (HOMA-IR). Most metabolic parameters significantly improved in the LCD group. SD participants ended with remarkably low cholesterol levels but did not improve triglyceride/HDL or HOMA-IR. In conclusion, both well-defined KDs and LCDs are safe and beneficial for BC patients and can be recommended during the rehabilitation phase.
Collapse
|
40
|
Zimmermann A, Madreiter-Sokolowski C, Stryeck S, Abdellatif M. Targeting the Mitochondria-Proteostasis Axis to Delay Aging. Front Cell Dev Biol 2021; 9:656201. [PMID: 33777963 PMCID: PMC7991595 DOI: 10.3389/fcell.2021.656201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Human life expectancy continues to grow globally, and so does the prevalence of age-related chronic diseases, causing a huge medical and economic burden on society. Effective therapeutic options for these disorders are scarce, and even if available, are typically limited to a single comorbidity in a multifaceted dysfunction that inevitably affects all organ systems. Thus, novel therapies that target fundamental processes of aging itself are desperately needed. In this article, we summarize current strategies that successfully delay aging and related diseases by targeting mitochondria and protein homeostasis. In particular, we focus on autophagy, as a fundamental proteostatic process that is intimately linked to mitochondrial quality control. We present genetic and pharmacological interventions that effectively extend health- and life-span by acting on specific mitochondrial and pro-autophagic molecular targets. In the end, we delve into the crosstalk between autophagy and mitochondria, in what we refer to as the mitochondria-proteostasis axis, and explore the prospect of targeting this crosstalk to harness maximal therapeutic potential of anti-aging interventions.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | | | - Sarah Stryeck
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
41
|
Wang B, Tanaka K, Katsube T, Maruyama K, Ninomiya Y, Varès G, Liu C, Hirakawa H, Murakami M, Fardous Z, Sultana N, Fujita K, Fujimori A, Nakajima T, Nenoi M. Reduced High-Dose Radiation-Induced Residual Genotoxic Damage by Induction of Radioadaptive Response and Prophylactic Mild Dietary Restriction in Mice. Dose Response 2021; 19:1559325820982166. [PMID: 33628149 PMCID: PMC7883164 DOI: 10.1177/1559325820982166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Hirakawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Nahida Sultana
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Kazuko Fujita
- Department of Pathology, School of Medicine, Toho University, Tokyo, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
42
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
43
|
Barrea L, Caprio M, Tuccinardi D, Moriconi E, Di Renzo L, Muscogiuri G, Colao A, Savastano S. Could ketogenic diet "starve" cancer? Emerging evidence. Crit Rev Food Sci Nutr 2020; 62:1800-1821. [PMID: 33274644 DOI: 10.1080/10408398.2020.1847030] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells (CCs) predominantly use aerobic glycolysis (Warburg effect) for their metabolism. This important characteristic of CCs represents a potential metabolic pathway to be targeted in the context of tumor treatment. Being this mechanism related to nutrient oxidation, dietary manipulation has been hypothesized as an important strategy during tumor treatment. Ketogenic diet (KD) is a dietary pattern characterized by high fat intake, moderate-to-low protein consumption, and very-low-carbohydrate intake (<50 g), which in cancer setting may target CCs metabolism, potentially influencing both tumor treatment and prognosis. Several mechanisms, far beyond the originally proposed inhibition of glucose/insulin signaling, can underpin the effectiveness of KD in cancer management, ranging from oxidative stress, mitochondrial metabolism, and inflammation. The role of a qualified Nutritionist is essential to reduce and manage the short and long-term complications of this dietary therapy, which must be personalized to the individual patient for the planning of tailored KD protocol in cancer patients. In the present review, we summarize the proposed antitumor mechanisms of KD, the application of KD in cancer patients with obesity and cachexia, and the preclinical and clinical evidence on KD therapy in cancer.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | |
Collapse
|
44
|
Koobotse MO, Schmidt D, Holly JMP, Perks CM. Glucose Concentration in Cell Culture Medium Influences the BRCA1-Mediated Regulation of the Lipogenic Action of IGF-I in Breast Cancer Cells. Int J Mol Sci 2020; 21:E8674. [PMID: 33212987 PMCID: PMC7698585 DOI: 10.3390/ijms21228674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023] Open
Abstract
Hyperglycaemia is a common metabolic alteration associated with breast cancer risk and progression. We have previously reported that BRCA1 restrains metabolic activity and proliferative response to IGF-I anabolic actions in breast cancer cells cultured in high glucose. Here, we evaluated the impact of normal physiological glucose on these tumour suppressive roles of BRCA1. Human breast cancer cells cultured in normal physiological and high glucose were treated with IGF-I (0-500 ng/mL). Cellular responses were evaluated using immunoblotting, co-immunoprecipitation, and cell viability assay. As we previously reported, IGF-I induced ACCA dephosphorylation by reducing the association between BRCA1 and phosphorylated ACCA in high glucose, and upregulated FASN abundance downstream of ACCA. However, these effects were not observed in normal glucose. Normal physiological glucose conditions completely blocked IGF-I-induced ACCA dephosphorylation and FASN upregulation. Co-immunoprecipitation studies showed that normal physiological glucose blocked ACCA dephosphorylation by increasing the association between BRCA1 and phosphorylated ACCA. Compared to high glucose, the proliferative response of breast cancer cells to IGF-I was reduced in normal glucose, whereas no difference was observed in normal mammary epithelial cells. Considering these results collectively, we conclude that normal physiological glucose promotes the novel function of BRCA1 as a metabolic restraint of IGF-I actions. These data suggest that maintaining normal glucose levels may improve BRCA1 function in breast cancer and slow down cancer progression.
Collapse
Affiliation(s)
- Moses O. Koobotse
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
- Faculty of Health Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Plot 4775, Botswana
| | - Dayane Schmidt
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| | - Jeff M. P. Holly
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| |
Collapse
|
45
|
Champ CE, Klement RJ. Assessing successful completion of calorie restriction studies for the prevention and treatment of cancer. Nutrition 2020; 78:110829. [DOI: 10.1016/j.nut.2020.110829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
|
46
|
Klement RJ, Champ CE, Kämmerer U, Koebrunner PS, Krage K, Schäfer G, Weigel M, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: III-final results of the KETOCOMP study for breast cancer patients. Breast Cancer Res 2020; 22:94. [PMID: 32819413 PMCID: PMC7441712 DOI: 10.1186/s13058-020-01331-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background Obesity and low muscle mass are associated with worse outcomes of breast cancer patients. We conducted a controlled trial to study the impact of a ketogenic diet (KD) based on natural foods versus an unspecified standard diet (SD) on body composition in breast cancer patients undergoing radiotherapy. Methods Patients with non-metastasized breast cancer were allocated to either the KD (N = 32) or the SD (N = 31) during radiotherapy. Body composition was measured weekly by bioimpedance analysis. Blood parameters and quality of life were assessed before, during, and at the end of radiotherapy. Results A total of 29 KD and 30 SD patients completed the study. During radiotherapy, mean and median fasting BHB concentrations in the KD group were 0.72 and 0.49 mmol/l (range 0.06–4.9) which was significantly higher than those in the SD group (p < 2.2 × 10−16). There was a very small and insignificant increase in body weight and fat mass in the SD group, as well as a decrease of fat free mass. In contrast, patients in the KD group lost body weight and fat free and skeletal muscle mass quickly after diet onset, which for the most part was related to water losses. The KD did not cause further substantial changes in fat free or skeletal muscle mass, but was associated with a gradual decrease of 0.4 kg body weight and fat mass per week (p < 0.0001). The KD significantly decreased free T3 levels by 0.06 pg/ml/week (p = 6.3 × 10−5). Global quality of life remained stable in the SD group but increased in the KD group from a score of 66.7 to 75.0 (p = 0.20). Conclusions In breast cancer patients undergoing curative radiotherapy, a KD based on natural foods is feasible. After initial water losses, the KD tends to reduce body weight and fat mass while preserving fat free and skeletal muscle mass. Trial registration ClinicalTrials.gov identifier: NCT02516501, registered on August 06, 2015.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Colin E Champ
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University Hospital of Würzburg, Würzburg, Germany
| | - Petra S Koebrunner
- Department of Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Kelley Krage
- Department of Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Gabriele Schäfer
- Department of Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - M Weigel
- Department of Obstetrics and Gynaecology, Leopoldina Hospital, Breast Cancer Centre, Schweinfurt, Germany
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
47
|
Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020; 32:15-30. [PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Collapse
Affiliation(s)
- Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
48
|
Klement RJ. Addressing the controversial role of ketogenic diets in cancer treatment. Expert Rev Anticancer Ther 2020; 20:329-332. [PMID: 32212835 DOI: 10.1080/14737140.2020.1747438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
49
|
Xiao H, Huang X, Wang S, Liu Z, Dong R, Song D, Dai H. Metformin ameliorates bleomycin-induced pulmonary fibrosis in mice by suppressing IGF-1. Am J Transl Res 2020; 12:940-949. [PMID: 32269725 PMCID: PMC7137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease, which is characterized by the progressive deterioration in lung function. In the pathogenesis of IPF, insulin-like growth factor-1 (IGF-1) has been found to be heavily involved. Metformin, a commonly used oral antidiabetic agent, is known to inhibit IGF-1 by the reversal of hyperinsulinemia. In this study, we evaluated the effects of metformin in pulmonary fibrosis in C57/BL6J mice, and further understand the role of IGF-1 signaling pathway involving in this process. Pulmonary fibrosis was induced experimentally in these mice by the intratracheal injection of bleomycin (BLM). Metformin was given orally the day before or 14 days after bleomycin injection, while pirfenidone was used as the positive control. Our study showed that intratracheal injection of bleomycin induced pulmonary fibrosis in mice, with observed elevation in collagen, fibronectin and α-SMA level, characterized by the enhanced IGF-1 and PI3K expression. Metformin was able to inhibit these effects significantly, and its antifibrotic effect had no marked difference with pirfenidone. Our results show that metformin attenuates bleomycin-induced pulmonary fibrosis via IGF-1 pathway.
Collapse
Affiliation(s)
- Huijuan Xiao
- Department of Respiratory Medicine, Capital Medical UniversityBeijing 100054, P. R. China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center for Respiratory DiseasesBeijing 100029, P. R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijing 100029, P. R. China
| | - Xiaoxi Huang
- Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing 100020, P. R. China
| | - Shiyao Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center for Respiratory DiseasesBeijing 100029, P. R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijing 100029, P. R. China
| | - Zheng Liu
- Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing 100020, P. R. China
| | - Run Dong
- Department of Respiratory Medicine, Zhengzhou Central HospitalZhengzhou, P. R. China
| | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center for Respiratory DiseasesBeijing 100029, P. R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijing 100029, P. R. China
| | - Huaping Dai
- Department of Respiratory Medicine, Capital Medical UniversityBeijing 100054, P. R. China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center for Respiratory DiseasesBeijing 100029, P. R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijing 100029, P. R. China
| |
Collapse
|
50
|
Vatseba TS, Sokolova LK, Pushkarev VV, Kovzun OI, Guda BB, Pushkarev VM, Tronko MD. Activation of the PI3K/Akt/mTOR/p70S6K1 Signaling Cascade in the Mononuclear Cells of Peripheral Blood: Association with Insulin and Insulin-Like Growth Factor Levels in the Blood of Patients with Cancer and Diabetes. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|