1
|
Mjaess G, Roumeguère T, Korpak K, Van Antwerpen P, Zouaoui Boudjeltia K. Fatty acid diet and prostate cancer: a treasure hunt or a wild goose chase? Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00854-8. [PMID: 38890423 DOI: 10.1038/s41391-024-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Georges Mjaess
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium.
| | - Thierry Roumeguère
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| |
Collapse
|
2
|
Siddiqui N, Saifi A, Chaudhary A, Tripathi PN, Chaudhary A, Sharma A. Multifaceted Neuroprotective Role of Punicalagin: A Review. Neurochem Res 2024; 49:1427-1436. [PMID: 38085406 DOI: 10.1007/s11064-023-04081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 05/21/2024]
Abstract
Millions of people worldwide are currently afflicted with neurologic conditions like a seizure, depression, stress, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, the precise etiopathology of these diseases is still unknown. Substantial studies are being conducted to discover more treatments against these disorders because many patients do not experience the therapeutic benefits that would be expected from using existing pharmaceutical strategies. Herbal medicines which have been used in traditional medicine for millennia to treat various neurological problems are also being investigated and scientifically assessed. Punicalagin is a known polyphenol that has significant antioxidant, anti-inflammatory, anti-viral, anti-proliferative, and anti-cancer properties. Around the world, traditional use of herbal drugs is gaining wider acceptance as a part of complementary and alternative medicine. The scientific community should pay attention to these many neuroprotective pharmacodynamic activities of Punicalagin to create effective pharmacotherapeutic plans, as evidenced by mounting data in pre-clinical research investigations. The current review describes the recent studies on the pharmacological effects of Punicalagin in a variety of neurological illnesses and paves the way for further study in this field.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| |
Collapse
|
3
|
Sreekumar A, Simmons MN, Lee TJ, Sharma A, Saini S. Therapeutic potential of pomegranate juice-derived nanovesicles in nude mouse benign prostatic hyperplasia (BPH) xenograft model. Sci Rep 2023; 13:12427. [PMID: 37528206 PMCID: PMC10394011 DOI: 10.1038/s41598-023-39511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms affect a large percentage of the male population and places a substantial burden on the world health system. Current therapies include 5-alpha reductase inhibitors and alpha-blockers that are only partially effective and pose a huge economic burden, emphasizing the urgent need for effective, economical therapies. We isolated nanovesicles from pomegranate juice (Punica Granatum) (referred to as 'POM-NVs') and report to our knowledge for the first time, that these vesicles possess therapeutic potential against BPH. Following extensive characterization of POM-NVs, we tested their therapeutic potential in vitro using BPH1 cell line and identified a potential anti-proliferative and pro-apoptotic effect. We further tested these vesicles using a clinically relevant xenograft mouse BPH model derived from human BPH tissues. Remarkably, POM-NVs could reverse the BPH phenotype conferred by TGF-β mediated signaling and induced epithelial-to-mesenchymal (EMT) reversal, leading to the restoration of prostate epithelial states in vivo and in vitro. Furthermore, these vesicles attenuated bone morphogenic protein 5 (BMP5) signaling, a cardinal alteration that is instrumental in driving BPH. Considering the large incidences of BPH and its associated economic burdens, our study has important implications and can potentially improve the clinical management of BPH.
Collapse
Affiliation(s)
- Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
5
|
Impact of Pomegranate Juice on the Pharmacokinetics of CYP3A4- and CYP2C9-Mediated Drugs Metabolism: A Preclinical and Clinical Review. Molecules 2023; 28:molecules28052117. [PMID: 36903363 PMCID: PMC10003857 DOI: 10.3390/molecules28052117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
The Punica granatum L. (pomegranate) fruit juice contains large amounts of polyphenols, mainly tannins such as ellagitannin, punicalagin, and punicalin, and flavonoids such as anthocyanins, flavan-3-ols, and flavonols. These constituents have high antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, and anticancer activities. Because of these activities, many patients may consume pomegranate juice (PJ) with or without their doctor's knowledge. This may raise any significant medication errors or benefits because of food-drug interactions that modulate the drug's pharmacokinetics or pharmacodynamics. It has been shown that some drugs exhibited no interaction with pomegranate, such as theophylline. On the other hand, observational studies reported that PJ prolonged the pharmacodynamics of warfarin and sildenafil. Furthermore, since it has been shown that pomegranate constituents inhibit cytochrome P450 (CYP450) activities such as CYP3A4 and CYP2C9, PJ may affect intestinal and liver metabolism of CYP3A4 and CYP2C9-mediated drugs. This review summarizes the preclinical and clinical studies that investigated the impact of oral PJ administration on the pharmacokinetics of drugs that are metabolized by CYP3A4 and CYP2C9. Thus, it will serve as a future road map for researchers and policymakers in the fields of drug-herb, drug-food and drug-beverage interactions. Preclinical studies revealed that prolonged administration of PJ increased the absorption, and therefore the bioavailability, of buspirone, nitrendipine, metronidazole, saquinavir, and sildenafil via reducing the intestinal CYP3A4 and CYP2C9. On the other hand, clinical studies are limited to a single dose of PJ administration that needs to be protocoled with prolonged administration to observe a significant interaction.
Collapse
|
6
|
Pantiora PD, Balaouras AI, Mina IK, Freris CI, Pappas AC, Danezis GP, Zoidis E, Georgiou CA. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants (Basel) 2023; 12:187. [PMID: 36671048 PMCID: PMC9855163 DOI: 10.3390/antiox12010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.
Collapse
Affiliation(s)
- Panagiota D. Pantiora
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Ioanna K. Mina
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos I. Freris
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios P. Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
7
|
Bauer-Büntzel C, Büntzel J, Zomorodbakhsch B, Keinki C. [Phytotherapy in uro-oncology]. UROLOGIE (HEIDELBERG, GERMANY) 2023; 62:3-10. [PMID: 36445447 DOI: 10.1007/s00120-022-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Complementary and alternative medicine (CAM) is used by about 40-90% of all patients with cancer. CAM also includes phytotherapy, which is considered to be a biologically based therapy. Depending on the survey, the users of phytotherapy account for up to 80%. The intention of the users is to fight cancer or to alleviate its symptoms. OBJECTIVES Frequently used phytotherapeutics with their level of evidence and possible pitfalls are presented in a narrative review. Special attention is given to the uro-oncological context. MATERIALS AND METHODS Popular phytotherapeutics (mistletoe, pomegranate, aloe vera, sage, ginger, ginseng) as well as three uronephrological plants (juniper, horsetail, bearberry) are classified and evaluated according to existing guidelines and by using a selective literature search. RESULTS A total of nine plants were considered. Currently, there is no sufficient evidence for the use of pomegranate or mistletoe for tumor therapy. Guideline recommendations for or against symptom-oriented use exist for ginger (nausea; may be used), ginseng (fatigue; may be used), aloe vera (radiation dermatitis, should not be recommend), and bearberry (recurrent cystitis, may be used). A small number of studies on other symptoms and medicinal plants could be found (e.g., ginger - xerostomia, aloe vera - constipation, sage - oral mucositis or sweating). CONCLUSIONS An integration of phytotherapeutic drugs into uro-oncological treatments concept can be considered. The benefits and risks of complementary herbal medicines (e.g., potential interactions with tumor therapy) must always be carefully weighed.
Collapse
Affiliation(s)
| | - Judith Büntzel
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | | | - Christian Keinki
- Medizinische Klinik II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Deutschland.
| |
Collapse
|
8
|
Application of the Extracts of Punica granatum in Oral Cancer: Scoping Review. Dent J (Basel) 2022; 10:dj10120234. [PMID: 36547050 PMCID: PMC9777185 DOI: 10.3390/dj10120234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The Punica granatum L. is an ancient fruit plant native to south-western Asia. It belongs to the Litraceae family and of its genus we have only one other Punica protopunic species. The fruit is rich in polyphenols, whose extract is consumed as a food and is considered safe. In medicine, it is used for its antioxidant properties; it has a rich component of tannic polyphenols among which the most bioactive are: punicalagin (flavonoids) and anthocyanins (delphinidin, cyanidin, pelargonidin), which are found mainly in the skins and in the pericarp; however, all the parts of the Punica granatum are used for therapeutic purposes as anti-inflammatories and analgesics and in diabetes and cardio-vascular disease. Punica granatum extracts also show interesting anticancer activities in influencing tumorgenesis and angiogenesis and cell transformation and proliferation. The purpose of this scoping review is to summarize all the scientific evidence on the possible applications of Punica granatum extracts in the treatment and prevention of oral cavity tumors to investigate the anticancer properties of the active ingredients extracted from Punica granatum. Methods: The scoping review was carried out following the PRISMA-ScR checklist; the search was performed on three databases (Scopus, Science direct and PubMed) and one registry (Cochrane library). Results: The search produced a number of bibliographic sources equal to 11,403; with the removal of duplicates, 670 potentially admissible articles were obtained, from 24 of which only 7 in vitro studies on OSCC cell lines were included. Conclusions: From the preliminary data on the cellular lines of OSCC, it emerges that for oral cancer there are conditions for which the extracts of Punic granatum are effective at least from a prevention perspective.
Collapse
|
9
|
Possible Beneficial Effects of Fresh Pomegranate Juice in SARS-CoV-2 Infection Conditions. J Nutr Metab 2022; 2022:5134560. [PMID: 35287379 PMCID: PMC8917946 DOI: 10.1155/2022/5134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Rather than the prophylactic vaccination, any effective synthetic, natural, or nutritional therapy or regimen that may cure or remedy, albeit partially, the complications of SARS-CoV-2 should be highly acknowledged. Here, we reviewed and discussed possible beneficial biological effects of pomegranate juice in such diseased condition of viral infection based on the current published evidence (direct and indirect) and owing to the robust evidence that fresh pomegranate juice is highly rich with unique bioactive compounds that are approved in various occasions to be effective in several chronic diseased conditions. All related references that serve our aim are accessed through available electronic databases, particularly PubMed and Scopus. In summary, there is accepted evidence that pomegranate juice may be beneficial in SARS-CoV-2 infection conditions, especially for patients with the clinical history of chronic diseases such as hypertension, cardiovascular disease, diabetes, and cancer. However, the interventional studies that directly probe and confirm the effectiveness of fresh pomegranate juice in the management of SARS-CoV-2 infection are mandatory.
Collapse
|
10
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
11
|
Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann N Y Acad Sci 2021; 1508:54-77. [PMID: 34636052 DOI: 10.1111/nyas.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Recent data strongly indicate a relationship between prostate health and gut microbiota, in which composition and physiological function strictly depend on dietary patterns. The bidirectional interplay of foods containing polyphenols, such as ellagitannins, condensed tannins, lignans, isoflavones, and prenylated flavonoids with human gut microbiota, has been proven to contribute to their impact on prostate health. Considering the attributed role of dietary polyphenols in the prevention of prostate diseases, this paper aims to critically review the studies concerning the influence of polyphenols' postbiotic metabolites on processes associated with the pathophysiology of prostate diseases. Clinical, in vivo, and in vitro studies on polyphenols have been juxtaposed with the current knowledge regarding their pharmacokinetics, microbial metabolism, and potential interactions with microbiota harboring different niches of the human organism. Directions of future research on dietary polyphenols regarding their interaction with microbiota and prostate health have been indicated.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Stanisławska
- Faculty of Pharmacy, Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Wong TL, Strandberg KR, Croley CR, Fraser SE, Nagulapalli Venkata KC, Fimognari C, Sethi G, Bishayee A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin Cancer Biol 2021; 73:265-293. [DOI: 10.1016/j.semcancer.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
|
13
|
Anjaly K, Tiku AB. MicroRNA mediated therapeutic effects of natural agents in prostate cancer. Mol Biol Rep 2021; 48:5759-5773. [PMID: 34304390 DOI: 10.1007/s11033-021-06575-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several natural products, extensively studied for their anticancer activities, have been found to play an efficient role in preventing prostate cancer (PCa). Recently many natural agents have been reported to modulate microRNAs (miRNAs), that are involved in cancer cell growth. The microRNAs are endogenous small noncoding ribonucleic acid molecules that regulate various biological processes through an elegant mechanism of post-transcriptional control of gene expression. Besides being involved in cancer initiation, progression, angiogenesis, inflammation, they have been reported to be responsible for chemoresistance, and radioresistance of tumors. The dysregulated miRNA expression has been associated with many cancers including PCa. Over the past several years, it has been found that natural agents are good regulators of miRNAs and have a role in PCa also. Understanding the molecular mechanisms involving miRNAs by natural agents could result in developing useful strategies to combat this deadly disease. METHODS In order to collect research articles, the PubMed search engine was used with keywords 'prostate cancer' and 'natural agents' and 2007 papers were retrieved, further refinement with keywords 'phytochemical' and 'prostate cancer' showed 503 papers. Data was collected from research articles, published from 2010 to 2021. From these, research articles showing miRNA-mediated mechanisms were selected. RESULTS In this review, we have summarized the information available on the modulation of miRNAs by natural agents, their derivatives, and various combinatorial strategies with chemo/radiation therapy for the mitigation of PCa. CONCLUSIONS Based on the current review of literature, it has been found that the use of natural agents is a novel approach for altering miRNA expression strongly associated with PCa development, recurrence and resistance.
Collapse
Affiliation(s)
- Km Anjaly
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A B Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Venusova E, Kolesarova A, Horky P, Slama P. Physiological and Immune Functions of Punicalagin. Nutrients 2021; 13:nu13072150. [PMID: 34201484 PMCID: PMC8308219 DOI: 10.3390/nu13072150] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
The aim of this publication is to compile a summary of the findings regarding punicalagin in various tissues described thus far in the literature, with an emphasis on the effect of this substance on immune reactions. Punicalagin (PUN) is an ellagitannin found in the peel of pomegranate (Punica granatum). It is a polyphenol with proven antioxidant, hepatoprotective, anti-atherosclerotic and chemopreventive activities, antiproliferative activity against tumor cells; it inhibits inflammatory pathways and the action of toxic substances, and is highly tolerated. This work describes the source, metabolism, functions and effects of punicalagin, its derivatives and metabolites. Furthermore, its anti-inflammatory and antioxidant effects are described.
Collapse
Affiliation(s)
- Eva Venusova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +420-545133146
| |
Collapse
|
15
|
[Complementary medicine in uro-oncology]. Urologe A 2021; 60:953-962. [PMID: 34129061 DOI: 10.1007/s00120-021-01584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Complementary and alternative medicine (CAM) is widespread in oncology patients with a user rate of approximately 40-50%. An accompanying supportive effect can arise through improved adherence, especially in long-term (e.g. endocrine) therapies through active patient involvement. When assessing the evidence on frequently requested methods, there is no high-quality evidence that homeopathy or anthroposophy leads to an improved prognosis. Mistletoe therapy can be considered to improve the quality of life, although the data quality is weak. In prostate cancer, pomegranate has an influence on the prostate-specific antigen. It is currently unclear whether this will also result in an improved prognosis. In contrast the evidence on selenium and vitamin D speaks in favor of integration into the aftercare concept. Supplementation is recommended after the serum level has been determined.
Collapse
|
16
|
Ge S, Duo L, Wang J, Yang J, Li Z, Tu Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113877. [PMID: 33515685 DOI: 10.1016/j.jep.2021.113877] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate, Punica granatum L., has been used in traditional medicine in China and several regions of the world including Ayurveda, Islamic, and Persian for the treatment of atherosclerosis, diabetes, hypertension, hyperlipidemia, and several types of cancer, as well as for peptic ulcer and oral diseases for hundreds of years. Presently, pomegranate is treated as both a "medicine food homology" herbal medicine and a healthy food supplemental product. AIM OF THE STUDY The aim of this work is to develop an overview of pomegranate in the context of the status of its traditional medicine theories, the spread along the Silk Road, ethnopharmacological uses, chemical compositions, pharmacological activities, toxicology, and the involved pathways. MATERIALS AND METHODS Information on P. granatum L. was acquired from published materials, including monographs on medicinal plants, ancient and modern recorded classical texts; and pharmacopoeias and electronic databases (PubMed, Science Direct, Web of Science, Google Scholar, CNKI, and Wanfang Data). RESULTS Pomegranate has been used in many traditional medical systems throughout history. It is widely cultivated in Central Asia and spread throughout China along the Silk Road. Many phytochemicals, such as tannins, organic acids, flavonoids, alkaloids, and volatile oils have been identified from different parts of pomegranate, these compounds have a wide range of activities, including antioxidant, antimicrobial, and anti-oncogenic properties, as well as conferring resistance to cerebrovascular disease. Furthermore, A summary of the four promising pharmacological pathways is provided. CONCLUSIONS The traditional uses, chemical compositions, pharmacological activities, and signaling pathways of pomegranate are summarized comprehensively in the review. It can be treated as a guidance for the future clinical and basic research. The information provided in this review will be very useful for further studies to develop novel therapeutic directions for application of pomegranate.
Collapse
Affiliation(s)
- Shasha Ge
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Lan Duo
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Junqi Wang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, China.
| | - Ya Tu
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China.
| |
Collapse
|
17
|
Jarrard D, Filon M, Huang W, Havighurst T, DeShong K, Kim K, Konety BR, Saltzstein D, Mukhtar H, Wollmer B, Suen C, House MG, Parnes HL, Bailey HH. A phase II randomized placebo-controlled trial of pomegranate fruit extract in men with localized prostate cancer undergoing active surveillance. Prostate 2021; 81:41-49. [PMID: 33095939 DOI: 10.1002/pros.24076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022]
Abstract
INTRODUCTION OR OBJECTIVE Men with favorable-risk prostate cancer (PCa) on active surveillance may benefit from intervention strategies to slow or prevent disease progression and the need for definitive treatment. Pomegranate and its extracts have shown antiproliferative and proapoptotic effects in cell lines and animal models, but its effect on human prostate cancer as a target tissue remain unclear. Objectives of this trial include pomegranate's ability to alter serum and prostate tissue biomarkers and the ability of an active surveillance cohort to adhere to a chemoprevention trial for 1 year. METHODS Men with organ-confined, favorable-risk PCa on AS were randomly assigned to receive pomegranate fruit extract (PFE) 1000 mg (n = 15) or placebo (n = 15) once daily for twelve months. Prostate biopsies were performed at study entry and upon completion of the 1-year intervention. Plasma and urinary biomarkers were analyzed utilizing immunoassays and HPLC. Tissue proteins were assessed by immunohistochemistry (IHC) and measured by automated quantitation. RESULTS PFE was well-tolerated with no significant toxicities. One patient withdrew before study initiation and 29 completed the 1-year intervention. No differences in plasma insulin-like growth factor-1 (IGF-1) levels, prostate-specific antigen doubling time, or biopsy kinetics were observed. Metabolites including urolithin A and urolithin A-gluc were detected more frequently in the PFE arm in both urine and plasma (p < .001 and p = .006, respectively). IHC analyses revealed reductions from baseline in 8-OHdG (a DNA damage marker) (p = .01) and androgen receptor expression (p = .04) in prostate tumor associated with PFE treatment. CONCLUSION PFE administration for 12-month was well-tolerated and the protocol followed in an active surveillance population. Analyses suggest that PFE contains bioactive compounds capable of altering biomarkers involving oxidative stress and androgen signaling in prostate tumor and normal-appearing adjacent tissue. No alterations in the IGF axis were noted. This finding of study adherence and target activity provides a rationale for the further investigation of PFE in the active surveillance population.
Collapse
Affiliation(s)
- David Jarrard
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Environmental and Molecular Toxicology Program, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Mikolaj Filon
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Wei Huang
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tom Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Katina DeShong
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - KyungMann Kim
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Badrinath R Konety
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Saltzstein
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hasan Mukhtar
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Wisconsin
| | - Barbara Wollmer
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Chen Suen
- National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - Howard H Bailey
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Urology San Antonio Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Fahmy H, Hegazi N, El-Shamy S, Farag MA. Pomegranate juice as a functional food: a comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct 2020; 11:5768-5781. [PMID: 32608443 DOI: 10.1039/d0fo01251c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pomegranate (Punica granatum) is an ancient perennial plant species of the Punicaceae family and is regarded as the 'miracle fruit' for its seeds being consumed as food, juice and as a functional food. Significant modern pharmacological and clinical evidence has highlighted the wide medicinal applications of pomegranate fruit parts and its juice. Pomegranate juice (PJ) that is superior to other fruit juices is a fortified source of dietary polyphenols with potential antioxidant capacity. Polyphenols of PJ include tannins, anthocyanins, and flavonoids. The presence of these beneficial phytochemicals is directly linked to its favourable health benefits viz., obesity and diabetes management and anti-inflammatory effects. This comprehensive review capitalizes on PJ with emphasis on the interrelationship between its holistic chemical composition, metabolism and biological effects. Moreover, the review recapitulates on the diverse health benefits of PJ and related patents in the field of PJ production to ensure the best produced juice quality.
Collapse
Affiliation(s)
- Heba Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | | | | | | |
Collapse
|
19
|
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, De Filippis A, Xiao H, Quiles JL, Xiao J, Capanoglu E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.25] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Gizem Catalkaya
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation Faculty of Science and Engineering Maastricht University ‐ Campus Venlo Venlo The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University Maastricht The Netherlands
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Dominique Delmas
- INSERM Research Center U1231 Université de Bourgogne Franche‐Comté Centre anticancéreux Georges François Leclerc Université de Bourgogne Franche‐Comté Dijon 21000 France
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Anna De Filippis
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA USA
| | - José L. Quiles
- Department of Physiology Institute of Nutrition and Food Technology ‘‘José Mataix” Biomedical Research Centre University of Granada Granada Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
20
|
Vučić V, Grabež M, Trchounian A, Arsić A. Composition and Potential Health Benefits of Pomegranate: A Review. Curr Pharm Des 2020; 25:1817-1827. [PMID: 31298147 DOI: 10.2174/1381612825666190708183941] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pomegranate (Punica granatum L.) fruits are widely consumed and used as preventive and therapeutic agents since ancient times. Pomegranate is a rich source of a variety of phytochemicals, which are responsible for its strong antioxidative and anti-inflammatory potential. OBJECTIVE The aim of this review is to provide an up-to-date overview of the current knowledge of chemical structure and potential health benefits of pomegranate. METHODS A comprehensive search of available literature. RESULTS The review of the literature confirms that juice and extracts obtained from different parts of this plant, including fruit peel, seeds, and leaves exert health benefits in both in vitro and in vivo studies. The antidiabetic, antihypertensive, antimicrobial and anti-tumour effects of pomegranate fruit are of particular scientific and clinical interest. CONCLUSION Further investigations are required to clarify the mechanism of action of the bioactive ingredients and to reveal full potential of pomegranate as both preventive and therapeutic agent.
Collapse
Affiliation(s)
- Vesna Vučić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, studentskitry 1, Belgrade, Serbia
| | - Milkica Grabež
- Faculty of Medicine, University of Banja Luka, Bosnia and Herzegovina, Republika Srpska
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan 0025, Armenia
| | - Aleksandra Arsić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, studentskitry 1, Belgrade, Serbia
| |
Collapse
|
21
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
22
|
Reglero C, Reglero G. Precision Nutrition and Cancer Relapse Prevention: A Systematic Literature Review. Nutrients 2019; 11:E2799. [PMID: 31744117 PMCID: PMC6893579 DOI: 10.3390/nu11112799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer mortality rates are undergoing a global downward trend; however, metastasis and relapse after surgery and adjuvant treatments still correlate with poor prognosis and represent the most significant challenges in the treatment of this disease. Advances in genomics, metabolomics, and proteomics are improving our understanding regarding cancer metabolic diversity, resulting in detailed classifications of tumors and raising the effectiveness of precision medicine. Likewise, the growing knowledge of interactions between nutrients and the expression of certain genes could lead to cancer therapies based on precision nutrition strategies. This review aims to identify the recent advances in the knowledge of the mechanistic role of bioactive phytochemicals in foodstuffs in tumor progression, metastasis, and chemo-resistance in order to assess their potential use in precision nutrition therapies targeting relapse in lung, breast, colon, and prostate cancer, and leukemia. A considerable number of bioactive phytochemicals in foodstuffs were identified in the literature with proven effects modulating tumor growth, progression, and metastasis. In addition, the use of foodstuffs in cancer, and specifically in relapse therapies, is being reinforced by the development of different formulations that significantly increase the therapeutic efficiency of these products. This can open the possibility for testing combinations of bioactive phytochemicals with cancer relapse treatments as a potential prevention strategy.
Collapse
Affiliation(s)
- Clara Reglero
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillermo Reglero
- IMDEA Food Institute, 28049 Madrid, Spain;
- Institute of Food Science Research (CIAL), Autónoma de Madrid University, 28049 Madrid, Spain
| |
Collapse
|
23
|
Livingstone TL, Beasy G, Mills RD, Plumb J, Needs PW, Mithen R, Traka MH. Plant Bioactives and the Prevention of Prostate Cancer: Evidence from Human Studies. Nutrients 2019; 11:nu11092245. [PMID: 31540470 PMCID: PMC6769996 DOI: 10.3390/nu11092245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer has become the most common form of non-cutaneous (internal) malignancy in men, accounting for 26% of all new male visceral cancer cases in the UK. The aetiology and pathogenesis of prostate cancer are not understood, but given the age-adjusted geographical variations in prostate cancer incidence quoted in epidemiological studies, there is increasing interest in nutrition as a relevant factor. In particular, foods rich in phytochemicals have been proposed to reduce the risk of prostate cancer. Epidemiological studies have reported evidence that plant-based foods including cruciferous vegetables, garlic, tomatoes, pomegranate and green tea are associated with a significant reduction in the progression of prostate cancer. However, while there is well-documented mechanistic evidence at a cellular level of the manner by which individual dietary components may reduce the risk of prostate cancer or its progression, evidence from intervention studies is limited. Moreover, clinical trials investigating the link between the dietary bioactives found in these foods and prostate cancer have reported varied conclusions. Herein, we review the plant bioactives for which there is substantial evidence from epidemiological and human intervention studies. The aim of this review is to provide important insights into how particular plant bioactives (e.g., sulfur-containing compounds, carotenoids and polyphenols) present in commonly consumed food groups may influence the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Tracey L. Livingstone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- Urology Department, Norfolk and Norwich University Hospital, Colney Lane Norwich NR4 7UY, UK;
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Robert D. Mills
- Urology Department, Norfolk and Norwich University Hospital, Colney Lane Norwich NR4 7UY, UK;
| | - Jenny Plumb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Paul W. Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Richard Mithen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- The Liggins Institute, University of Auckland, 84 Park Road, Grafton, Auckland 92019, New Zealand
| | - Maria H. Traka
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- Correspondence: ; Tel.: +4-4(0)16-032-55194
| |
Collapse
|
24
|
Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur J Nutr 2019; 59:1607-1618. [DOI: 10.1007/s00394-019-02016-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022]
|
25
|
Ahsan A, Zheng YR, Wu XL, Tang WD, Liu MR, Ma SJ, Jiang L, Hu WW, Zhang XN, Chen Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci Ther 2019; 25:976-986. [PMID: 30972969 PMCID: PMC6698978 DOI: 10.1111/cns.13136] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Aim Mitochondrial autophagy (mitophagy) clears damaged mitochondria and attenuates ischemic neuronal injury. Urolithin A (Uro‐A) activates mitophagy in mammal cells and Caenorhabditis elegans. We explored neuroprotection of Uro‐A against ischemic neuronal injury. Methods Mice were subjected to middle cerebral artery occlusion. The brain infarct and neurological deficit scores were measured. The N2a cells and primary cultured mice cortical neurons were subjected to oxygen‐glucose deprivation and reperfusion (OGD/R). Uro‐A was incubated during OGD/R, and cell injury was determined by MTT and LDH. Autophagosomes were visualized by transfecting mCherry‐microtubule‐associated protein 1 light chain 3 (LC3). The protein levels of LC3‐II, p62, Translocase Of Inner Mitochondrial Membrane 23 (TIMM23), and cytochrome c oxidase subunit 4 isoform 1 (COX4I1) were detected by Western blot. The ER stress markers, activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP), were determined by reverse transcription‐polymerase chain reaction (RT‐PCR). Results Urolithin A alleviated OGD/R‐induced injury in N2a cells and neurons and reduced ischemic brain injury in mice. Uro‐A reinforced ischemia‐induced autophagy. Furthermore, Uro‐A‐conferred protection was abolished by 3‐methyladenine, suggesting the requirement of autophagy for neuroprotection. However, mitophagy was not further activated by Uro‐A. Instead, Uro‐A attenuated OGD/R‐induced ER stress, which was abolished by 3‐methyladenosine. Additionally, neuroprotection was reversed by ER stress inducer. Conclusion Urolithin A protected against ischemic neuronal injury by reinforcing autophagy rather than mitophagy. Autophagy activation by Uro‐A attenuated ischemic neuronal death by suppressing ER stress.
Collapse
Affiliation(s)
- Anil Ahsan
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Yan-Rong Zheng
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Xiao-Li Wu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Wei-Dong Tang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Meng-Ru Liu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Shi-Jia Ma
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Lei Jiang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Wei-Wei Hu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Xiang-Nan Zhang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
27
|
Maternal pomegranate juice attenuates maternal inflammation-induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-κB in a rat model. Am J Obstet Gynecol 2018; 219:113.e1-113.e9. [PMID: 29709511 DOI: 10.1016/j.ajog.2018.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Maternal inflammation is a risk factor for neonatal brain injury and future neurological deficits. Pomegranates have been shown to exhibit anti-inflammatory, anti-apoptotic and anti-oxidant activities. OBJECTIVE We hypothesized that pomegranate juice (POM) may attenuate fetal brain injury in a rat model of maternal inflammation. STUDY DESIGN Pregnant rats (24 total) were randomized for intraperitoneal lipopolysaccharide (100 μg/kg) or saline at time 0 at 18 days of gestation. From day 11 of gestation, 12 dams were provided ad libitum access to drinking water, and 12 dams were provided ad libitum access to drinking water with pomegranate juice (5 mL per day), resulting in 4 groups of 6 dams (saline/saline, pomegranate juice/saline, saline/lipopolysaccharide, pomegranate juice/lipopolysaccharide). All dams were sacrificed 4 hours following the injection and maternal blood and fetal brains were collected from the 4 treatment groups. Maternal interleukin-6 serum levels and fetal brain caspase 3 active form, nuclear factor-κB p65, neuronal nitric oxide synthase (phosphoneuronal nitric oxide synthase), and proinflammatory cytokine levels were determined by enzyme-linked immunosorbent assay and Western blot. RESULTS Maternal lipopolysaccharide significantly increased maternal serum interleukin-6 levels (6039 ± 1039 vs 66 ± 46 pg/mL; P < .05) and fetal brain caspase 3 active form, nuclear factor-κB p65, phosphoneuronal nitric oxide synthase, and the proinflammatory cytokines compared to the control group (caspase 3 active form 0.26 ± 0.01 vs 0.20 ± 0.01 U; nuclear factor-κB p65 0.24 ± 0.01 vs 0.1 ± 0.01 U; phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; interleukin-6 0.25 ± 0.01 vs 0.09 ± 0.01 U; tumor necrosis factor-α 0.26 ± 0.01 vs 0.12 ± 0.01 U; chemokine (C-C motif) ligand 2 0.23 ± 0.01 vs 0.1 ± 0.01 U). Maternal supplementation of pomegranate juice to lipopolysaccharide-exposed dams (pomegranate juice/lipopolysaccharide) significantly reduced maternal serum interleukin-6 levels (3059 ± 1121 pg/mL, fetal brain: caspase 3 active form (0.2 ± 0.01 U), nuclear factor-κB p65 (0.22 ± 0.01 U), phosphoneuronal nitric oxide synthase (0.19 ± 0.01 U) as well as the brain proinflammatory cytokines (interleukin-6, tumor necrosis factor-α and chemokine [C-C motif] ligand 2) compared to lipopolysaccharide group. CONCLUSION Maternal pomegranate juice supplementation may attenuate maternal inflammation-induced fetal brain injury. Pomegranate juice neuroprotective effects might be secondary to the suppression of both the maternal inflammatory response and inhibition of fetal brain apoptosis, neuronal nitric oxide synthase, and nuclear factor-κB activation.
Collapse
|