1
|
Liao R, Zhang Z, Zhang Y, Lin Y, Chen R, Wang L, Zhong H, Lyu G. New measurement indicator of ultrasound assessment of the fetal pancreas based on anatomical landmarks and its application to fetuses with gestational diabetes mellitus. J Perinat Med 2024; 52:1002-1009. [PMID: 39367520 DOI: 10.1515/jpm-2024-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES To assess the best method for measuring the fetal pancreas, provide nomograms and evaluate the effect of GDM on it. METHODS A total of 271 singleton fetuses (17-36 weeks) were included in this study. Measurements of pancreatic parameters established reference ranges. Repeatability and consistency analyzed. GDM impact on fetal pancreatic growth assessed. RESULTS Measurements of fetal pancreatic parameters fell within the 95 % confidence interval when performed by the same or different physicians. Pancreatic midline longitudinal axis demonstrated the best intraclass correlation coefficients (ICC) and follow by the pancreatic circumference. The successful display rate and measured parameters of the integral fetal pancreas achieved 90.3 %. Pancreatic midline longitudinal axis and circumference increased with gestational age, with significant differences observed among fetuses at different gestational ages (F=2060 and F=2264, p<0.05). Pancreatic midline longitudinal axis and circumference in normal fetuses from 17 to 36 weeks of gestation were positively correlated with gestational age and abdominal circumference. Poorly controlled GDM fetuses exhibited significantly larger pancreatic midline longitudinal axis and circumference compared to the normal group fetuses (Z-values were -3.82 and -3.77, both p<0.01), while no significant differences were found between well-controlled GDM group fetuses and normal group fetuses (Z-values were -0.59 and -0.042, both p>0.05). CONCLUSIONS Ultrasound method using anatomical landmarks to measure the fetal pancreatic midline longitudinal axis and circumference is reliable. Pancreatic measurements increase with gestational age. Poorly controlled gestational diabetes can lead to enlargement of the fetal pancreas.
Collapse
Affiliation(s)
- Ruibi Liao
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Zejian Zhang
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Yuxia Zhang
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Yuanfeng Lin
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Rongsen Chen
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Lijun Wang
- Department of Ultrasound, Anxi County Maternal and Child Health Hospital, Quanzhou, China
| | - Huohu Zhong
- Department of Ultrasound in Medicine, 117889 The Second Affiliated Hospital of Fujian Medical University , Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound in Medicine, 117889 The Second Affiliated Hospital of Fujian Medical University , Quanzhou, China
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, China
| |
Collapse
|
2
|
Gatti CR, Schibert F, Taylor VS, Capobianco E, Montero V, Higa R, Jawerbaum A. Maternal dietary olive oil protects diabetic rat offspring from impaired uterine decidualization. Placenta 2024:S0143-4004(24)00776-8. [PMID: 39609224 DOI: 10.1016/j.placenta.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Maternal diabetes increases the risk of adverse maternal, perinatal and offspring outcomes. This study aimed to address whether alterations in uterine decidualization are programmed in the prepubertal offspring from diabetic rats fed diets enriched or not in extra virgin olive oil (EVOO). METHODS Control and mild pregestational diabetic female rats (F0) were mated with control males and fed diets enriched or not with 6 % EVOO during pregnancy. Offspring (F1) were evaluated on postnatal day 30, after induction of uterine decidualization (PMSG 50 IU- hCG 50 IU). Signaling pathways involved in decidualization, including prolactin, PPAR and mTOR pathways as well as microRNAs (miRs) regulating these pathways were evaluated by Western blot or qPCR in the decidualized uteri. RESULTS The offspring from diabetic rats evidenced reduced prolactin and prolactin receptor levels in the decidualized uteri. Additionally, these tissues showed increased PPARγ levels and reduced levels of its negative regulators miR-19b and miR-155. MiR-21, a microRNA that targets both PPARα and mTOR pathway regulators was reduced, whereas PPARα, PTEN and FOXO1 mRNA levels were increased in the decidualized uteri of the offspring from diabetic rats. The mTOR pathway activity was reduced in the decidualized uteri of the offspring from diabetic rats. Most of the observed alterations were prevented by the EVOO-enriched maternal diet. DISCUSSION Impaired pathways relevant to decidualization are programmed in the uteri of prepubertal offspring from diabetic dams, alterations capable of being prevented by maternal diets enriched in EVOO.
Collapse
Affiliation(s)
- Cintia Romina Gatti
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Florencia Schibert
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Virginia Soledad Taylor
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | - Romina Higa
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Oral S, Celik S, Akpak YK, Golbasi H, Bayraktar B, Unver G, Sahin S, Yurtcu N, Soyer Caliskan C. Prediction of gestational diabetes mellitus and perinatal outcomes by plasma zonulin levels. Arch Gynecol Obstet 2024; 309:119-126. [PMID: 35994108 DOI: 10.1007/s00404-022-06751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Zonulin has been shown to be associated with many metabolic disorders, including type 2 diabetes mellitus, metabolic syndrome, and obesity. In this study, we aimed to evaluate the association between maternal plasma zonulin levels and gestational diabetes mellitus (GDM) and its perinatal outcomes. MATERIALS A total of 100 pregnant women, 56 with GDM and 44 controls, were included in this prospective case-control study. Maternal plasma zonulin levels were evaluated in each trimester. The association between zonulin levels and GDM, body mass index (BMI) and adverse perinatal outcomes was evaluated. The GDM predictability of zonulin levels for each trimester was analyzed with the receiver operator curve (ROC). RESULTS Plasma zonulin levels were significantly higher in pregnant with GDM in all trimesters (p < 0.001; for all). Optimum cut-off values of plasma zonulin levels in predicting GDM: first trimester: 6.27 ng/mL, second trimester: 12.71 ng/mL, and third trimester: 18.38 ng/mL. BMI was significantly higher in pregnant women with GDM (30.5 vs 26.1; p < 0.001). Zonulin levels were significantly higher in pregnant women with GDM with overweight BMI [≥ 25-30 (kg/m2)] in all trimesters (p < 0.05; for all). Zonulin levels were significantly higher in pregnant women with composite adverse outcomes that included at least one of neonatal intensive care unit (NICU) admission, meconium-stained amniotic fluid, and 1st minute APGAR score < 7. CONCLUSION Increased maternal plasma zonulin levels were associated with increased risk of GDM and adverse perinatal outcomes. Zonulin may be a potential marker to predict GDM risk and perinatal outcomes.
Collapse
Affiliation(s)
- Serkan Oral
- Department of Obstetrics and Gynaecology, Halic University, Istanbul, Turkey
| | - Sebahattin Celik
- Department of Obstetrics and Gynecology, Balikesir State Hospital, Balikesir, Turkey
| | - Yasam Kemal Akpak
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Hakan Golbasi
- Department of Perinatology, Bakırcay University Cigli Education and Research Hospital, Izmir, Turkey.
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Gokhan Unver
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Sami Sahin
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Nazan Yurtcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Canan Soyer Caliskan
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| |
Collapse
|
4
|
Ram R, Pavan-Kumar A, Haldar C, Pathakota GB, Rasal K, Chaudhari A. Molecular cloning and expression profiling of insulin-like growth factor 2 and IGF-binding protein 6 in Clarias magur (Hamilton 1822). Anim Biotechnol 2023; 34:2262-2272. [PMID: 35714990 DOI: 10.1080/10495398.2022.2086561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Growth is an important trait in aquaculture and the major genes that regulate it are Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs). In this study, the full-length coding sequences of IGF2 and IGFBP6 genes in the Indian catfish Clarias magur were cloned and characterized. The full-length cDNA sequences of IGF2 and IGFBP6 were 885 bp (ORF 642 bp) and 928 bp (ORF 600 bp), encoding 213 and 199 amino acids, respectively. Bioinformatics analyses revealed that the magur IGF2 and IGFBP6 proteins are hydrophilic and secretory in nature. Sequence alignment with other teleosts and mammalian orthologues shows conservation of the functional domains. Gene expression analysis in 6 individuals each of high (298 ± 5.0 g) and low (210 ± 6.0 g) growth performing families showed significantly (p < 0.05) higher expression (2.5-3 fold) of IGF2, and lower expression (∼2.5 fold) of IGFBP6 in liver and muscle of fast-growing fish. This study suggests that IGF2 could be playing a major role in the growth regulation of magur. These genes and their expression patterns could be developed into growth-associated markers for magur and other catfishes.
Collapse
Affiliation(s)
- Raju Ram
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Annam Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Chandan Haldar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Gireesh-Babu Pathakota
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Kiran Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| |
Collapse
|
5
|
da Cruz LL, Barco VS, Paula VG, Gallego FQ, Souza MR, Corrente JE, Zambrano E, Volpato GT, Damasceno DC. Severe Diabetes Induction as a Generational Model for Growth Restriction of Rat. Reprod Sci 2023:10.1007/s43032-023-01198-9. [PMID: 36849856 DOI: 10.1007/s43032-023-01198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
We used uncontrolled maternal diabetes as a model to provoke fetal growth restriction in the female in the first generation (F1) and to evaluate reproductive outcomes and the possible changes in metabolic systems during pregnancy, as well as the repercussions at birth in the second generation (F2). For this, nondiabetic and streptozotocin-induced severely diabetic Sprague-Dawley rats were mated to obtain female pups (F1), which were classified as adequate (AGA) or small (SGA) for gestational weight. Afterward, we composed two groups: F1 AGA from nondiabetic dams (Control) and F1 SGA from severely diabetic dams (Restricted) (n minimum = 10 animals/groups). At adulthood, these rats were submitted to the oral glucose tolerance test, mated, and at day 17 of pregnancy, blood samples were collected to determine glucose and insulin levels for assessment of insulin resistance. At the end of the pregnancy, the blood and liver samples were collected to evaluate redox status markers, and reproductive, fetal, and placental outcomes were analyzed. Maternal diabetes was responsible for increased SGA rates and a lower percentage of AGA fetuses (F1 generation). The restricted female pups from severely diabetic dams presented rapid neonatal catch-up growth, glucose intolerance, and insulin resistance status before and during pregnancy. At term pregnancy of F1 generation, oxidative stress status was observed in the maternal liver and blood samples. In addition, their offspring (F2 generation) had lower fetal weight and placental efficiency, regardless of gender, which caused fetal growth restriction and confirmed the fetal programming influence.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Vinícius Soares Barco
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Verônyca Gonçalves Paula
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Franciane Quintanilha Gallego
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Maysa Rocha Souza
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Department of Reproductive Biology, Mexico City, Mexico
| | - Gustavo Tadeu Volpato
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil.
| |
Collapse
|
6
|
Bartels HC, O'Keeffe LM, Yelverton CA, O'Neill KN, Geraghty AA, O'Brien EC, Killeen SL, McDonnell C, McAuliffe FM. Associations between maternal metabolic parameters during pregnancy and fetal and child growth trajectories from 20 weeks' gestation to 5 years of age: Secondary analysis from the ROLO longitudinal birth cohort study. Pediatr Obes 2023; 18:e12976. [PMID: 36102219 PMCID: PMC10078394 DOI: 10.1111/ijpo.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine the association between maternal metabolic parameters in pregnancy and growth trajectories up to 5 years of age. METHODS Data from mother-child pairs who participated in the ROLO study, a randomized trial examining the impact of a low glycaemic index diet on the recurrence of macrosomia, were analysed. Fetal and child growth trajectories were developed from longitudinal measurements from 20 weeks gestation up to 5 years of age. We examined associations between maternal fasting glucose, insulin, HOMA-IR and leptin, taken in early pregnancy (14-16 weeks) and late pregnancy (28 weeks), and weight (kg) and abdominal circumference (cm) trajectories using linear spline multilevel models. RESULTS We found no strong evidence of associations between any maternal metabolic parameters and fetal to childhood weight and abdominal circumference trajectories from 20 weeks gestation to 5 years. CONCLUSION In a cohort of women with obesity with infants at risk of macrosomia, maternal metabolic markers were not strongly associated with trajectories of weight or abdominal circumference from 20 weeks gestation to 5 years of age.
Collapse
Affiliation(s)
- Helena C Bartels
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Linda M O'Keeffe
- School of Public Health, University College Cork, Cork, Ireland.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Cara A Yelverton
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Kate N O'Neill
- School of Public Health, University College Cork, Cork, Ireland
| | - Aisling A Geraghty
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Eileen C O'Brien
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Ciara McDonnell
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland.,Department of Pediatric Endocrinology & Diabetes, Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
8
|
Golbasi H, Bayraktar B, Golbasi C, Omeroglu I, Adiyaman D, Sever B, Ekin A. Can sonographic imaging of the fetal pancreas predict perinatal outcomes in gestational diabetes mellitus? J Perinat Med 2022; 50:1189-1197. [PMID: 35607725 DOI: 10.1515/jpm-2022-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate whether fetal pancreatic echogenicity and its measurements are associated with gestational diabetes mellitus (GDM) and perinatal outcomes. METHODS A prospective cohort study was conducted with 150 pregnant women with a singleton pregnancy. The study included pregnant women between 30 and 41 weeks with or without GDM. Fetal pancreatic circumference was measured using the free-hand tracking function. The echogenicity of the fetal pancreas was compared with the echogenicity of the liver and bone (ribs, spine) and classified as Grades 1, 2 and 3. The relationship between maternal characteristics and perinatal outcomes with fetal pancreas measurements and echogenicity was evaluated. RESULTS Pregnant women with 75 GDM and 75 without GDM were included in the study. Mean fetal pancreas circumference measurements were significantly higher in pregnant women with GDM than in those without GDM (p=0.001). Hyperechogenic (Grade 3) fetal pancreas was significantly higher in pregnant women with GDM than in pregnant women without GDM, and there was a positive correlation between pancreatic echogenicity and HbA1c levels in pregnant women with GDM (r=0.631, p<0.01). There was a significant relationship between pancreatic echogenicity, measurements and adverse neonatal outcomes in pregnant women with GDM, and pancreas measurements were significantly higher in pregnant women with cesarean delivery. CONCLUSIONS Fetal pancreatic echogenicity and measurements in pregnant women with GDM can give an idea about glucose regulation and adverse perinatal outcomes.
Collapse
Affiliation(s)
- Hakan Golbasi
- Department of Obstetrics and Gynecology Division of Perinatology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ceren Golbasi
- Department of Obstetrics and Gynecology, Izmir Tinaztepe University Faculty of Medicine, Izmir, Turkey
| | - Ibrahim Omeroglu
- Department of Obstetrics and Gynecology Division of Perinatology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Duygu Adiyaman
- Department of Obstetrics and Gynecology Division of Perinatology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Baris Sever
- Department of Obstetrics and Gynecology Division of Perinatology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Atalay Ekin
- Department of Obstetrics and Gynecology Division of Perinatology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
9
|
Chen KY, Lin SY, Lee CN, Wu HT, Kuo CH, Kuo HC, Chuang CC, Kuo CH, Chen SC, Fan KC, Lin MW, Fang CT, Li HY. Maternal Plasma Lipids During Pregnancy, Insulin-like Growth Factor-1, and Excess Fetal Growth. J Clin Endocrinol Metab 2021; 106:e3461-e3472. [PMID: 34021357 DOI: 10.1210/clinem/dgab364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Maternal lipids during pregnancy and placental growth factors are associated with excess fetal growth. However, how these factors interact to increase the risk of delivering large-for-gestational-age (LGA) neonates remains unclear. In this study, we investigated the relationship between maternal plasma triglycerides (TGs) and free fatty acids (FFAs) during pregnancy, cord blood insulin-like growth factors (IGF), and LGA. OBJECTIVE In a cell model, we studied the effect of different FAs on placental IGF-1 secretion. METHODS This cohort study included pregnant women with term pregnancy and without diabetes or hypertensive disorders in pregnancy. Maternal fasting plasma TGs and FFAs were measured in the second trimester. Cord blood IGF-1, IGF-2, and IGF binding protein-1 and protein-3 were measured at the time of delivery. A human trophoblast cell line, 3A-sub-E, was used to evaluate the effect of different FFAs on placental IGF-1 secretion. RESULTS We recruited 598 pregnant women-neonate pairs. Maternal plasma TG (180 mg/dL [152.5-185.5 mg/dL] vs 166 mg/dL [133-206 mg/dL], P = .04) and cord blood IGF-1 concentrations (72.7 ± 23.0 vs 54.1 ± 22.8 ng/mL, P < .001) were higher in the LGA group and were significantly associated with birth weight z score. Maternal plasma free palmitic acid (PA) and stearic acid (SA), but not oleic acid (OA) or linoleic acid (LA), were significantly associated with cord blood IGF-1 concentrations. In 3A-sub-E cells, treatment with PA, SA, and LA, but not OA, induced IGF-1 expression and secretion. CONCLUSION Certain FFAs can induce placental IGF-1 secretion, which suggests a potential pathophysiology linking maternal plasma lipids and LGA.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Internal Medicine, ANSN Clinic, Hsin-Chu 300, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Chi Chuang
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Heng Kuo
- Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan
| | - Szu-Chi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Ren-Ai branch, Taipei 100, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
10
|
Linenberg I, Fornes D, Higa R, Jawerbaum A, Capobianco E. Intergenerational effects of the antioxidant Idebenone on the placentas of rats with gestational diabetes mellitus. Reprod Toxicol 2021; 104:16-26. [PMID: 34175429 DOI: 10.1016/j.reprotox.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Experimental models of maternal diabetes lead to the intrauterine programming of Gestational Diabetes Mellitus (GDM) in the offspring, together with an intrauterine proinflammatory environment, feto-placental metabolic alterations and fetal overgrowth. The aim of this work was to evaluate the effect of the mitochondrial antioxidant Idebenone given to F0 mild pregestational diabetic rats on the development of GDM in their F1 offspring and the intergenerational programming of a pro-oxidant/proinflammatory environment that affects the placentas of F2 fetuses. Control and mild pregestational diabetic female rats (F0) were mated with control males, and Idebenone or vehicle was administered to diabetic rats from day 1 of gestation to term. The F1 female offspring were mated with control males and maternal and fetal plasma samples were obtained for metabolic determinations at term. The F2 fetuses and placentas were weighed, and placental protein levels and peroxynitrite-induced damage (immunohistochemistry), mRNA levels (PCR), nitric oxide production (Griess reaction), and number of apoptotic cells (TUNEL) were evaluated. The F1 offspring of F0 diabetic rats (treated or not with Idebenone) developed GDM. The placentas of GDM rats showed a decrease in the mRNA levels of manganese superoxide dismutase and an increase in the production of nitric oxide, peroxynitrite-induced damage, and connective tissue growth factor levels, alterations that were prevented by the maternal Idebenone treatment in F0 rats. In conclusion, the maternal treatment with Idebenone in pregestational diabetic F0 rats ameliorates the pro-oxidant/proinflammatory environment that affects the placentas of F2 fetuses, although it does not prevent F1 rats from developing GDM.
Collapse
Affiliation(s)
- Ivana Linenberg
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Daiana Fornes
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina Higa
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Favaro RR, Morales-Prieto DM, Herrmann J, Sonnemann J, Schleussner E, Markert UR, Zorn TMT. Influence of high glucose in the expression of miRNAs and IGF1R signaling pathway in human myometrial explants. Arch Gynecol Obstet 2021; 303:1513-1522. [PMID: 33575847 PMCID: PMC8087607 DOI: 10.1007/s00404-020-05940-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Several roles are attributed to the myometrium including sperm and embryo transport, menstrual discharge, control of uterine blood flow, and labor. Although being a target of diabetes complications, the influence of high glucose on this compartment has been poorly investigated. Both miRNAs and IGF1R are associated with diabetic complications in different tissues. Herein, we examined the effects of high glucose on the expression of miRNAs and IGF1R signaling pathway in the human myometrium. METHODS Human myometrial explants were cultivated for 48 h under either high or low glucose conditions. Thereafter, the conditioned medium was collected for biochemical analyses and the myometrial samples were processed for histological examination as well as miRNA and mRNA expression profiling by qPCR. RESULTS Myometrial structure and morphology were well preserved after 48 h of cultivation in both high and low glucose conditions. Levels of lactate, creatinine, LDH and estrogen in the supernatant were similar between groups. An explorative screening by qPCR arrays revealed that 6 out of 754 investigated miRNAs were differentially expressed in the high glucose group. Data validation by single qPCR assays confirmed diminished expression of miR-215-5p and miR-296-5p, and also revealed reduced miR-497-3p levels. Accordingly, mRNA levels of IGF1R and its downstream mediators FOXO3 and PDCD4, which are potentially targeted by miR-497-3p, were elevated under high glucose conditions. In contrast, mRNA expression of IGF1, PTEN, and GLUT1 was unchanged. CONCLUSIONS The human myometrium responds to short-term exposure (48 h) to high glucose concentrations by regulating the expression of miRNAs, IGF1R and its downstream targets.
Collapse
Affiliation(s)
- Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | - Jörg Herrmann
- Department of Gynecology and Obstetrics, Hufeland Klinikum, Weimar, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Telma M T Zorn
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Do V, Eckersley L, Lin L, Davidge ST, Stickland MK, Ojala T, Serrano-Lomelin J, Hornberger LK. Persistent Aortic Stiffness and Left Ventricular Hypertrophy in Children of Diabetic Mothers. CJC Open 2020; 3:345-353. [PMID: 33778451 PMCID: PMC7985002 DOI: 10.1016/j.cjco.2020.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023] Open
Abstract
Background Fetuses of diabetic mothers develop left ventricular (LV) hypertrophy and are at increased long-term risk of cardiovascular disease. In our previous longitudinal study from midgestation to late infancy we showed persistence of LV hypertrophy and increased aortic stiffness compared with infants of healthy mothers, the latter of which correlated with third trimester maternal hemoglobin A1c. In the present study, we reexamined the same cohort in early childhood to determine if these cardiovascular abnormalities persisted. Methods Height, weight, and right arm blood pressure were recorded. A full functional and structural echocardiogram was performed with offline analysis of LV posterior wall and interventricular septal diastolic thickness (IVSd), systolic and diastolic function, and aortic pulse wave velocity. Vascular reactivity was assessed using digital thermal monitoring. Participants also completed a physical activity questionnaire. Results Twenty-five children of diabetic mothers (CDMs) and 20 children from healthy pregnancies (mean age, 5.6 ± 1.7 and 5.3 ± 1.3 years, respectively; P = not significant) were assessed. Compared with controls, IVSd z score was increased in CDMs (1.2 ± 0.6 vs 0.5 ± 0.3, respectively; P = 0.006), with one-fifth having a z score of more than +2.0. Aortic pulse wave velocity was increased in CDMs (3.2 ± 0.6 m/s vs 2.2 ± 0.4 m/s; P = 0.001), and correlated with IVSd z score (R2 = 0.81; P = 0.001) and third trimester maternal A1c (R2 = 0.65; P < 0.0001). Body surface area, height, weight, blood pressure, vascular reactivity, and physical activity scores did not differ between groups. Our longitudinal analysis showed that individuals with greater IVSd, and aortic stiffness in utero, early and late infancy also tended to have greater measures in early childhood (P < 0.001 and P < 0.0001, respectively). Conclusions CDMs show persistently increased interventricular septal thickness and aortic stiffness in early childhood.
Collapse
Affiliation(s)
- Victor Do
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Luke Eckersley
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lily Lin
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tiina Ojala
- University of Helsinki, Helsinki Children's Hospital, Helsinki, Finland
| | | | - Lisa K Hornberger
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Zhu W, Shen Y, Liu J, Fei X, Zhang Z, Li M, Chen X, Xu J, Zhu Q, Zhou W, Zhang M, Liu S, Du J. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med 2020; 24:13899-13912. [PMID: 33085184 PMCID: PMC7753873 DOI: 10.1111/jcmm.15984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
This study aimed to identify epigenetic alternations of microRNAs and DNA methylation for gestational diabetes mellitus (GDM) diagnosis and treatment using in silico approach. Data of mRNA and miRNA expression microarray (GSE103552 and GSE104297) and DNA methylation data set (GSE106099) were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated genes (DMGs) were obtained by limma package. Functional and enrichment analyses were performed with the DAVID database. The protein‐protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Simultaneously, a connectivity map (CMap) analysis was performed to screen potential therapeutic agents for GDM. In GDM, 184 low miRNA‐targeting up‐regulated genes and 234 high miRNA‐targeting down‐regulated genes as well as 364 hypomethylation–high‐expressed genes and 541 hypermethylation–low‐expressed genes were obtained. They were mainly enriched in terms of axon guidance, purine metabolism, focal adhesion and proteasome, respectively. In addition, 115 genes (67 up‐regulated and 48 down‐regulated) were regulated by both aberrant alternations of miRNAs and DNA methylation. Ten chemicals were identified as putative therapeutic agents for GDM and four hub genes (IGF1R, ATG7, DICER1 and RANBP2) were found in PPI and may be associated with GDM. Overall, this study identified a series of differentially expressed genes that are associated with epigenetic alternations of miRNA and DNA methylation in GDM. Ten chemicals and four hub genes may be further explored as potential drugs and targets for GDM diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, China.,NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yupei Shen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Junwei Liu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Xiaoping Fei
- The First people's Hospital of Kunshan, Kunshan, China
| | - Zhaofeng Zhang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Min Li
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Health Care Hospital For Women & Children, Shanghai, China
| | - Jianhua Xu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Qianxi Zhu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Weijin Zhou
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, China
| | | | - Jing Du
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
15
|
Kua KL, Hu S, Wang C, Yao J, Dang D, Sawatzke AB, Segar JL, Wang K, Norris AW. Fetal hyperglycemia acutely induces persistent insulin resistance in skeletal muscle. J Endocrinol 2019; 242:M1-M15. [PMID: 30444716 PMCID: PMC6494731 DOI: 10.1530/joe-18-0455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
Offspring exposed in utero to maternal diabetes exhibit long-lasting insulin resistance, though the initiating mechanisms have received minimal experimental attention. Herein, we show that rat fetuses develop insulin resistance after only 2-day continuous exposure to isolated hyperglycemia starting on gestational day 18. Hyperglycemia-induced reductions in insulin-induced AKT phosphorylation localized primarily to fetal skeletal muscle. The skeletal muscle of hyperglycemia-exposed fetuses also exhibited impaired in vivo glucose uptake. To address longer term impacts of this short hyperglycemic exposure, neonates were cross-fostered and examined at 21 days postnatal age. Offspring formerly exposed to 2 days late gestation hyperglycemia exhibited mild glucose intolerance with insulin signaling defects localized only to skeletal muscle. Fetal hyperglycemic exposure has downstream consequences which include hyperinsulinemia and relative uteroplacental insufficiency. To determine whether these accounted for induction of insulin resistance, we examined fetuses exposed to late gestational isolated hyperinsulinemia or uterine artery ligation. Importantly, 2 days of fetal hyperinsulinemia did not impair insulin signaling in murine fetal tissues and 21-day-old offspring exposed to fetal hyperinsulinemia had normal glucose tolerance. Similarly, fetal exposure to 2-day uteroplacental insufficiency did not perturb insulin-stimulated AKT phosphorylation in fetal rats. We conclude that fetal exposure to hyperglycemia acutely produces insulin resistance. As hyperinsulinemia and placental insufficiency have no such impact, this occurs likely via direct tissue effects of hyperglycemia. Furthermore, these findings show that skeletal muscle is uniquely susceptible to immediate and persistent insulin resistance induced by hyperglycemia.
Collapse
Affiliation(s)
- Kok Lim Kua
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Shanming Hu
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Chunlin Wang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Jianrong Yao
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Diana Dang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Alex B. Sawatzke
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Jeffrey L. Segar
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, United States
| | - Andrew W. Norris
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
16
|
Casasnovas J, Jo Y, Rao X, Xuei X, Brown ME, Kua KL. High glucose alters fetal rat islet transcriptome and induces progeny islet dysfunction. J Endocrinol 2019; 240:309-323. [PMID: 30508415 DOI: 10.1530/joe-18-0493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Offspring of diabetic mothers are susceptible to developing type 2 diabetes due to pancreatic islet dysfunction. However, the initiating molecular pathways leading to offspring pancreatic islet dysfunction are unknown. We hypothesized that maternal hyperglycemia alters offspring pancreatic islet transcriptome and negatively impacts offspring islet function. We employed an infusion model capable of inducing localized hyperglycemia in fetal rats residing in the left uterine horn, thus avoiding other factors involved in programming offspring pancreatic islet health. While maintaining euglycemia in maternal dams and right uterine horn control fetuses, hyperglycemic fetuses in the left uterine horn had higher serum insulin and pancreatic beta cell area. Upon completing infusion from GD20 to 22, RNA sequencing was performed on GD22 islets to identify the hyperglycemia-induced altered gene expression. Ingenuity pathway analysis of the altered transcriptome found that diabetes mellitus and inflammation/cell death pathways were enriched. Interestingly, the downregulated genes modulate more diverse biological processes, which includes responses to stimuli and developmental processes. Next, we performed ex and in vivo studies to evaluate islet cell viability and insulin secretory function in weanling and adult offspring. Pancreatic islets of weanlings exposed to late gestation hyperglycemia had decreased cell viability in basal state and glucose-induced insulin secretion. Lastly, adult offspring exposed to in utero hyperglycemia also exhibited glucose intolerance and insulin secretory dysfunction. Together, our results demonstrate that late gestational hyperglycemia alters the fetal pancreatic islet transcriptome and increases offspring susceptibility to developing pancreatic islet dysfunction.
Collapse
Affiliation(s)
- Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunhee Jo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xi Rao
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoling Xuei
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mary E Brown
- The Indiana Center for Biological Microscopy, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Roselló-Díez A, Madisen L, Bastide S, Zeng H, Joyner AL. Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth in developing mice. PLoS Biol 2018; 16:e2005086. [PMID: 29944650 PMCID: PMC6019387 DOI: 10.1371/journal.pbio.2005086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 01/12/2023] Open
Abstract
Catch-up growth after insults to growing organs is paramount to achieving robust body proportions. In fly larvae, injury to individual tissues is followed by local and systemic compensatory mechanisms that allow the damaged tissue to regain normal proportions with other tissues. In vertebrates, local catch-up growth has been described after transient reduction of bone growth, but the underlying cellular responses are controversial. We developed an approach to study catch-up growth in foetal mice in which mosaic expression of the cell cycle suppressor p21 is induced in the cartilage cells (chondrocytes) that drive long-bone elongation. By specifically targeting p21 expression to left hindlimb chondrocytes, the right limb serves as an internal control. Unexpectedly, left-right limb symmetry remained normal, revealing deployment of compensatory mechanisms. Above a certain threshold of insult, an orchestrated response was triggered involving local enhancement of bone growth and systemic growth reduction that ensured that body proportions were maintained. The local response entailed hyperproliferation of spared left limb chondrocytes that was associated with reduced chondrocyte density. The systemic effect involved impaired placental function and IGF signalling, revealing bone-placenta communication. Therefore, vertebrates, like invertebrates, can mount coordinated local and systemic responses to developmental insults that ensure that normal body proportions are maintained.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Sébastien Bastide
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| |
Collapse
|
18
|
Yang S, Zhao N, Yang Y, Hu Y, Dong H, Zhao R. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2704-2713. [PMID: 29376352 DOI: 10.1021/acs.jafc.7b05418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Haibo Dong
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
19
|
White V, Jawerbaum A, Mazzucco MB, Gauster M, Desoye G, Hiden U. IGF2 stimulates fetal growth in a sex- and organ-dependent manner. Pediatr Res 2018; 83:183-189. [PMID: 28910276 DOI: 10.1038/pr.2017.221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/31/2017] [Indexed: 11/09/2022]
Abstract
BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.
Collapse
Affiliation(s)
- Veronica White
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Belen Mazzucco
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
21
|
Review on intrauterine programming: Consequences in rodent models of mild diabetes and mild fat overfeeding are not mild. Placenta 2017; 52:21-32. [PMID: 28454694 DOI: 10.1016/j.placenta.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
|
22
|
Gao L, Liu Y, Wen Y, Wu W. LncRNA H19-mediated mouse cleft palate induced by all-trans retinoic acid. Hum Exp Toxicol 2016; 36:395-401. [DOI: 10.1177/0960327116651121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are the new class of transcripts and pervasively transcribed in the genome, which have been found to play important functional roles in many tissues and organs. LncRNAs can interact with target gene to exert their functions. However, the function and mechanism of lncRNA in cleft palate (CP) development remain elusive. Here, we investigated the role of lncRNA H19 and its target gene insulin-like growth factor 2 (IGF2) in CP of mice. All-trans retinoic acid (atRA) is a well-known teratogenic effecter of CP. After establishment of the CP mouse model using atRA in vivo, we found that the rate of CP in mice was 100%. The tail lengths of fetuses in atRA-treated mice were shorter than those of control mice from embryonic day (E)12 to E17. The expression of lncRNA H19 and IGF2 were embryo age-related differences between atRNA-treated and control mice. In addition, the the relationship between lncRNA H19 and IGF2 were negative correlation in the critical period of developmental palate. These findings suggest that lncRNA H19 mediate atRA-induced CP in mice.
Collapse
Affiliation(s)
- L Gao
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
- College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Y Liu
- School of Pharmacy, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| | - Y Wen
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| | - W Wu
- School of Public Health, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
23
|
Capobianco E, Fornes D, Linenberg I, Powell TL, Jansson T, Jawerbaum A. A novel rat model of gestational diabetes induced by intrauterine programming is associated with alterations in placental signaling and fetal overgrowth. Mol Cell Endocrinol 2016; 422:221-232. [PMID: 26747729 DOI: 10.1016/j.mce.2015.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/03/2015] [Accepted: 12/27/2015] [Indexed: 01/05/2023]
Abstract
A family history of diabetes predisposes to gestational diabetes mellitus (GDM). We hypothesized that female offspring of rats with pre-gestational diabetes will develop GDM, a pathology associated with fetal overgrowth and altered placental signaling. We found normal glycemia and insulinemia in the offspring from pre-gestational diabetic rats at three months of age. However, consistent with GDM, maternal hyperglycemia and hyperinsulinemia and increased fetal weight were evident when compared to controls. In this intrauterine programmed GDM model, the placentas showed alterations in mTOR pathway: unchanged phosphorylation of 4EBP-1 and PKCα despite reduced total expression of 4EBP-1 and PKCα, and increased phosphorylation of SGK1. GDM placentas also showed reduced expression of PPARα and PPARγ, and increased lipoperoxidation, nitric oxide production and peroxynitrite-induced damage. We conclude that exposure of maternal diabetes in utero programs GDM in the female offspring, leading to a GDM model associated with impaired placental signaling pathways, increased pro-oxidant/pro-inflammatory environment and fetal overgrowth.
Collapse
Affiliation(s)
- Evangelina Capobianco
- Laboratory of Reproduction and Metabolism, CEFYBO. CONICET School of Medicine, University of Buenos Aires, Argentina
| | - Daiana Fornes
- Laboratory of Reproduction and Metabolism, CEFYBO. CONICET School of Medicine, University of Buenos Aires, Argentina
| | - Ivana Linenberg
- Laboratory of Reproduction and Metabolism, CEFYBO. CONICET School of Medicine, University of Buenos Aires, Argentina
| | - Theresa L Powell
- Section of Neonatology, Department of Pediatrics Department of OB/GYN, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, CEFYBO. CONICET School of Medicine, University of Buenos Aires, Argentina.
| |
Collapse
|
24
|
Capobianco E, Pelesson M, Careaga V, Fornes D, Canosa I, Higa R, Maier M, Jawerbaum A. Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil. Mol Nutr Food Res 2015; 59:1997-2007. [DOI: 10.1002/mnfr.201500334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Evangelina Capobianco
- Laboratory of Reproduction and Metabolism; CEFYBO-CONICET, School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - Magalí Pelesson
- Laboratory of Reproduction and Metabolism; CEFYBO-CONICET, School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - Valeria Careaga
- UMYMFOR (CONICET-UBA); Department of Organic Chemistry; School of Exact and Natural Sciences; University of Buenos Aires; Buenos Aires Argentina
| | - Daiana Fornes
- Laboratory of Reproduction and Metabolism; CEFYBO-CONICET, School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - Ivana Canosa
- UMYMFOR (CONICET-UBA); Department of Organic Chemistry; School of Exact and Natural Sciences; University of Buenos Aires; Buenos Aires Argentina
| | - Romina Higa
- Laboratory of Reproduction and Metabolism; CEFYBO-CONICET, School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - Marta Maier
- UMYMFOR (CONICET-UBA); Department of Organic Chemistry; School of Exact and Natural Sciences; University of Buenos Aires; Buenos Aires Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism; CEFYBO-CONICET, School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|