1
|
Durlak W, Thébaud B. BPD: Latest Strategies of Prevention and Treatment. Neonatology 2024; 121:596-607. [PMID: 39053447 DOI: 10.1159/000540002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common long-term complication of extreme preterm birth. It is associated with lifelong multisystemic consequences. Advances in neonatal care have not reduced the incidence of BPD and no new breakthrough therapy has been successfully translated into the clinic in recent decades. SUMMARY Current evidence demonstrates benefit of new modalities of first-line noninvasive positive pressure ventilation, selected strategies of postnatal corticosteroid administration, alternative surfactant delivery methods, and caffeine. Promising emerging therapies that are being translated from bench to bedside include mesenchymal stromal cells (MSCs), insulin-like growth factor 1/binding protein-3 (IGF-1/IGFBP-3), and interleukin 1 receptor (IL-1R) antagonist (anakinra). Strong preclinical data support efficacy of MSCs in attenuating neonatal lung injury. Early-phase clinical trials have already demonstrated safety and feasibility in preterm infants. Phase II studies that aimed at demonstrating efficacy are currently underway. Both IGF-1/IGFBP-3 and IL-1R antagonist present with biological plausibility and animal data of efficacy. Phase I/II clinical trials are currently recruiting patients. KEY MESSAGES Early noninvasive respiratory support, late systemic dexamethasone, less invasive surfactant administration, and caffeine are proven strategies in reducing the risk of BPD. Potentially disruptive therapies - MSCs, IGF-1/IGFBP-3, and anakinra - are being advanced to clinical trials and their efficacy in remains to be demonstrated. Continued research efforts are needed in the growing population of extremely preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Bouchnita A, Volpert V. Phenotype-structured model of intra-clonal heterogeneity and drug resistance in multiple myeloma. J Theor Biol 2024; 576:111652. [PMID: 37952610 DOI: 10.1016/j.jtbi.2023.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Multiple myeloma (MM) is a genetically complex hematological cancer characterized by the abnormal proliferation of malignant plasma cells in the bone marrow. This disease progresses from a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) through sequential genetic alterations involving various genes. These genetic changes contribute to the uncontrolled growth of multiple clones of plasma cells. In this study, we present a phenotype-structured model that captures the intra-clonal heterogeneity and drug resistance in multiple myeloma (MM). The model accurately reproduces the branching evolutionary pattern observed in MM progression, aligning with a previously developed multiscale model. Numerical simulations reveal that higher mutation rates enhance tumor phenotype diversity, while access to growth factors accelerates tumor evolution and increases its final size. Interestingly, the model suggests that further increasing growth factor access primarily amplifies tumor size rather than altering clonal dynamics. Additionally, the model emphasizes that higher mutation frequencies and growth factor availability elevate the chances of drug resistance and relapse. It indicates that the timing of the treatment could trajectory of tumor evolution and clonal emergence in the case of branching evolutionary pattern. Given its low computational cost, our model is well-suited for quantitative studies on MM clonal heterogeneity and its interaction with chemotherapeutic treatments.
Collapse
Affiliation(s)
- Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, 79968, TX, United States.
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russian Federation
| |
Collapse
|
3
|
Ekström C, Ortenlöf N, Kristiansson A, Holmqvist B, Jungner Å, Vallius S, Wang X, Hellström A, Barton N, Carey G, Ley D, Gram M. Evaluation of recombinant human IGF-1/IGFBP-3 on intraventricular hemorrhage prevention and survival in the preterm rabbit pup model. Sci Rep 2023; 13:19847. [PMID: 37963901 PMCID: PMC10645867 DOI: 10.1038/s41598-023-46611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates processes of vascular maturation. The pathogenesis of intraventricular hemorrhage (IVH) relates to the fragility of the immature capillaries in the germinal matrix, and its inability to resist fluctuations in cerebral blood flow. In this work, using different experimental setups, we aimed to (i) establish an optimal time-point for glycerol-induction of IVH in relation to time-point of recombinant human (rh) IGF-1/rhIGFBP-3 administration, and (ii) to evaluate the effects of a physiologic replacement dose of rhIGF-1/rhIGFBP-3 on prevention of IVH and survival in the preterm rabbit pup. The presence of IVH was evaluated using high-frequency ultrasound and post-mortem examinations. In the first part of the study, the highest incidence of IVH (> 60%), occurred when glycerol was administered at the earliest timepoint, e.g., 6 h after birth. At later time-points (18 and 24 h) the incidence decreased substantially. In the second part of the study, the incidence of IVH and mortality rate following rhIGF-1/rhIGFBP-3 administration was not statistically different compared to vehicle treated animals. To evaluate the importance of maintaining intrauterine serum levels of IGF-1 following preterm birth, as reported in human interventional studies, additional studies are needed to further characterize and establish the potential of rhIGF-1/rhIGFBP-3 in reducing the prevalence of IVH and improving survival in the preterm rabbit pup.
Collapse
Affiliation(s)
- Claes Ekström
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Niklas Ortenlöf
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Åsa Jungner
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Norman Barton
- Scientific Advisory Board, Oak Hill Bio Ltd, WA14 2DT, UK
| | | | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
4
|
Lodjak J, Boonekamp J, Lendvai ÁZ, Verhulst S. Short- and long-term effects of nutritional state on IGF-1 levels in nestlings of a wild passerine. Oecologia 2023; 203:27-35. [PMID: 37676486 PMCID: PMC10615909 DOI: 10.1007/s00442-023-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Growth trajectories of young animals are intimately connected to their fitness prospects, but we have little knowledge of growth regulation mechanisms, particularly in the wild. Insulin-like growth factor 1 (IGF-1) is a central hormone in regulating resource allocation, with higher IGF-1 levels resulting in more growth. IGF-1 levels generally increase in conjunction with nutritional state, but whether IGF-1 levels are adjusted in response to current nutrient availability or to the nutrient availability integrated over a longer term is not well known. We tested for such effects by supplementary feeding the jackdaw (Corvus monedula) nestlings in experimentally reduced or enlarged broods with either water (control) or a food solution; these manipulations have long- and short-term effects on the nutritional state, respectively. Baseline plasma IGF-1 levels were higher in reduced broods. Food supplementation induced an increase in plasma IGF-1 levels measured one hour later, and this effect was significantly more substantial in nestlings in reduced broods. Changes in plasma IGF-1 levels increased with increased retention of the supplementary food, which was higher in reduced broods, explaining the stronger IGF-1 response. Thus, IGF-1 levels respond to short-term variations in the nutritional state, but this effect is amplified by longer-term variations in the nutritional state. We discuss our findings using a graphical model that integrates the results of the two treatments.
Collapse
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 2 Juhan Liivi Street, 50409, Tartu, Estonia.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| | - Jelle Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
5
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
6
|
Campion S, Inselman A, Hayes B, Casiraghi C, Joseph D, Facchinetti F, Salomone F, Schmitt G, Hui J, Davis-Bruno K, Van Malderen K, Morford L, De Schaepdrijver L, Wiesner L, Kourula S, Seo S, Laffan S, Urmaliya V, Chen C. The benefits, limitations and opportunities of preclinical models for neonatal drug development. Dis Model Mech 2022; 15:dmm049065. [PMID: 35466995 PMCID: PMC9066504 DOI: 10.1242/dmm.049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.
Collapse
Affiliation(s)
- Sarah Campion
- Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA
| | - Amy Inselman
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR 72079, USA
| | - Belinda Hayes
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Costanza Casiraghi
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - David Joseph
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Georg Schmitt
- Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Sciences, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julia Hui
- Bristol Myers Squibb, Nonclinical Research and Development, Summit, NJ 07901, USA
| | - Karen Davis-Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Department DG PRE authorization, 1210 Brussels, Belgium
| | - LaRonda Morford
- Eli Lilly, Global Regulatory Affairs, Indianapolis, IN 46285, USA
| | | | - Lutz Wiesner
- Federal Institute for Drugs and Medical Devices, Clinical Trials, 53175 Bonn, Germany
| | - Stephanie Kourula
- Janssen R&D, Drug Metabolism & Pharmacokinetics, 2340 Beerse, Belgium
| | - Suna Seo
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Susan Laffan
- GlaxoSmithKline, Non-Clinical Safety, Collegeville, PA 19406, USA
| | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC 20005, USA
| |
Collapse
|
7
|
Zhang S, Luan X, Li H, Jin Z. Insulin-like growth factor-1: A potential target for bronchopulmonary dysplasia treatment (Review). Exp Ther Med 2022; 23:191. [PMID: 35126694 PMCID: PMC8794548 DOI: 10.3892/etm.2022.11114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common respiratory disorder among preterm infants, particularly low-birth-weight infants (LBWIs) and very-low-birth-weight infants (VLBWIs). Although BPD was first reported 50 years ago, no specific drugs or efficient measures are yet available for prevention or treatment. Insulin-like growth factor-1 (IGF-1) belongs to the insulin family. It promotes mitosis and stimulates cell proliferation and DNA synthesis, the primary factors involved in pulmonary development during the fetal and postnatal periods. Several studies have reported that IGF-1 exerts certain effects on BPD genesis and progression by regulating BPD-related biological processes. In addition, exogenous addition of IGF-1 can alleviate lung inflammation, cell apoptosis and eliminate alveolar development disorders in children with BPD. These findings suggest that IGF-1 could be a new target for treating BPD. Here, we summarize and analyze the definition, pathogenesis, and research status of BPD, as well as the pathogenesis of IGF-1 in BPD and the latest findings in related biological processes.
Collapse
Affiliation(s)
- Shujian Zhang
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Xue Luan
- Department of Pediatrics, First Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Huiwen Li
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Zhengyong Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
8
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr Res 2022; 91:1350-1360. [PMID: 34040160 PMCID: PMC9197767 DOI: 10.1038/s41390-021-01566-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Despite optimized nutrition, preterm-born infants grow slowly and tend to over-accrete body fat. We hypothesize that the premature dissociation of the maternal-placental-fetal unit disrupts the maintenance of physiological endocrine function in the fetus, which has severe consequences for postnatal development. This review highlights the endocrine interactions of the maternal-placental-fetal unit and the early perinatal period in both preterm and term infants. We report on hormonal levels (including tissue, thyroid, adrenal, pancreatic, pituitary, and placental hormones) and nutritional supply and their impact on infant body composition. The data suggest that the premature dissociation of the maternal-placental-fetal unit leads to a clinical picture similar to panhypopituitarism. Further, we describe how the premature withdrawal of the maternal-placental unit, neonatal morbidities, and perinatal stress can cause differences in the levels of growth-promoting hormones, particularly insulin-like growth factors (IGF). In combination with the endocrine disruption that occurs following dissociation of the maternal-placental-fetal unit, the premature adaptation to the extrauterine environment leads to early and fast accretion of fat mass in an immature body. In addition, we report on interventional studies that have aimed to compensate for hormonal deficiencies in infants born preterm through IGF therapy, resulting in improved neonatal morbidity and growth. IMPACT: Preterm birth prematurely dissociates the maternal-placental-fetal unit and disrupts the metabolic-endocrine maintenance of the immature fetus with serious consequences for growth, body composition, and neonatal outcomes. The preterm metabolic-endocrine disruption induces symptoms resembling anterior pituitary failure (panhypopituitarism) with low levels of IGF-1, excessive postnatal fat mass accretion, poor longitudinal growth, and failure to thrive. Appropriate gestational age-adapted nutrition alone seems insufficient for the achievement of optimal growth of preterm infants. Preliminary results from interventional studies show promising effects of early IGF-1 supplementation on postnatal development and neonatal outcomes.
Collapse
|
10
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Gram M, Ekström C, Holmqvist B, Carey G, Wang X, Vallius S, Hellström W, Ortenlöf N, Agyemang AA, Smith LEH, Hellström A, Mangili A, Barton N, Ley D. Insulin-Like Growth Factor 1 in the Preterm Rabbit Pup: Characterization of Cerebrovascular Maturation following Administration of Recombinant Human Insulin-Like Growth Factor 1/Insulin-Like Growth Factor 1-Binding Protein 3. Dev Neurosci 2021; 43:281-295. [PMID: 34218224 PMCID: PMC8623584 DOI: 10.1159/000516665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
Following preterm birth, serum levels of insulin-like growth factor 1 (IGF-1) decrease compared to corresponding in utero levels. A recent clinical trial indicated that supplementation with recombinant human (rh) IGF-1/rhIGF-binding protein 3 (rhIGF-1/rhIGFBP-3) prevents severe intraventricular hemorrhage (IVH) in extremely preterm infants. In a preterm rabbit pup model, we characterized endogenous serum and hepatic IGF-1, along with brain distribution of IGF-1 and IGF-1 receptor (IGF1R). We then evaluated the effects of rhIGF-1/rhIGFBP-3 on gene expression of regulators of cerebrovascular maturation and structure. Similar to preterm infants, serum IGF-1 concentrations decreased rapidly after preterm birth in the rabbit pup. Administration of rhIGF-1/rhIGFBP-3 restored in utero serum levels but was rapidly eliminated. Immunolabeled IGF1R was widely distributed in multiple brain regions, displaying an abundant density in the choroid plexus and sub-ependymal germinal zones. Increased IGF-1 immunoreactivity, distributed as IGF1R, was detected 4 h after rhIGF-1/rhIGFBP-3 administration. The rhIGF-1/rhIGFBP-3 treatment led to upregulation of choroid plexus genes involved in vascular maturation and structure, with corresponding protein translation for most of these genes. The preterm rabbit pup model is well suited for evaluation of IGF-1-based prevention of IVH. Administration of rhIGF-1/rhIGFBP-3 affects cerebrovascular maturation, suggesting a role for it in preventing preterm IVH.
Collapse
Affiliation(s)
- Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden,
| | - Claes Ekström
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | | | - Galen Carey
- Takeda Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suvi Vallius
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Ortenlöf
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | | | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Hellström
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Mangili
- Global Clinical Development, Rare Metabolic Diseases, Shire, a Takeda Company, Zurich, Switzerland
| | | | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Dogra M, Singh SR. Commentary: Looking beyond anti-vascular endothelial growth factor - Novel therapeutic targets for retinopathy of prematurity. Indian J Ophthalmol 2021; 69:374-375. [PMID: 33463596 PMCID: PMC7933870 DOI: 10.4103/ijo.ijo_3272_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Mohit Dogra
- Advanced Eye Centre, PGIMER, Chandigarh, India
| | | |
Collapse
|
13
|
Arima M, Fujii Y, Sonoda KH. Translational Research in Retinopathy of Prematurity: From Bedside to Bench and Back Again. J Clin Med 2021; 10:331. [PMID: 33477419 PMCID: PMC7830975 DOI: 10.3390/jcm10020331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP), a vascular proliferative disease affecting preterm infants, is a leading cause of childhood blindness. Various studies have investigated the pathogenesis of ROP. Clinical experience indicates that oxygen levels are strongly correlated with ROP development, which led to the development of oxygen-induced retinopathy (OIR) as an animal model of ROP. OIR has been used extensively to investigate the molecular mechanisms underlying ROP and to evaluate the efficacy of new drug candidates. Large clinical trials have demonstrated the efficacy of anti-vascular endothelial growth factor (VEGF) agents to treat ROP, and anti-VEGF therapy is presently becoming the first-line treatment worldwide. Anti-VEGF therapy has advantages over conventional treatments, including being minimally invasive with a low risk of refractive error. However, long-term safety concerns and the risk of late recurrence limit this treatment. There is an unmet medical need for novel ROP therapies, which need to be addressed by safe and minimally invasive therapies. The recent progress in biotechnology has contributed greatly to translational research. In this review, we outline how basic ROP research has evolved with clinical experience and the subsequent emergence of new drugs. We discuss previous and ongoing trials and present the candidate molecules expected to become novel targets.
Collapse
Affiliation(s)
- Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
- Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 8128582, Japan
| | - Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
| |
Collapse
|
14
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Carr LE, Bowlin AK, Elolimy AA, Byrum SD, Washam CL, Randolph CE, MacLeod SL, Yeruva L. Neonatal Diet Impacts Circulatory miRNA Profile in a Porcine Model. Front Immunol 2020; 11:1240. [PMID: 32655560 PMCID: PMC7324749 DOI: 10.3389/fimmu.2020.01240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRNAs) are conserved non-coding small nucleotide molecules found in nearly all species and breastmilk. miRNAs present in breastmilk are very stable to freeze-thaw, RNase treatment, and low pH as they are protected inside exosomes. They are involved in regulating several physiologic and pathologic processes, including immunologic pathways, and we have demonstrated better immune response to vaccines in piglets fed with human milk (HM) in comparison to dairy-based formula (MF). To understand if neonatal diet impacts circulatory miRNA expression, serum miRNA expression was evaluated in piglets fed HM or MF while on their neonatal diet at postnatal day (PND) 21 and post-weaning to solid diet at PND 35 and 51. MF fed piglets showed increased expression of 14 miRNAs and decreased expression of 10 miRNAs, relative to HM fed piglets at PND 21. At PND 35, 9 miRNAs were downregulated in the MF compared to the HM group. At PND 51, 10 miRNAs were decreased and 17 were increased in the MF relative to HM suggesting the persistent effect of neonatal diet. miR-148 and miR-181 were decreased in MF compared to HM at PND 21. Let-7 was decreased at PND 35 while miR-199a and miR-199b were increased at PND 51 in MF compared to HM. Pathway analysis suggested that many of the miRNAs are involved in immune function. In conclusion, we observed differential expression of blood miRNAs at both PND 21 and PND 51. miRNA found in breastmilk were decreased in the serum of the MF group, suggesting that diet impacts circulating miRNA profiles at PND 21. The miRNAs continue to be altered at PND 51 suggesting a persistent effect of the neonatal diet. The sources of miRNAs in circulation need to be evaluated, as the piglets were fed the same solid diet leading up to PND 51 collections. In conclusion, the HM diet appears to have an immediate and persistent effect on the miRNA profile and likely regulates the pathways that impact the immune system and pose benefits to breastfed infants.
Collapse
Affiliation(s)
- Laura E Carr
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anne K Bowlin
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Stewart L MacLeod
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
16
|
Abstract
PURPOSE To study the association between thrombocytopenia and retinopathy of prematurity (ROP). METHODS The case-control study was conducted on preterm newborns with ROP between January 2011 and January 2014, retrospectively. The patients were assigned into two groups: Cases required intervention and controls developed no or Stage I ROP. RESULTS Eighty-one premature infants with Type I ROP were enrolled to the study with a mean gestational age of 27.6 ± 2.1 (range: 24-32) weeks and birth weight of 993 ± 292 (range: 560-1,930) g. Mean follow-up time was 38.3 ± 2.7 weeks (min: 32 and max: 46 weeks). Cases were individually matched to a set of controls (1:1 ratio). Thrombocytopenia (<150.000/mm) was seen in 58 (71.6%) of the cases with Type I ROP, whereas only 17 (21%) of the controls had thrombocytopenia (P < 0.001). Logistic regression analysis showed that bronchopulmonary dysplasia and thrombocytopenia were significantly associated with Type I ROP (relative risk [95% confidence interval]: 4.19 [1.47-12] and 6.69 [2.83-15.9], respectively). The thrombocytopenia ratio (P = 0.073), thrombocytopenia 1 week before intervention (P = 0.076) and platelet transfusion ratio (P = 0.062) tended to be higher in Zone I ROP compared with Zone II ROP. CONCLUSION In our study, there was a significant association between thrombocytopenia and Type I ROP.
Collapse
|
17
|
Banjac L, Kotur-Stevuljević J, Gojković T, Bokan-Mirković V, Banjac G, Banjac G. RELATIONSHIP BETWEEN INSULIN-LIKE GROWTH FACTOR TYPE 1 AND INTRAUTERINE GROWTH. Acta Clin Croat 2020; 59:91-96. [PMID: 32724279 PMCID: PMC7382880 DOI: 10.20471/acc.2020.59.01.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a regulator of intrauterine growth, and circulating concentrations are reduced in intrauterine growth-restricted fetuses. The aim of our study was to investigate the relationship between IGF-1 levels in newborns and intrauterine growth, expressed as birth weight (BW). The research was designed as a cross-sectional study. The study included 71 premature newborns, gestational age (GA) ≤33 weeks. Quantitative determination of IGF-1 was performed in the 33rd post-menstrual week (pmw) to make the measurements more comparable. We used an enzyme-bound immunosorbent test for quantitative determination of IGF-1. Our results showed the mean IGF-1 level in premature newborns in 33rd pmw to be 23.1±4.56 (range 15.44-39.75) µg/L. There was no difference in IGF-1 values between male (23.1±4.98 µg/L) and female (23.1±4.87 µg/L) newborns. There was no significant difference in the average IGF-1 levels between male and female newborns with BW <50th and BW >50th percentile for GA either (p>0.50). Only BW <33rd percentile newborns had a statistically significantly lower IGF-1 level compared to newborns with greater BW. Based on our results, it is concluded that serum IGF-1 level reflects intrauterine growth only in BW <33rd percentile newborns. This fact could be used for further therapeutic purposes.
Collapse
Affiliation(s)
| | - Jelena Kotur-Stevuljević
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Tamara Gojković
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Vesna Bokan-Mirković
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Goran Banjac
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| | - Gorica Banjac
- 1Department of Neonatology, Clinical Center of Montenegro, Podgorica, Montenegro; 2Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 3Center for Physical Medicine and Rehabilitation, Clinical Center of Montenegro, Podgorica, Montenegro; 4Institute of Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro; 5The Obstetrics and Gynaecology Clinic Narodni Front, Belgrade, Serbia
| |
Collapse
|
18
|
Carroll L, Owen LA. Current evidence and outcomes for retinopathy of prematurity prevention: insight into novel maternal and placental contributions. EXPLORATION OF MEDICINE 2020; 1:4-26. [PMID: 32342063 PMCID: PMC7185238 DOI: 10.37349/emed.2020.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a blinding morbidity of preterm infants, which represents a significant clinical problem, accounting for up to 40% of all childhood blindness. ROP displays a range of severity, though even mild disease may result in life-long visual impairment. This is complicated by the fact that our current treatments have significant ocular and potentially systemic effects. Therefore, disease prevention is desperately needed to mitigate the life-long deleterious effects of ROP for preterm infants. Although ROP demonstrates a delayed onset of retinal disease following preterm birth, representing a potential window for prevention, we have been unable to sufficiently alter the natural disease course and meaningfully prevent ROP. Prevention therapeutics requires knowledge of early ROP molecular changes and risk, occurring prior to clinical retinal disease. While we still have an incomplete understanding of these disease mechanisms, emerging data integrating contributions of maternal/placental pathobiology with ROP are poised to inform novel approaches to prevention. Herein, we review the molecular basis for current prevention strategies and the clinical outcomes of these interventions. We also discuss how insights into early ROP pathophysiology may be gained by a better understanding of maternal and placental factors playing a role in preterm birth.
Collapse
Affiliation(s)
- Lara Carroll
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| |
Collapse
|
19
|
Klevebro S, Hellgren G, Hansen-Pupp I, Wackernagel D, Hallberg B, Borg J, Pivodic A, Smith L, Ley D, Hellström A. Elevated levels of IL-6 and IGFBP-1 predict low serum IGF-1 levels during continuous infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants. Growth Horm IGF Res 2020; 50:1-8. [PMID: 31756675 PMCID: PMC7054155 DOI: 10.1016/j.ghir.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Steady state insulin-like growth factor-1 (IGF-1) levels vary significantly during continuous intravenous infusion of recombinant human insulin-like growth factor-1/recombinant human insulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) in the first weeks of life in extremely preterm infants. We evaluated interleukin-6 (IL-6) and insulin-like growth factor binding protein-1 (IGFBP-1) levels as predictors of low IGF-1 levels. METHODS Nineteen extremely preterm infants were enrolled in a trial, 9 received rhIGF-1/rhIGFBP-3 and 10 received standard neonatal care. Blood samples were analyzed daily for IGF-1, IL-6 and IGFBP-1 during intervention with rhIGF-1/rhIGFBP-3. RESULTS Thirty seven percent of IGF-1 values during active treatment were <20 μg/L. Among treated infants, higher levels of IL-6, one and two days before sampled IGF-1, were associated with IGF-1 < 20 μg/L, gestational age adjusted OR 1.30 (95% CI 1.03-1.63), p = .026, and 1.57 (95% CI 1.26-1.97), p < .001 respectively. Higher levels of IGFBP-1 one day before sampled IGF-1 was also associated with IGF-1 < 20 μg/L, gestational age adjusted OR 1.74 (95% CI 1.19-2.53), p = .004. CONCLUSION In preterm infants receiving continuous infusion of rhIGF-1/rhIGFBP-3, higher levels of IL-6 and IGFBP-1 preceded lower levels of circulating IGF-1. These findings demonstrate a need to further evaluate if inflammation and/or infection suppress serum IGF-1 levels. The trial is registered at ClinicalTrials.gov (NCT01096784).
Collapse
Affiliation(s)
- Susanna Klevebro
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Gunnel Hellgren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Institute of Bioscience, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Dirk Wackernagel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Boubou Hallberg
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Borg
- Former Premacure AB, Uppsala, Sweden
| | | | - Lois Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - David Ley
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
21
|
van Bel F, Vaes J, Groenendaal F. Prevention, Reduction and Repair of Brain Injury of the Preterm Infant. Front Physiol 2019; 10:181. [PMID: 30949060 PMCID: PMC6435588 DOI: 10.3389/fphys.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Josine Vaes
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 2019; 85:432-441. [PMID: 30464331 DOI: 10.1038/s41390-018-0228-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent chronic lung disease in infants and presents as a consequence of preterm birth. Due to the lack of effective preventive and treatment strategies, BPD currently represents a major therapeutic challenge that requires continued research efforts at the basic, translational, and clinical levels. However, not all very low birth weight premature babies develop BPD, which suggests that in addition to known gestational age and intrauterine and extrauterine risk factors, other unknown factors must be involved in this disease's development. One of the main goals in BPD research is the early prediction of very low birth weight infants who are at risk of developing BPD in order to initiate the adequate preventive strategies. Other benefits of determining the risk of BPD include providing prognostic information and stratifying infants for clinical trial enrollment. In this article, we describe new opportunities to address BPD's complex pathophysiology by identifying prognostic biomarkers and develop novel, complex in vitro human lung models in order to develop effective therapies. These therapies for protecting the immature lung from injury can be developed by taking advantage of recent scientific progress in -omics, 3D organoids, and regenerative medicine.
Collapse
|
23
|
Ley D, Hallberg B, Hansen-Pupp I, Dani C, Ramenghi LA, Marlow N, Beardsall K, Bhatti F, Dunger D, Higginson JD, Mahaveer A, Mezu-Ndubuisi OJ, Reynolds P, Giannantonio C, van Weissenbruch M, Barton N, Tocoian A, Hamdani M, Jochim E, Mangili A, Chung JK, Turner MA, Smith LEH, Hellström A. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J Pediatr 2019; 206:56-65.e8. [PMID: 30471715 PMCID: PMC6389415 DOI: 10.1016/j.jpeds.2018.10.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate recombinant human insulin-like growth factor 1 complexed with its binding protein (rhIGF-1/rhIGFBP-3) for the prevention of retinopathy of prematurity (ROP) and other complications of prematurity among extremely preterm infants. STUDY DESIGN This phase 2 trial was conducted from September 2014 to March 2016. Infants born at a gestational age of 230/7 weeks to 276/7 weeks were randomly allocated to rhIGF-1/rhIGFBP-3 (250 µg/kg/ 24 hours, continuous intravenous infusion from <24 hours of birth to postmenstrual age 296/7 weeks) or standard neonatal care, with follow-up to a postmenstrual age of 404/7 weeks. Target exposure was ≥70% IGF-1 measurements within 28-109 µg/L and ≥70% intended therapy duration. The primary endpoint was maximum severity of ROP. Secondary endpoints included time to discharge from neonatal care, bronchopulmonary dysplasia, intraventricular hemorrhage, and growth measures. RESULTS Overall, 61 infants were allocated to rhIGF-1/rhIGFBP-3, 60 to standard care (full analysis set); 24 of 61 treated infants achieved target exposure (evaluable set). rhIGF-1/rhIGFBP-3 did not decrease ROP severity or ROP occurrence. There was, however, a 53% decrease in severe bronchopulmonary dysplasia in the full analysis set (21.3% treated vs 44.9% standard care), and an 89% decrease in the evaluable set (4.8% vs 44.9%; P = .04 and P = .02, respectively) for severity distribution between groups. There was also a nonsignificant trend toward decrease in grades 3-4 intraventricular hemorrhage in the full analysis set (13.1% vs 23.3%) and in the evaluable set (8.3% vs 23.3%). Fatal serious adverse events were reported in 19.7% of treated infants (12/61) and 11.7% of control infants (7/60). No effect was observed on time to discharge from neonatal care/growth measures. CONCLUSIONS rhIGF-1/rhIGFBP-3 did not affect development of ROP, but decreased the occurrence of severe bronchopulmonary dysplasia, with a nonsignificant decrease in grades 3-4 intraventricular hemorrhage. TRIAL REGISTRATION ClinicalTrials.gov: NCT01096784.
Collapse
Affiliation(s)
- David Ley
- Skane University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden.
| | - Boubou Hallberg
- Department of Neonatology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Hansen-Pupp
- Skane University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | - Carlo Dani
- Careggi University Hospital of Florence, University of Florence, Florence, Italy
| | - Luca A Ramenghi
- Genova Neonatal Intensive Care Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Neil Marlow
- Department of Academic Neonatology, UCL EGA Institute for Women's Health, UCL, London, United Kingdom
| | - Kathryn Beardsall
- Department of Pediatrics and the Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Faizah Bhatti
- Neonatal Perinatal Medicine, Department of Pediatrics, The Children's Hospital at the University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David Dunger
- Department of Pediatrics and the Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jason D Higginson
- Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Ajit Mahaveer
- St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre and Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Peter Reynolds
- Neonatal Intensive Care Unit, St Peter's Hospital, Chertsey, Surrey, United Kingdom
| | - Carmen Giannantonio
- Department of Woman and Child Health, University Hospital A. Gemelli, IRCCS, Rome, Italy
| | - Mirjam van Weissenbruch
- Department of Pediatrics, Division of Neonatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Norman Barton
- Global Clinical Development, Rare Metabolic Diseases, Shire, Lexington, MA
| | - Adina Tocoian
- Global Clinical Development, Rare Metabolic Diseases, Shire, Zug, Switzerland
| | - Mohamed Hamdani
- Global Clinical Development, Rare Metabolic Diseases, Shire, Lexington, MA
| | - Emily Jochim
- Global Clinical Development, Rare Metabolic Diseases, Shire, Lexington, MA
| | - Alexandra Mangili
- Global Clinical Development, Rare Metabolic Diseases, Shire, Zug, Switzerland
| | - Jou-Ku Chung
- Global Clinical Development, Rare Metabolic Diseases, Shire, Lexington, MA
| | - Mark A Turner
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lois E H Smith
- Harvard Medical School, Boston Children's Hospital, Boston, MA
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
24
|
Shaw LC, Li Calzi S, Li N, Moldovan L, Sengupta-Caballero N, Quigley JL, Ivan M, Jun B, Bazan NG, Boulton ME, Busik J, Neu J, Grant MB. Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2018; 59:858-869. [PMID: 29490339 PMCID: PMC5815421 DOI: 10.1167/iovs.17-23034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Low levels of the long chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) have been implicated in retinopathy of prematurity (ROP). However, oral DHA suffers from poor palatability and is associated with increased bleeding in premature infants. We asked whether oral administration of the neutraceutical arginine-glutamine (Arg-Glu) could increase retinal DHA and improve outcomes in a mouse model of oxygen-induced retinopathy (OIR). Methods Postnatal day 7 (P7) pups were maintained at 75% oxygen for 5 days and then returned to room air on P12. Pups were gavaged twice daily with Arg-Gln or vehicle from P12 to P17 and eyes were harvested for analysis on P17. Vaso-obliteration and vascular density were assessed on retinal flat mounts and preretinal neovascularization was assessed on retinal cross sections. Retinas were used for measurement of DHA and 10,17S-docosatriene (neuroprotectin D1, NPD1), a key DHA-derived lipid, and for analysis by reverse-phase protein array (RPPA). Results With Arg-Gln treatment, retinal DHA and NPD1 levels were increased in OIR pups. Arg-Gln reduced preretinal neovascularization by 39 ± 6% (P < 0.05) relative to vehicle control. This was accompanied by a restoration of vascular density of the retina in the pups treated with Arg-Gln (73.0 ± 3.0%) compared to vehicle (53.1 ± 3.4%; P < 0.05). Arg-Gln dipeptide restored OIR-induced signaling changes toward normoxia and was associated with normalization of insulin-like growth factor receptor 1 signaling and reduction of apoptosis and an increase in anti-apoptosis proteins. Conclusions Arg-Gln may serve as a safer and easily tolerated nutraceutical agent for prevention or treatment of ROP.
Collapse
Affiliation(s)
- Lynn Calvin Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Sergio Li Calzi
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
| | - Nan Li
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States
| | - Leni Moldovan
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | | | | | - Mircea Ivan
- Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Bokkyoo Jun
- Department of Ophthalmology, Louisiana State University Eye Center, New Orleans, Louisiana, United States
| | - Nicolas G Bazan
- Department of Ophthalmology, Louisiana State University Eye Center, New Orleans, Louisiana, United States
| | - Michael Edwin Boulton
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
| |
Collapse
|
25
|
Zhang HB, Wang XD, Xu K, Li XG. The progress of prophylactic treatment in retinopathy of prematurity. Int J Ophthalmol 2018; 11:858-873. [PMID: 29862189 DOI: 10.18240/ijo.2018.05.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a retinal vascular disorder frequently found in premature infants. Different therapeutic strategies have been developed to treat ROP. However, there are still many children with ROP suffering by severe limitations in vision or even blindness. Recently, ROP has been suggested to be caused by abnormal development of the retinal vasculature, but not simply resulted by retinal neovascularization which takes about 4 to 6wk after birth in premature infants. Thus, instead of focusing on how to reduce retinal neovascularization, understanding the pathological changes and mechanisms that occur prior to retinal neovascularization is meaningful, which may lead to identify novel target(s) for the development of novel strategy to promote the healthy growth of retinal blood vessels rather than passively waiting for the appearance of retinal neovascularization and removing it by force. In this review, we discussed recent studies about, 1) the pathogenesis prior to retinal neovascularization in oxygen-induced retinopathy (OIR; a ROP in animal model) and in premature infants with ROP; 2) the preclinical and clinical research on preventive treatment of early OIR and ROP. We will not only highlight the importance of the mechanisms and signalling pathways in regulating early stage of ROP but also will provide guidance for actively exploring novel mechanisms and discovering novel treatments for early phase OIR and ROP prior to retinal neovascularization in the future.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Wang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Kun Xu
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Gang Li
- Department of Internal Medicine; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Shulman JP, Hartnett ME. Pharmacotherapy and ROP: Going Back to the Basics. Asia Pac J Ophthalmol (Phila) 2018; 7:130-135. [PMID: 29701429 DOI: 10.22608/apo.201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of blindness in preterm infants around the world. Through the development of animal models and clinical trials our understanding of the pathophysiology of this disease and approach to therapy has evolved significantly since ROP was first described in the 1940s in the United States. The mainstay of treatment in ROP remains ablative laser therapy to the avascular retina but pharmacologic agents are being more and more commonly used with new targets for pharmacotherapy emerging. This paper summarizes our current understanding of the pathophysiology of ROP based on the data gleaned from animal models and discusses current approaches to pharmacotherapy.
Collapse
|
27
|
Lv Z, Fan H, Zhang B, Ning C, Xing K, Guo Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis. FASEB J 2018. [DOI: 10.1096/fj.201701457r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hao Fan
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Beibei Zhang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Ning
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Kun Xing
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuming Guo
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
28
|
|
29
|
Hansen-Pupp I, Hellström A, Hamdani M, Tocoian A, Kreher NC, Ley D, Hallberg B. Continuous longitudinal infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants: Evaluation of feasibility in a phase II study. Growth Horm IGF Res 2017; 36:44-51. [PMID: 28934640 DOI: 10.1016/j.ghir.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 08/29/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the feasibility of continuous longitudinal intravenous infusion of recombinant human insulin-like growth factor-1/recombinant human insulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) for prevention of retinopathy of prematurity and other complications in extremely preterm infants (<28weeks' gestational age), based on initial sections of a phase II randomized controlled trial. DESIGN The phase II trial was designed in four sections (A-D); we report pharmacokinetic and adverse events (AEs) data pooled for Sections B and C. Infants in these study sections received rhIGF-1/rhIGFBP-3 or standard neonatal care up to postmenstrual age (weeks+days) 28+6 (Section B) or 29+6 (Section C). Dosing was variable/individualized and intended to establish serum IGF-1 within physiological intrauterine levels. RESULTS Nineteen infants were enrolled across Sections B/C: nine received rhIGF-1/rhIGFBP-3 and 10 standard neonatal care. Among the nine infants treated with study drug, mean (SD) dose was 95.1 (10.6)μg/kg/day and mean (SD) duration of infusion was 14.2 (6.1)days. Eight of nine (88.9%) treated infants had two or more dose changes during treatment. Mean serum IGF-1 levels during treatment were 23μg/L among treated infants compared with 14μg/L in control infants. Overall, 66.3% of IGF-1 measurements for treated infants were within target levels (20-60μg/L) versus 17.3% for control infants. Overall incidence of adverse events (AEs) was similar for treated versus control infants; AEs were generally as expected in this population, and no AEs were considered related to study treatment. There was no observed increase in infection rates (considered a possible risk with continuous intravenous infusion) between treated and control infants. Rates of hypoglycemia (considered a possible risk with IGF-1 treatment) were also similar between groups. There was one fatal serious AE of cardiac tamponade in the treated group (not considered treatment related). CONCLUSION Infusion of rhIGF-1/rhIGFBP-3 increased serum concentrations of IGF-1 and attainment of target levels relative to standard neonatal care. rhIGF-1/rhIGFBP-3 infusion was well tolerated with no safety signals. Although further work is required to optimize the dose regimen for attainment of physiological intrauterine levels, we believe the results reported support the feasibility of rhIGF-1/rhIGFBP-3 continuous longitudinal infusion in extremely preterm infants. The trial is registered at ClinicalTrials.gov (NCT01096784).
Collapse
Affiliation(s)
- Ingrid Hansen-Pupp
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lasarettsgatan 40, SE-221 85 Lund, Sweden.
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11-13, 40530 Gothenburg, Sweden.
| | | | | | | | - David Ley
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lasarettsgatan 40, SE-221 85 Lund, Sweden.
| | - Boubou Hallberg
- Department of Neonatology, CLINTEC, Karolinska Institutet and Karolinska University Hospital, Karolinska vägen 8, 171 76 Stockholm, Sweden.
| |
Collapse
|
30
|
Chan-Ling T, Gole GA, Quinn GE, Adamson SJ, Darlow BA. Pathophysiology, screening and treatment of ROP: A multi-disciplinary perspective. Prog Retin Eye Res 2017; 62:77-119. [PMID: 28958885 DOI: 10.1016/j.preteyeres.2017.09.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
Abstract
The population of infants at risk for retinopathy of prematurity (ROP) varies by world region; in countries with well developed neonatal intensive care services, the highest risk infants are those born at less than 28 weeks gestational age (GA) and less than 1 kg at birth, while, in regions where many aspects of neonatal intensive and ophthalmological care are not routinely available, more mature infants up to 2000 g at birth and 37 weeks GA are also at risk for severe ROP. Treatment options for both groups of patients include standard retinal laser photocoagulation or, more recently, intravitreal anti-VEGF drugs. In addition to detection and treatment of ROP, this review highlights new opportunities created by telemedicine, where screening and diagnosis of ROP in remote locations can be undertaken by non-ophthalmologists using digital fundus cameras. The ophthalmological care of the ROP infant is undertaken in the wider context of neonatal care and general wellbeing of the infant. Because of this context, this review takes a multi-disciplinary perspective with contributions from retinal vascular biologists, pediatric ophthalmologists, an epidemiologist and a neonatologist. This review highlights the latest insights regarding cellular and molecular mechanisms in the formation of the retinal vasculature in the human infant, pathogenesis of ROP, detection and treatment of severe ROP, the risks and benefits of anti-VEGF therapy, the identification of new therapies over the horizon, and the optimal neonatal care regimen for best ROP outcomes, and the benefits and pitfalls of telemedicine in the remote screening and diagnosis of ROP, all of which have the potential to improve ROP outcomes.
Collapse
Affiliation(s)
- Tailoi Chan-Ling
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | - Glen A Gole
- Discipline of Paediatrics and Child Health, University of Queensland, Qld Children's Hospital, Sth Brisbane, Qld 4101, Australia.
| | - Graham E Quinn
- Division of Ophthalmology, The Children's Hospital of Philadelphia and Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Samuel J Adamson
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Brian A Darlow
- Department of Paediatrics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
31
|
Hartnett ME. Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 2017; 62:257-276. [PMID: 28012875 PMCID: PMC5401801 DOI: 10.1016/j.survophthal.2016.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
The understanding, diagnosis, and treatment of retinopathy of prematurity have changed in the 70 years since the original description of retrolental fibroplasia associated with high oxygenation. It is now recognized that retinopathy of prematurity differs in appearance worldwide and as ever smaller and younger premature infants survive. New methods are being evaluated to image the retina, diagnose severe retinopathy of prematurity, and determine windows of time for treatment to save eyes and improve visual and neural outcomes. New treatments to promote physiologic retinal vascular development, vascular repair, and inhibit vasoproliferation by regulating proteins involved in vascular endothelial growth factor, insulin-like growth factor, or erythropoietin signaling. Reducing excessive oxidative/nitrosative stress and understanding progenitor cells and neurovascular and glial vascular interactions are being studied.
Collapse
Affiliation(s)
- Mary Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
32
|
Harding JE, Cormack BE, Alexander T, Alsweiler JM, Bloomfield FH. Advances in nutrition of the newborn infant. Lancet 2017; 389:1660-1668. [PMID: 28443560 DOI: 10.1016/s0140-6736(17)30552-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
Nutrition of newborn infants, particularly of those born preterm, has advanced substantially in recent years. Extremely preterm infants have high nutrient demands that are challenging to meet, such that growth faltering is common. Inadequate growth is associated with poor neurodevelopmental outcomes, and although improved early growth is associated with better cognitive outcomes, there might be a trade-off in terms of worse metabolic outcomes, although the contribution of early nutrition to these associations is not established. New developments include recommendations to increase protein supply, improve formulations of parenteral lipids, and provide mineral supplements while encouraging human milk feeding. However, high quality evidence of the risks and benefits of these developments is lacking. Clinical trials are also needed to assess the effect on preterm infants of experiencing the smell and taste of milk, to determine whether boys and girls should be fed differently, and to test effects of insulin and IGF-1 supplements on growth and developmental outcomes. Moderate-to-late preterm infants have neonatal nutritional challenges that are similar to those infants born at earlier gestations, but even less high quality evidence exists upon which to base clinical decisions. The focus of research in nutrition of infants born at term is largely directed at new formula products that will improve cognitive and metabolic outcomes. Providing the most effective nutrition to preterm infants should be prioritised as an important focus of neonatal care research to improve long-term metabolic and developmental outcomes.
Collapse
Affiliation(s)
- Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Barbara E Cormack
- Liggins Institute, University of Auckland, Auckland, New Zealand; Newborn Services, Auckland City Hospital, Auckland, New Zealand
| | - Tanith Alexander
- Liggins Institute, University of Auckland, Auckland, New Zealand; Neonatal Unit, Middlemore Hospital, Auckland, New Zealand
| | - Jane M Alsweiler
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
33
|
Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants. Pediatr Res 2017; 81:504-510. [PMID: 27870826 DOI: 10.1038/pr.2016.255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/04/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND rhIGF-1/rhIGFBP-3 is being investigated for prevention of retinopathy of prematurity in extremely preterm infants. METHODS A population pharmacokinetic model was developed using data from phase I/II (Sections A-C) trials of rhIGF-1/rhIGFBP-3 and additional studies in preterm infants to predict optimal dosing to establish/maintain serum IGF-1 within physiological intrauterine levels. In Section D of the phase II study, infants (gestational age (GA) (wk+d) 23+0 to 27+6) were randomized to rhIGF-1/rhIGFBP-3, administered at the model-predicted dose of 250 µg/kg/d continuous i.v. infusion up to postmenstrual age (PMA) 29 wk+6 d or standard of care. An interim pharmacokinetic analysis was performed for the first 10 treated infants to verify dosing. RESULTS Serum IGF-1 data were reviewed for 10 treated/9 control infants. Duration of therapy in treated infants ranged 1-34.5 d. At baseline (before infusion and <24 h from birth), mean (SD) IGF-1 was 19.2 (8.0) μg/l (treated) and 15.4 (4.7) μg/l (controls). Mean (SD) IGF-1 increased to 45.9 (19.6) μg/l at 12 h in treated infants, and remained within target levels for all subsequent timepoints. For treated infants, 88.8% of the IGF-1 measurements were within target levels (controls, 11.1%). CONCLUSION Through the reported work, we determined appropriate rhIGF-1/rhIGFBP-3 dosing to achieve physiological intrauterine serum IGF-1 levels in extremely preterm infants.
Collapse
|
34
|
Ohkawa N, Shoji H, Ikeda N, Suganuma H, Shimizu T. Relationship between insulin-like growth factor 1, leptin and ghrelin levels and catch-up growth in small for gestational age infants of 27-31 weeks during neonatal intensive care unit admission. J Paediatr Child Health 2017; 53:62-67. [PMID: 27565941 DOI: 10.1111/jpc.13307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/17/2016] [Accepted: 06/12/2016] [Indexed: 11/28/2022]
Abstract
AIM Poor post-natal growth is related to later morbidity and poor cognitive development in preterm infants. We investigated the relationship between plasma insulin-like growth factor 1 (IGF-1), leptin, active ghrelin levels and post-natal growth in preterm infants small for gestational age (SGA). METHODS Plasma IGF-1, leptin and active ghrelin levels were measured at birth and at 2, 4, 6 and 8 weeks after birth in 42 very low birthweight (VLBW) infants (born between 27 and 31 weeks of gestation), including 14 SGA infants with extrauterine growth restriction (EUGR), 6 SGA infants without EUGR and 22 appropriate-for-gestational-age infants. RESULTS At birth, IGF-1 levels in SGA infants without EUGR did not differ significantly from those in SGA infants with EUGR. However, IGF-1 levels in SGA infants without EUGR were as high as those observed in appropriate-for-gestational-age infants and were significantly different from those in SGA infants with EUGR at 4 and 8 weeks of age. Leptin and ghrelin levels did not differ significantly among the three groups at any time point. CONCLUSION IGF-1 is related to catch-up growth in SGA VLBW infants during neonatal intensive care unit admission; however, this does not appear to be the case for leptin and ghrelin. IGF-1 level monitoring may be useful for predicting EUGR in preterm VLBW infants.
Collapse
Affiliation(s)
- Natsuki Ohkawa
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naho Ikeda
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroki Suganuma
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Hellström A, Ley D, Hallberg B, Löfqvist C, Hansen-Pupp I, Ramenghi LA, Borg J, Smith LEH, Hård AL. IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development. Curr Pharm Des 2017; 23:5964-5970. [PMID: 28969546 PMCID: PMC5824464 DOI: 10.2174/1381612823666171002114545] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) is a mitogenic hormone involved in many processes such as growth, metabolism, angiogenesis and differentiation. After very preterm birth, energy demands increase while maternal supplies of nutrients and other factors are lost and the infant may become dependent on parenteral nutrition for weeks. Low postnatal IGF-1 concentrations in preterm infants are associated with poor weight gain, retinopathy of prematurity (ROP) and other morbidities. We will describe the process by which we aim to develop supplementation with recombinant human (rh) IGF-1 and its binding protein rhIGFBP-3 as a possible therapy to promote growth and maturation and reduce morbidities in extremely preterm infants. METHODS In order to calculate a dose of IGF-1 tolerated by neonates, a pharmacokinetic study of transfusion with fresh frozen plasma was performed, which provided a relatively low dose of IGF-1, (on average 1.4 µg/kg), that increased serum IGF-1 to levels close to those observed in fetuses and preterm infants of similar GAs. Thereafter, a Phase I 3 hours IV infusion of rhIGF-1/rhIGFBP-3 was conducted in 5 infants, followed by a Phase II study with four sections (A-D). In the Phase II, sections A-D studies, time on infusion increased and younger gestational ages were included. RESULTS IV infusion increased IGF-1 but with short half-life (0.5h) implying a need for continuous infusion. In order to obtain in utero levels of IGF-I, the dose was increased from 100 to 250 µg/kg/24 h and the infusion was prolonged from 3 weeks postnatal age until a postmenstrual age of 29 weeks and 6 days. CONCLUSION The purpose has been to ensure high-quality research into the development of a new drug for preterm infants. We hope that our work will help to establish a new standard for the testing of medications for preterm infants.
Collapse
Affiliation(s)
- Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Boubou Hallberg
- Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Chatarina Löfqvist
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Luca A. Ramenghi
- Genova Neonatal Intensive Care Unit, Instituto Pediatrico Giannina Gaslini, GenovaItaly
| | - Jan Borg
- Former Premacure AB, Uppsala, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Anna-Lena Hård
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Abstract
The retina is part of the central nervous system and both the retina as well as the brain can suffer from severe damage after very preterm birth. Retinopathy of prematurity is one of the major causes of blindness in these children and brain neuronal impairments including cognitive defects, cerebral palsy and intraventricular hemorrhage (IVH) are also complications of very preterm birth. Insulin-like growth factor 1 (IGF-1) acts to promote proliferation, maturation, growth and survival of neural cells. Low levels of circulating IGF-1 are associated with ROP and defects in the IGF-1 gene are associated with CNS disorders including learning deficits and brain growth restriction. Treatment of preterm infants with recombinant IGF-1 may potentially prevent ROP and CNS disorders. This review compares the role of IGF-1 in ROP and CNS disorders. A recent phase 2 study showed a positive effect of IGF-1 on the severity of IVH but no effect on ROP. A phase 3 trial is planned.
Collapse
Affiliation(s)
- Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chatarina Löfqvist
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, Smith LEH, Hård AL. IGF-I in the clinics: Use in retinopathy of prematurity. Growth Horm IGF Res 2016; 30-31:75-80. [PMID: 27720550 PMCID: PMC5154870 DOI: 10.1016/j.ghir.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
Abstract
Retinopathy of prematurity is a potentially blinding disease, which is associated with low neonatal IGF-I serum concentrations and poor growth. In severe cases impaired retinal vessel growth is followed by pathologic neovascularization, which may lead to retinal detachment. IGF-I may promote growth even in catabolic states. Treating preterm infants with recombinant human (rh) IGF-I to concentrations normally found during gestation has been suggested to have a preventative effect on ROP. A recent phase 2 study treating infants (gestational age between 23weeks+0days and 27weeks +6days) with rhIGF-I/IGF binding protein-3 until 30 postmenstrual weeks showed no effect on ROP but a 53% reduction in severe bronchopulmonary dysplasia and 44% reduction in severe intraventricular hemorrhage. Oxygen is a major risk factor for ROP and during the phase 2 study oxygen saturation targets were increased to 90-95%, due to national guidelines, which might have affected ROP rate and severity making increased IGF-I a weaker preventative factor for ROP.
Collapse
Affiliation(s)
- Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | - David Ley
- Department of Clinical Sciences, Lund, Skåne University Hospital and University of Lund, Sweden
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences, Lund, Skåne University Hospital and University of Lund, Sweden
| | - Boubou Hallberg
- Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Luca A Ramenghi
- Genova Neonatal Intensive Care Unit, Instituto Pediatrico Giannina Gaslini, Genova, Italy
| | - Chatarina Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna-Lena Hård
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
38
|
Abstract
More than 450,000 babies are born prematurely in the USA every year. The improved survival of even the most vulnerable low body weight preterm infants has, despite improving health outcomes, led to the resurgence in preterm complications including one of the major causes for blindness in children, retinopathy of prematurity (ROP). The current mainstay in ROP therapy is laser photocoagulation and the injection of vascular endothelial growth factor (VEGF) antibodies in the late stages of the disease after the onset of neovascularization. Both are proven options for ophthalmologists to treat the severe forms of late ROP. However, laser photocoagulation destroys major parts of the retina, and the injection of VEGF antibodies, although rather simple to administer, may cause a systemic suppression of normal vascularization, which has not been studied in sufficient depth. However, the use of neither VEGF antibody nor laser treatment prevents ROP, which should be the long-term goal. It should be possible to prevent ROP by more closely mimicking the intrauterine environment after preterm birth. Such preventive measures include preventing the toxic postbirth influences (eg, oxygen excess) as well as providing the missing intrauterine factors (eg, insulin growth factor 1) and are likely to also reduce other complications of premature birth as well as ROP. This review is meant to summarize the current knowledge on the prevention of ROP with a particular emphasize on the use of insulin growth factor 1 supplementation.
Collapse
Affiliation(s)
- Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Beharry KD, Valencia G, Lazzaro D, Aranda J. Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity. Semin Perinatol 2016; 40:189-202. [PMID: 26831641 PMCID: PMC4808450 DOI: 10.1053/j.semperi.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinopathy of prematurity (ROP), a significant morbidity in prematurely born infants, is the most common cause of visual impairment and blindness in children and persists till adulthood. Strict control of oxygen therapy and prevention of intermittent hypoxia are the keys in the prevention of ROP, but pharmacologic interventions have decreased risk of ROP. Various drug classes such as methylxanthines (caffeine), VEGF inhibitors, antioxidants, and others have decreased ROP occurrence. The timing of pharmacologic intervention remains unsettled, but early prevention rather than controlling disease progression may be preferred. These drugs act through different mechanisms, and synergistic approaches should be considered to maximize efficacy and safety.
Collapse
|
40
|
|
41
|
Shah PK, Prabhu V, Karandikar SS, Ranjan R, Narendran V, Kalpana N. Retinopathy of prematurity: Past, present and future. World J Clin Pediatr 2016; 5:35-46. [PMID: 26862500 PMCID: PMC4737691 DOI: 10.5409/wjcp.v5.i1.35] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina occurring principally in new born preterm infants. It is an avoidable cause of childhood blindness. With the increase in the survival of preterm babies, ROP has become the leading cause of preventable childhood blindness throughout the world. A simple screening test done within a few weeks after birth by an ophthalmologist can avoid this preventable blindness. Although screening guidelines and protocols are strictly followed in the developed nations, it lacks in developing economies like India and China, which have the highest number of preterm deliveries in the world. The burden of this blindness in these countries is set to increase tremendously in the future, if corrective steps are not taken immediately. ROP first emerged in 1940s and 1950s, when it was called retrolental fibroplasia. Several epidemics of this disease were and are still occurring in different regions of the world and since then a lot of research has been done on this disease. However, till date very few comprehensive review articles covering all the aspects of ROP are published. This review highlights the past, present and future strategies in managing this disease. It would help the pediatricians to update their current knowledge on ROP.
Collapse
|
42
|
Cayabyab R, Ramanathan R. Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology. Neonatology 2016; 109:369-76. [PMID: 27251645 DOI: 10.1159/000444901] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinopathy of prematurity (ROP) continues to be a major preventable cause of blindness and visual handicaps globally. With improved perinatal care, improved survival of moderately preterm infants, and limited resources for oxygen delivery and monitoring, more mature preterm infants are developing severe ROP in developing countries. The pathophysiology of ROP is characterized by two phases. Phase I ROP is due to vaso-obliteration beginning immediately after birth secondary to a marked decrease in vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Phase II begins around 33 weeks' postmenstrual age (PMA). During this phase, VEGF levels increase, especially if there is retinal hypoxia with increasing retinal metabolism and demand for oxygen leading to abnormal vasoproliferation. Since the original description of ROP in 1942 by Terry et al. [Am J Ophthalmol 1942;25:203-204], four epidemics of ROP have been observed. Prevention or early treatment of ROP involves careful titration of oxygen saturation by pulse oximeter (SpO2). Optimal SpO2 target remains elusive. Most of the large trials have focused on either a low SpO2 (85-89%) or a high SpO2 (91-95%) from the first day of birth to 36 weeks' PMA. Although the incidence of severe ROP and bronchopulmonary dysplasia decreased significantly, predischarge mortality was higher in these studies. Use of graded SpO2 during the 2 different phases of ROP (early, low SpO2 during phase I vs. late, high SpO2 during phase II) may be the best approach to prevent this disabling condition. Further trials should focus on this strategy. Other biological agents that are currently being studied include IGF-1 with IGF-binding protein-3 (rhIGF-1 + rhIGFBP-3) and propranolol. For advanced stages of ROP, laser ablation of avascular retina, early treatment of ROP (ETROP) protocol, intravitreal injection of anti-VEGF antibodies (e.g. bevacizumab) and vitrectomy are used to protect central vision and prevent retinal detachment. Long-term complications such as refractory errors, recurrence of ROP and risk of retinal detachment require continued follow-up with an ophthalmologist through adolescence and beyond. Optimal nutrition including adequate intake of omega-3 polyunsaturated fatty acids and decreasing infection/inflammation to promote normal vascularization are important strategies. Screening guidelines for ROP based on local incidence of ROP in different regions of the world are very important. Oxygen therapy is clearly a modifiable risk factor to decrease ROP that needs further study. Understanding the two phases of ROP will help to identify appropriate therapeutic strategies and improve visual outcomes in many preterm infants globally.
Collapse
Affiliation(s)
- Rowena Cayabyab
- Division of Neonatal Medicine, Department of Pediatrics, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif., USA
| | | |
Collapse
|
43
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Jensen AK, Coleman C, Stokes D, Ying GS, Huang J, Kuhn I, Binenbaum G. Filter paper-based insulin-like growth factor assay. J AAPOS 2015; 19:363-5. [PMID: 26235792 DOI: 10.1016/j.jaapos.2015.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
This study assessed validity, reliability, and feasibility of a filter paper blood spot insulin-like growth factor 1 (IGF-1) assay for retinopathy of prematurity (ROP) research. Blood samples were collected from 45 healthy children. Half of each sample was spun to obtain serum; half was applied to filter cards and stored for varying times and at different temperatures. IGF-1 assays were performed using a commercially available kit. Intraclass correlation between blood spot and serum IGF-1 values was high (0.97) for validity, and the mean differences were low for test-retest reliability. Time (up to 25 days) and temperature (4° C to 37° C) had no significant effect on sample stability. Feasibility was further assessed in a second cohort study of 74 premature infants being screened for ROP. A total of 817 filter card samples were successfully collected and transported to a central lab, where IGF-1 assays were successfully performed.
Collapse
Affiliation(s)
- Anne K Jensen
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Carrie Coleman
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - David Stokes
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Gui-shuang Ying
- Biochemistry Core Laboratory, Clinical Translational Research Center, The Children's Hosptial of Philadelphia, Philadelphia
| | - Jiayan Huang
- Biochemistry Core Laboratory, Clinical Translational Research Center, The Children's Hosptial of Philadelphia, Philadelphia
| | - Ivy Kuhn
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gil Binenbaum
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia.
| |
Collapse
|
45
|
Dietary proteins and IGF I levels in preterm infants: determinants of growth, body composition, and neurodevelopment. Pediatr Res 2015; 77:156-63. [PMID: 25335084 DOI: 10.1038/pr.2014.172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023]
Abstract
It has been demonstrated that a high-protein diet in preterm born infants during the first weeks of life may enable a growth rate equal to that seen in utero and may also result in a better long-term neurodevelopmental outcome. This diet may limit immediate postnatal growth retardation and may hence lower the risk of increased fat deposition after birth leading to the metabolic syndrome in later life. Insulin-like growth factor I (IGF I) has proven to play an important role in early postnatal growth of preterm infants, but also seems to have a persisting influence on body composition in childhood. Furthermore, increased IGF I concentrations in preterm infants have been associated with improved neurodevelopmental outcome. This review will elaborate on the role of dietary proteins and IGF I on growth, body composition, and neurodevelopment of preterm infants. Possible causal pathways will be explored and areas for future research will be proposed.
Collapse
|
46
|
Elitt CM, Rosenberg PA. The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 2014; 276:216-38. [PMID: 24838063 DOI: 10.1016/j.neuroscience.2014.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
White matter injury in the premature infant leads to motor and more commonly behavioral and cognitive problems that are a tremendous burden to society. While there has been much progress in understanding unique vulnerabilities of developing oligodendrocytes over the past 30years, there remain no proven therapies for the premature infant beyond supportive care. The lack of translational progress may be partially explained by the challenge of developing relevant animal models when the etiology remains unclear, as is the case in this disorder. There has been an emphasis on hypoxia-ischemia and infection/inflammation as upstream etiologies, but less consideration of other contributory factors. This review highlights the evolution of white matter pathology in the premature infant, discusses the prevailing proposed etiologies, critically analyzes a sampling of common animal models and provides detailed support for our hypothesis that nutritional and hormonal deprivation may be additional factors playing critical and overlooked roles in white matter pathology in the premature infant.
Collapse
Affiliation(s)
- C M Elitt
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - P A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Abstract
While current management of retinopathy of prematurity (ROP) is well evidenced, the recent Neonatal Oxygenation Prospective Meta-analysis (NeoPROM) oxygen therapy trials, and the Bevacizumab Eliminates the Angiogenic Threat of Retinopathy of Prematurity (BEAT-ROP) trial of intravitreal injection bevacizumab, have reopened debate on optimal management. Early postnatal manipulation of oxygen therapy, nutrition and serum IGF 1 levels may improve early retinal blood vessel development and prevent later severe ROP. While the use of intravitreal injections of antivascular endothelial growth factor (VEGF) agents may appear to be an attractive alternative to laser ablation of the peripheral retina, caution is needed. The optimal choice of agent and dose remain unknown, and suppression of serum VEGF levels might interfere with normal angiogenesis processes in developing tissues. There is a pressing need for good Phase 1 studies of these agents, and safety trials.
Collapse
Affiliation(s)
- Brian William Fleck
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Edinburgh, UK.
| |
Collapse
|
48
|
Hård AL, Smith LE, Hellström A. Nutrition, insulin-like growth factor-1 and retinopathy of prematurity. Semin Fetal Neonatal Med 2013; 18:136-142. [PMID: 23428885 PMCID: PMC3809333 DOI: 10.1016/j.siny.2013.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinopathy of prematurity is a potentially blinding disease starting with impaired retinal vessel growth in the neonatal period. Weeks to months later, peripheral retinal hypoxia induces pathologic neovascularization that may lead to retinal detachment and blindness. Current treatment strategies target late stage disease and it would be advantageous if retinopathy of prematurity could be prevented. Poor general growth after very preterm birth is a universal problem associated with increased risk of retinopathy. Loss of the maternal-fetal interaction results not only in loss of nutrients but also of other factors provided in utero. The importance of nutrition and factors such as insulin-like growth factor-1 and ω-3 long chain fatty acids for proper retinal vascularization has been defined in animal studies. Increasing evidence of the applicability of these findings to human infants is accumulating. This review focuses on factors essential for neonatal growth and possible strategies to improve growth and prevent retinopathy.
Collapse
Affiliation(s)
- Anna-Lena Hård
- Section of Pediatric Ophthalmology, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at University of Gothenburg, S-416 85 Göteborg, Sweden
| | - Lois E Smith
- Department of Ophthalmology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hellström
- Section of Pediatric Ophthalmology, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at University of Gothenburg, S-416 85 Göteborg, Sweden.
| |
Collapse
|