1
|
Liu X, Jia X. Neuroprotection of Stem Cells Against Ischemic Brain Injury: From Bench to Clinic. Transl Stroke Res 2024; 15:691-713. [PMID: 37415004 PMCID: PMC10771544 DOI: 10.1007/s12975-023-01163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023]
Abstract
Neurological injuries can have numerous debilitating effects on functional status including sensorimotor deficits, cognitive impairment, and behavioral symptoms. Despite the disease burden, treatment options remain limited. Current pharmacological interventions are targeted at symptom management but are ineffective in reversing ischemic brain damage. Stem cell therapy for ischemic brain injury has shown promising preclinical and clinical results and has attracted attention as a potential therapeutic option. Various stem cell sources (embryonic, mesenchymal/bone marrow, and neural stem cells) have been investigated. This review provides an overview of the advances made in our understanding of the various types of stem cells and progress made in the use of these stem cells for the treatment of ischemic brain injuries. In particular, the use of stem cell therapy in global cerebral ischemia following cardiac arrest and in focal cerebral ischemia after ischemic stroke are discussed. The proposed mechanisms of stem cells' neuroprotective effects in animal models (rat/mice, pig/swine) and other clinical studies, different routes of administration (intravenous/intra-arterial/intracerebroventricular/intranasal/intraperitoneal/intracranial) and stem cell preconditioning are discussed. Much of the promising data on stem cell therapies after ischemic brain injury remains in the experimental stage and several limitations remain unsettled. Future investigation is needed to further assess the safety and efficacy and to overcome the remaining obstacles.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Mintoft A, Vallatos A, Robertson NJ. Mesenchymal Stromal Cell therapy for Hypoxic Ischemic Encephalopathy: Future directions for combination therapy with hypothermia and/or melatonin. Semin Perinatol 2024; 48:151929. [PMID: 38902120 DOI: 10.1016/j.semperi.2024.151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) remains a leading cause of neonatal mortality and lifelong disability across the world. While therapeutic hypothermia (HT) is beneficial, it is only partially protective and adjuvant treatments that further improve outcomes are urgently needed. In high-income countries where HT is standard care, novel treatments are tested in conjunction with HT. Mesenchymal stromal cells (MSC) represent a paradigm shift in brain protection, uniquely adapting to the host cellular microenvironment. MSC have low immunogenicity and potent paracrine effects stimulating the host tissue repair and regeneration and reducing inflammation and apoptosis. Preclinical studies in perinatal brain injury suggest that MSC are beneficial after hypoxia-ischemia (HI) and most preclinical studies of MSC with HT show protection. Preclinical and early phase clinical trials have shown that allogenic administration of MSC to neonates with perinatal stroke and HIE is safe and feasible but further safety and efficacy studies of HT with MSC in these populations are needed. Combination therapies that target all stages of the evolution of injury after HI (eg HT, melatonin and MSC) show promise for improving outcomes in HIE.
Collapse
Affiliation(s)
- Alison Mintoft
- Institute for Women's Health, University College London, London, UK
| | - Antoine Vallatos
- School of Psychology and Neuroscience, University of Glasgow; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Hermans EC, van Gerven CCE, Johnsen L, Tungen JE, Nijboer CH, de Theije CGM. Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy. Nutrients 2024; 16:2252. [PMID: 39064695 PMCID: PMC11279425 DOI: 10.3390/nu16142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound n-3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied. This study investigates the efficacy of oral LPC-n-3 LCPUFAs from Lysoveta following neonatal HI in mice and explores potential additive effects in combination with MSC therapy. HI was induced in 9-day-old C57BL/6 mice and Lysoveta was orally supplemented for 7 subsequent days, with or without intranasal MSCs at 3 days post-HI. At 21-28 days post-HI, functional outcome was determined using cylinder rearing, novel object recognition, and open field tasks, followed by the assessment of gray (MAP2) and white (MBP) matter injury. Oral Lysoveta diminished gray and white matter injury but did not ameliorate functional deficits following HI. Lysoveta did not further enhance the therapeutic potential of MSC therapy. In vitro, Lysoveta protected SH-SY5Y neurons against oxidative stress. In conclusion, short-term oral administration of Lysoveta LPC-n-3 LCPUFAs provides neuroprotection against neonatal HI by mitigating oxidative stress injury but does not augment the efficacy of MSC therapy.
Collapse
Affiliation(s)
- Eva C. Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Carlon C. E. van Gerven
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Line Johnsen
- Aker BioMarine Human Ingredients AS, Oksenøyveien 10, 1327 Lysaker, Norway
| | - Jørn E. Tungen
- Aker BioMarine Human Ingredients AS, Oksenøyveien 10, 1327 Lysaker, Norway
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Caroline G. M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
4
|
Hermans EC, Donega V, Heijnen CJ, de Theije CGM, Nijboer CH. CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain. Stem Cell Res Ther 2024; 15:134. [PMID: 38715091 PMCID: PMC11077865 DOI: 10.1186/s13287-024-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.
Collapse
Affiliation(s)
- Eva C Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Vanessa Donega
- Anatomy & Neurosciences, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cobi J Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands.
| |
Collapse
|
5
|
Milutinovic B, Mahalingam R, Mendt M, Arroyo L, Seua A, Dharmaraj S, Shpall E, Heijnen CJ. Intranasally Administered MSC-Derived Extracellular Vesicles Reverse Cisplatin-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:11862. [PMID: 37511623 PMCID: PMC10380450 DOI: 10.3390/ijms241411862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Neurotoxic side effects of chemotherapy include deficits in attention, memory, and executive functioning. Currently, there are no FDA-approved therapies. In mice, cisplatin causes long-term cognitive deficits, white matter damage, mitochondrial dysfunction, and loss of synaptic integrity. We hypothesized that MSC-derived small extracellular vesicles (sEVs) could restore cisplatin-induced cognitive impairments and brain damage. Animals were injected with cisplatin intraperitoneally and treated with MSC-derived sEVs intranasally 48 and 96 h after the last cisplatin injection. The puzzle box test (PBT) and the novel object place recognition test (NOPRT) were used to determine cognitive deficits. Synaptosomal mitochondrial morphology was analyzed by transmission electron microscopy. Immunohistochemistry using antibodies against synaptophysin and PSD95 was applied to assess synaptic loss. Black-Gold II staining was used to quantify white matter integrity. Our data show that sEVs enter the brain in 30 min and reverse the cisplatin-induced deficits in executive functioning and working and spatial memory. Abnormalities in mitochondrial morphology, loss of white matter, and synaptic integrity in the hippocampus were restored as well. Transcriptomic analysis revealed upregulation of regenerative functions after treatment with sEVs, pointing to a possible role of axonal guidance signaling, netrin signaling, and Wnt/Ca2+ signaling in recovery. Our data suggest that intranasal sEV treatment could become a novel therapeutic approach for the treatment of chemobrain.
Collapse
Affiliation(s)
- Bojana Milutinovic
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Arroyo
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandre Seua
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shruti Dharmaraj
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Cotten CM, Fisher K, Malcolm W, Gustafson KE, Cheatham L, Marion A, Greenberg R, Kurtzberg J. A Pilot Phase I Trial of Allogeneic Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells in Neonates With Hypoxic-Ischemic Encephalopathy. Stem Cells Transl Med 2023:7191802. [PMID: 37285522 DOI: 10.1093/stcltm/szad027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) in neonates causes increased mortality and long-term morbidity in surviving babies. Hypothermia (HT) has improved outcomes, however, mortality remains high with ~half of surviving babies developing neurological impairment in their first years. We previously explored the use of autologous cord blood (CB) to determine if CB cells could lessen long-term damage to the brain. However, the feasibility of CB collection from sick neonates limited the utility of this approach. Allogeneic cord tissue mesenchymal stromal cells (hCT-MSC), cryopreserved and readily available, have been shown to ameliorate brain injury in animal models of HIE. We, therefore, conducted a pilot, phase I, clinical trial to test the safety and describe the preliminary efficacy of hCT-MSC in neonates with HIE. The study treated infants with moderate to severe HIE, treated with HT, with 1 or 2 doses of 2 million cells/kg/dose of hCT-MSC given intravenously. The babies were randomized to receive 1 or 2 doses with the first dose during HT and the second dose 2 months later. Babies were followed for survival and development with scoring of Bayley's at 12 postnatal months. Six neonates with moderate (4) or severe (2) HIE were enrolled. All received 1 dose of hCT-MSC during HT and 2 received a 2nd dose, 2 months later. hCT-MSC infusions were well tolerated although 5/6 babies developed low titer anti-HLA antibodies by 1 year of age. All babies survived, with average to low-average developmental assessment standard scores for ages between 12 and 17 postnatal months. Further study is warranted.
Collapse
Affiliation(s)
- Charles Michael Cotten
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kimberley Fisher
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - William Malcolm
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn E Gustafson
- Department of Psychiatry and Behavioral Sciences, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Lynn Cheatham
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| | - Amanda Marion
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rachel Greenberg
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
7
|
Labusek N, Mouloud Y, Köster C, Diesterbeck E, Tertel T, Wiek C, Hanenberg H, Horn PA, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury. Inflamm Regen 2023; 43:24. [PMID: 37069694 PMCID: PMC10108458 DOI: 10.1186/s41232-023-00274-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Human mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) revealed neuroprotective potentials in various brain injury models, including neonatal encephalopathy caused by hypoxia-ischemia (HI). However, for clinical translation of an MSC-EV therapy, scaled manufacturing strategies are required, which is challenging with primary MSCs due to inter- and intra-donor heterogeneities. Therefore, we established a clonally expanded and immortalized human MSC line (ciMSC) and compared the neuroprotective potential of their EVs with EVs from primary MSCs in a murine model of HI-induced brain injury. In vivo activities of ciMSC-EVs were comprehensively characterized according to their proposed multimodal mechanisms of action. METHODS Nine-day-old C57BL/6 mice were exposed to HI followed by repetitive intranasal delivery of primary MSC-EVs or ciMSC-EVs 1, 3, and 5 days after HI. Sham-operated animals served as healthy controls. To compare neuroprotective effects of both EV preparations, total and regional brain atrophy was assessed by cresyl-violet-staining 7 days after HI. Immunohistochemistry, western blot, and real-time PCR were performed to investigate neuroinflammatory and regenerative processes. The amount of peripheral inflammatory mediators was evaluated by multiplex analyses in serum samples. RESULTS Intranasal delivery of ciMSC-EVs and primary MSC-EVs comparably protected neonatal mice from HI-induced brain tissue atrophy. Mechanistically, ciMSC-EV application reduced microglia activation and astrogliosis, endothelial activation, and leukocyte infiltration. These effects were associated with a downregulation of the pro-inflammatory cytokine IL-1 beta and an elevated expression of the anti-inflammatory cytokines IL-4 and TGF-beta in the brain, while concentrations of cytokines in the peripheral blood were not affected. ciMSC-EV-mediated anti-inflammatory effects in the brain were accompanied by an increased neural progenitor and endothelial cell proliferation, oligodendrocyte maturation, and neurotrophic growth factor expression. CONCLUSION Our data demonstrate that ciMSC-EVs conserve neuroprotective effects of primary MSC-EVs via inhibition of neuroinflammation and promotion of neuroregeneration. Since ciMSCs can overcome challenges associated with MSC heterogeneity, they appear as an ideal cell source for the scaled manufacturing of EV-based therapeutics to treat neonatal and possibly also adult brain injury.
Collapse
Affiliation(s)
- Nicole Labusek
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Diesterbeck
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Zamorano M, Alexander JF, Catania D, Dharmaraj S, Kavelaars A, Heijnen CJ. Nasal administration of mesenchymal stem cells prevents accelerated age-related tauopathy after chemotherapy in mice. Immun Ageing 2023; 20:5. [PMID: 36698170 PMCID: PMC9874182 DOI: 10.1186/s12979-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND There is increasing concern that cancer and cancer treatment accelerate aging and the associated cognitive decline. We showed recently that treatment of 9-month-old male mice with cisplatin causes cognitive deficits that are associated with formation of tau deposits in the hippocampus. Here we explored the capacity of mesenchymal stem cells (MSC) given via the nose to prevent age-related brain tau deposits. Moreover, we more closely examined the cellular distribution of this hallmark of accelerated brain aging in response to treatment of 9-month-old female and male mice with cisplatin. RESULTS We show that cisplatin induces tau deposits in the entorhinal cortex and hippocampus in both sexes. The tau deposits colocalize with syndecan-2. Astrocytes surrounding tau deposits have increased glial fibrillary acidic protein glial fibrillary acidic protein (GFAP) expression. Most of the cisplatin-induced tau deposits were located in microtubule associated protein-2 (MAP-2)+ neurons that were surrounded by aquaporin 4+ (AQP4)+ neuron-facing membrane domains of astrocytes. In addition, some tau deposits were detected in the perinuclear region of GFAP+ astrocytes and in CD31+ endothelial cells. There were no morphological signs of activation of ionized calcium binding adaptor molecule-1+ (Iba-1)+ microglia and no increases in brain cytokine production. Nasal administration of MSC at 48 and 96 hours after cisplatin prevented formation of tau deposits and normalized syndecan-2 and GFAP expression. Behaviorally, cisplatin-induced tau cluster formation was associated with reduced executive functioning and working/spatial memory and nasal administration of MSC at 48 and 96 hours after cisplatin prevented these cognitive deficits. Notably, delayed MSC administration (1 month after cisplatin) also prevented tau cluster formation and cognitive deficits, in both sexes. CONCLUSION In summary, nasal administration of MSC to older mice at 2 days or 1 month after completion of cisplatin treatment prevents the accelerated development of tau deposits in entorhinal cortex and hippocampus and the associated cognitive deficits. Since MSC are already in clinical use for many other clinical indications, developing nasal MSC administration for treatment of accelerated brain aging and cognitive deficits in cancer survivors should be feasible and would greatly improve their quality of life.
Collapse
Affiliation(s)
- Miriam Zamorano
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401Department of Pediatric Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Jenolyn F. Alexander
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA ,grid.410718.b0000 0001 0262 7331Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr, 55 Essen, Germany
| | - Desiree Catania
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Shruti Dharmaraj
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Annemieke Kavelaars
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Cobi J. Heijnen
- grid.240145.60000 0001 2291 4776Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
9
|
Brain Organoids to Evaluate Cellular Therapies. Animals (Basel) 2022; 12:ani12223150. [PMID: 36428378 PMCID: PMC9686900 DOI: 10.3390/ani12223150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.
Collapse
|
10
|
Nose-to-Brain: The Next Step for Stem Cell and Biomaterial Therapy in Neurological Disorders. Cells 2022; 11:cells11193095. [PMID: 36231058 PMCID: PMC9564248 DOI: 10.3390/cells11193095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas. The review also addresses the administration of these therapeutic molecules by the intranasal route, a promising, non-conventional route that allows for direct access to the central nervous system without crossing the blood–brain barrier, avoiding potential adverse reactions and enabling the administration of large quantities of therapeutic molecules to the brain. Finally, we focus on the need to use biomaterials, which play an important role as nutrient carriers, scaffolds, and immune modulators in the administration of non-autologous cells. Little research has been conducted into the integration of biomaterials alongside intranasally administered cell therapy, a highly promising approach for the treatment of neurological disorders.
Collapse
|
11
|
Luchetti F, Carloni S, Nasoni MG, Reiter RJ, Balduini W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J Pineal Res 2022; 73:e12800. [PMID: 35419879 PMCID: PMC9540876 DOI: 10.1111/jpi.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Maria G. Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Russel J. Reiter
- Department of Cell Systems and AnatomyLong School of Medicine, UT HealthSan AntonioTexasUSA
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
12
|
Vinukonda G, La Gamma EF. Emerging therapies for brain recovery after IVH in neonates: Cord blood derived Mesenchymal Stem Cells (MSC) and Unrestricted Somatic Stem Cells (USSC). Semin Perinatol 2022; 46:151598. [PMID: 35589461 DOI: 10.1016/j.semperi.2022.151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we summarize evidence on mechanisms of injury after intraventricular hemorrhage resulting in post-hemorrhagic white matter injury and hydrocephalus and correlate that with the possibility of cellular therapy. We describe how two stem cell lines (MSC & USSC) acting in a paracrine fashion offer promise for attenuating the magnitude of injury in animal models and for improved functional recovery by: lowering the magnitude of apoptosis and neuronal cell death, reducing inflammation, and thus, mitigating white matter injury that culminates in improved motor and neurocognitive outcomes. Animal models of IVH are analyzed for their similarity to the human condition and we discuss merits of each approach. Studies on stem cell therapy for IVH in human neonates is described. Lastly, we offer suggestions on what future studies are needed to better understand mechanisms of injury and recovery and argue that human trials need to be expanded in parallel to animal research.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, Cell Biology & Anatomy New York Medical College, Valhalla, NY
| | - Edmund F La Gamma
- Department of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY.
| |
Collapse
|
13
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
14
|
Baak LM, Wagenaar N, van der Aa NE, Groenendaal F, Dudink J, Tataranno ML, Mahamuud U, Verhage CH, Eijsermans RMJC, Smit LS, Jellema RK, de Haan TR, ter Horst HJ, de Boode WP, Steggerda SJ, Prins HJ, de Haar CG, de Vries LS, van Bel F, Heijnen CJ, Nijboer CH, Benders MJNL. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol 2022; 21:528-536. [DOI: 10.1016/s1474-4422(22)00117-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022]
|
15
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
16
|
Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E, Safari A, Dianatpour M, Haerteis S, Miyan JA, Pandamooz S, Borhani-Haghighi A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 2022; 33:583-606. [DOI: 10.1515/revneuro-2021-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Nahid Jashire Nezhad
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Seyedeh Maryam Mousavi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Anahid Safari
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Jaleel A. Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology , The University of Manchester , Manchester M13 9PL , UK
| | - Sareh Pandamooz
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| |
Collapse
|
17
|
Qin C, Wang K, Zhang L, Bai L. Stem cell therapy for Alzheimer's disease: An overview of experimental models and reality. Animal Model Exp Med 2022; 5:15-26. [PMID: 35229995 PMCID: PMC8879630 DOI: 10.1002/ame2.12207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The pathology of AD is characterized by extracellular amyloid beta (Aβ) plaques, neurofibrillary tangles composed of hyperphosphorylated tau, neuronal death, synapse loss, and brain atrophy. Many therapies have been tested to improve or at least effectively modify the course of AD. Meaningful data indicate that the transplantation of stem cells can alleviate neuropathology and significantly ameliorate cognitive deficits in animal models with Alzheimer's disease. Transplanted stem cells have shown their inherent advantages in improving cognitive impairment and memory dysfunction, although certain weaknesses or limitations need to be overcome. This review recapitulates rodent models for AD, the therapeutic efficacy of stem cells, influencing factors, and the underlying mechanisms behind these changes. Stem cell therapy provides perspective and challenges for its clinical application in the future.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Kewei Wang
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Ling Zhang
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Lin Bai
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| |
Collapse
|
18
|
Brandt MJV, Nijboer CH, Nessel I, Mutshiya TR, Michael-Titus AT, Counotte DS, Schipper L, van der Aa NE, Benders MJNL, de Theije CGM. Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-Dependent Manner in a Mouse Model of Perinatal Hypoxic-Ischemic Brain Injury. Nutrients 2021; 14:176. [PMID: 35011052 PMCID: PMC8747710 DOI: 10.3390/nu14010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (n-3) fatty acids docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance. The objective of this study was to test the efficacy of an experimental diet containing DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 in a mouse model of perinatal HI. Male and female C57Bl/6 mice received the experimental diet or an isocaloric control diet from birth. Hypoxic ischemic encephalopathy was induced on postnatal day 9 by ligation of the right common carotid artery and systemic hypoxia. To assess the effects of the experimental diet on long-term motor and cognitive outcome, mice were subjected to a behavioral test battery. Lesion size, neuroinflammation, brain fatty acids and phospholipids were analyzed at 15 weeks after HI. The experimental diet reduced lesion size and neuroinflammation specifically in males. In both sexes, brain n-3 fatty acids were increased after receiving the experimental diet. The experimental diet also improved novel object recognition, but no significant effects on motor performance were observed. Current data indicates that early life nutritional supplementation with a combination of DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 may provide neuroprotection after perinatal HI.
Collapse
Affiliation(s)
- Myrna J. V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Tatenda R. Mutshiya
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | | | - Lidewij Schipper
- Danone Nutricia Research, 3508 TC Utrecht, The Netherlands; (D.S.C.); (L.S.)
| | - Niek E. van der Aa
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Caroline G. M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| |
Collapse
|
19
|
Combination of human endothelial colony-forming cells and mesenchymal stromal cells exert neuroprotective effects in the growth-restricted newborn. NPJ Regen Med 2021; 6:75. [PMID: 34795316 PMCID: PMC8602245 DOI: 10.1038/s41536-021-00185-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
The foetal brain is particularly vulnerable to the detrimental effects of foetal growth restriction (FGR) with subsequent abnormal neurodevelopment being common. There are no current treatments to protect the FGR newborn from lifelong neurological disorders. This study examines whether pure foetal mesenchymal stromal cells (MSC) and endothelial colony-forming cells (ECFC) from the human term placenta are neuroprotective through modulating neuroinflammation and supporting the brain vasculature. We determined that one dose of combined MSC-ECFCs (cECFC; 106 ECFC 106 MSC) on the first day of life to the newborn FGR piglet improved damaged vasculature, restored the neurovascular unit, reduced brain inflammation and improved adverse neuronal and white matter changes present in the FGR newborn piglet brain. These findings could not be reproduced using MSCs alone. These results demonstrate cECFC treatment exerts beneficial effects on multiple cellular components in the FGR brain and may act as a neuroprotectant.
Collapse
|
20
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
21
|
Pathipati P, Lecuyer M, Faustino J, Strivelli J, Phinney DG, Vexler ZS. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics 2021; 18:1939-1952. [PMID: 34235636 PMCID: PMC8609070 DOI: 10.1007/s13311-021-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Matthieu Lecuyer
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Joel Faustino
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | | | - Donald G Phinney
- Department of Molecular Medicine, Scripps Research Institute, Jupiter, FL, USA
| | - Zinaida S Vexler
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
22
|
Kabatas S, Civelek E, Savrunlu EC, Kaplan N, Boyalı O, Diren F, Can H, Genç A, Akkoç T, Karaöz E. Feasibility of allogeneic mesenchymal stem cells in pediatric hypoxic-ischemic encephalopathy: Phase I study. World J Stem Cells 2021; 13:470-484. [PMID: 34136076 PMCID: PMC8176840 DOI: 10.4252/wjsc.v13.i5.470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and long-term neurological impairment in the pediatric population. Despite a limited number of treatments to cure HIE, stem cell therapies appear to be a potential treatment option for brain injury resulting from HIE.
AIM To investigate the efficacy and safety of stem cell-based therapies in pediatric patients with HIE.
METHODS The study inclusion criteria were determined as the presence of substantial deficit and disability caused by HIE. Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) were intrathecally (IT), intramuscularly (IM), and intravenously administered to participants at a dose of 1 × 106/kg for each administration route twice monthly for 2 mo. In different follow-up durations, the effect of WJ-MSCs administration on HIE, the quality of life, prognosis of patients, and side effects were investigated, and patients were evaluated for neurological, cognitive functions, and spasticity using the Wee Functional Independence Measure (Wee FIM) Scale and Modified Ashworth (MA) Scale.
RESULTS For all participants (n = 6), the mean duration of exposure to hypoxia was 39.17 + 18.82 min, the mean time interval after HIE was 21.83 ± 26.60 mo, the mean baseline Wee FIM scale score was 13.5 ± 0.55, and the mean baseline MA scale score was 35 ± 9.08. Three patients developed only early complications such as low-grade fever, mild headache associated with IT injection, and muscle pain associated with IM injection, all of which were transient and disappeared within 24 h. The treatment was evaluated to be safe and effective as demonstrated by magnetic resonance imaging examinations, electroencephalographies, laboratory tests, and neurological and functional scores of patients. Patients exhibited significant improvements in all neurological functions through a 12-mo follow-up. The mean Wee FIM scale score of participants increased from 13.5 ± 0.55 to 15.17 ± 1.6 points (mean ± SD) at 1 mo (z = - 1.826, P = 0.068) and to 23.5 ± 3.39 points at 12 mo (z = -2.207, P = 0.027) post-treatment. The percentage of patients who achieved an excellent functional improvement (Wee FIM scale total score = 126) increased from 10.71% (at baseline) to 12.03% at 1 mo and to 18.65% at 12 mo post-treatment.
CONCLUSION Both the triple-route and multiple WJ-MSC implantations were safe and effective in pediatric patients with HIE with significant neurological and functional improvements. The results of this study support conducting further randomized, placebo-controlled studies on this treatment in the pediatric population.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, Istanbul 34854, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences, Istanbul 34255, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, Istanbul 34854, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Halil Can
- Department of Neurosurgery, Istanbul Biruni University, Faculty of Medicine, Istanbul 34010, Turkey
- Department of Neurosurgery, Istanbul Medicine Hospital, Istanbul 34203, Turkey
| | - Ali Genç
- Department of Neurosurgery, Istanbul Asya Hospital, Istanbul 34250, Turkey
| | - Tunç Akkoç
- Pediatric Allergy-Immunology, Marmara University, Istanbul 34899, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
23
|
Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22063142. [PMID: 33808671 PMCID: PMC8003344 DOI: 10.3390/ijms22063142] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity in the perinatal period. This condition results from a period of ischemia and hypoxia to the brain of neonates, leading to several disorders that profoundly affect the daily life of patients and their families. Currently, therapeutic hypothermia (TH) is the standard of care in developing countries; however, TH is not always effective, especially in severe cases of HIE. Addressing this concern, several preclinical studies assessed the potential of stem cell therapy (SCT) for HIE. With this systematic review, we gathered information included in 58 preclinical studies from the last decade, focusing on the ones using stem cells isolated from the umbilical cord blood, umbilical cord tissue, placenta, and bone marrow. Outstandingly, about 80% of these studies reported a significant improvement of cognitive and/or sensorimotor function, as well as decreased brain damage. These results show the potential of SCT for HIE and the possibility of this therapy, in combination with TH, becoming the next therapeutic approach for HIE. Nonetheless, few preclinical studies assessed the combination of TH and SCT for HIE, and the existent studies show some contradictory results, revealing the need to further explore this line of research.
Collapse
|
24
|
Boukelmoune N, Laumet G, Tang Y, Ma J, Mahant I, Nijboer C, Benders M, Kavelaars A, Heijnen CJ, Heijnen CJ. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain Behav Immun 2021; 93:43-54. [PMID: 33316379 PMCID: PMC8826497 DOI: 10.1016/j.bbi.2020.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN. We recently demonstrated that nasal administration of mesenchymal stem cells (MSC) reverses the cognitive deficits induced by cisplatin in mice. Here we show that nasal administration of MSC after cisplatin- or paclitaxel treatment- completely reverses signs of established CIPN, including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve fibers (IENF) in the paw. The resolution of CIPN is associated with normalization of the cisplatin-induced decrease in mitochondrial bioenergetics in DRG neurons. Nasally administered MSC enter rapidly the meninges of the brain, spinal cord and peripheral lymph nodes to promote IL-10 production by macrophages. MSC-mediated resolution of mechanical allodynia, recovery of IENFs and restoration of DRG mitochondrial function critically depends on IL-10 production. MSC from IL-10 knockout animals are not capable of reversing the symptoms of CIPN. Moreover, WT MSC do not reverse CIPN in mice lacking IL-10 receptors on peripheral sensory neurons. In conclusion, only two nasal administrations of MSC fully reverse CIPN and the associated mitochondrial abnormalities via an IL-10 dependent pathway. Since MSC are already applied clinically, we propose that nasal MSC treatment could become a powerful treatment for the large group of patients suffering from neurotoxicities of cancer treatment.
Collapse
Affiliation(s)
- Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Geoffroy Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Current affiliation: Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Yongfu Tang
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Itee Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cora Nijboer
- Department of Developmental Origins of Disease, Division Woman and Baby, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Manon Benders
- Department of Neonatology, Division Woman and Baby, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Corresponding author at: Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Z8.5034, Houston, Texas, 77030. (Cobi J. Heijnen)
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Segler A, Braun T, Fischer HS, Dukatz R, Weiss CR, Schwickert A, Jäger C, Bührer C, Henrich W. Feasibility of Umbilical Cord Blood Collection in Neonates at Risk of Brain Damage-A Step Toward Autologous Cell Therapy for a High-risk Population. Cell Transplant 2021; 30:963689721992065. [PMID: 33631961 PMCID: PMC7917411 DOI: 10.1177/0963689721992065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence for umbilical cord blood (UCB) cell therapies as a potential intervention for neurological diseases is emerging. To date, most existing trials worked with allogenic cells, as the collection of autologous UCB from high-risk patients is challenging. In obstetric emergencies the collection cannot be planned. In preterm infants, late cord clamping and anatomic conditions may reduce the availability. The aim of the present study was to assess the feasibility of UCB collection in neonates at increased risk of brain damage. Infants from four high-risk groups were included: newborns with perinatal hypoxemia, gestational age (GA) ≤30 + 0 weeks and/or birthweight <1,500 g, intrauterine growth restriction (IUGR), or monochorionic twins with twin-to-twin transfusion syndrome (TTTS). Feasibility of collection, quantity and quality of obtained UCB [total nucleated cell count (TNC), volume, sterility, and cell viability], and neonatal outcome were assessed. UCB collection was successful in 141 of 177 enrolled patients (hypoxemia n = 10; GA ≤30 + 0 weeks n = 54; IUGR n = 71; TTTS n = 6). Twenty-six cases were missed. The amount of missed cases per month declined over the time. Volume of collected UCB ranged widely (median: 24.5 ml, range: 5.0–102 ml) and contained a median of 0.77 × 108 TNC (range: 0.01–13.0 × 108). TNC and UCB volume correlated significantly with GA. A total of 10.7% (19/177) of included neonates developed brain lesions. To conclude, collection of UCB in neonates at high risk of brain damage is feasible with a multidisciplinary approach and intensive training. High prevalence of brain damage makes UCB collection worthwhile. Collected autologous UCB from mature neonates harbors a sufficient cell count for potential therapy. However, quality and quantity of obtained UCB are critical for potential therapy in preterm infants. Therefore, for extremely preterm infants alternative cell sources such as UCB tissue should be investigated for autologous treatment options because of the low yield of UCB.
Collapse
Affiliation(s)
- Angela Segler
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Braun
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of "Experimental Obstetrics" and Study group "Perinatal Programming", Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hendrik Stefan Fischer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ricarda Dukatz
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claire-Rachel Weiss
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Schwickert
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technische Universitaüt Muünchen, Munich, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
27
|
Abstract
Ischemic brain injury is a common cause of long-term neurological deficits in children as well as adults, and no efficient treatments could reverse the sequelae in clinic till now. Stem cells have the capacity of self-renewal and multilineage differentiation. The therapeutic efficacy of stem cell transplantation for ischemic brain injury have been tested for many years. The grafts could survive and mature in the ischemic brain environment. Stem cell transplantation could improve functional recovery of ischemic brain injury models in pre-clinical trials. The potential mechanisms included cell replacement, release of neurotrophic and anti-inflammatory factors, immunoregulation as well as activation of endogenous neurogenesis. Besides, many clinical trials were conducted and some of trials already had preliminary results. From the current published data, cell transplantation for clinical application is safe and feasible. No severe adverse events and tumorigenesis were reported. While the therapeutic efficacy of stem cell therapy in clinic still needs more evidences. In this review, we overviewed the studies about stem cell therapy for ischemic brain injury. Different types of stem cells used for transplantation as well as the therapeutic mechanisms were discussed in detail. The related pre-clinical and clinical trials were summarized into two separate tables. In addition, we also discussed the unsolved problems and concerns about stem cell therapy for ischemic brain injury that need to be overcome before clinic transformation.
Collapse
Affiliation(s)
- Xiao-Li Ji
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Ling Ma
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Fathollahi A, Hashemi SM, Haji Molla Hoseini M, Tavakoli S, Farahani E, Yeganeh F. Intranasal administration of small extracellular vesicles derived from mesenchymal stem cells ameliorated the experimental autoimmune encephalomyelitis. Int Immunopharmacol 2021; 90:107207. [PMID: 33290966 DOI: 10.1016/j.intimp.2020.107207] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model for the human multiple sclerosis, which is characterized by inflammation in the central nervous system (CNS), de-myelination of axonal neurons, and loss of motor coordination. The aim of the current study was to evaluate the effect of intranasal administration of mesenchymal stem cells (MSCs) and small extracellular vesicle (SEV) derived from the MSC (MSC-SEV) on disease activity and antigen-specific responses in the EAE mouse model. MSCs (5 × 105) were administered intranasally to EAE mice (n = 5) on the 15th and 24th days after immunization. In addition, the intranasal administration of MSC-SEV (10 μg) was used to treat EAE mice (n = 5) on a daily basis from the 15th to the 27th day after induction of the disease. The outcomes of therapies were evaluated using studying clinical symptoms and histological analysis of CNS lesions. Moreover, T cell proliferation, the frequency of regulatory T cells, the expression of transcription factors of T-helper subsets, and the levels of their corresponded cytokines were evaluated in splenocytes culture that was stimulated with specific-antigen. The results of treatment of EAE mice with MSC- SEV and MSC showed a significant decrease in the clinical scores, and it was found that treatment with MSC-SEV was more effective in alleviating clinical scores than MSC. In addition, the decrease in clinical symptoms was associated with an increase in immunomodulatory responses, including an increase in the frequency of Foxp3+ CD25+ regulatory T cells. Moreover, the level of TGF-β was increased by both treatments; however, interleukin-10 was increased only by MSC treatment. Ultimately, it was achieved that the intranasal administration of MSC-SEV to EAE mice was more effective than the administration of MSC to reduce clinical scores and histological lesions of the CNS tissue.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/surgery
- Extracellular Vesicles/immunology
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- Female
- Gene Expression Regulation
- Inflammation Mediators/metabolism
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice
Collapse
Affiliation(s)
- Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Tavakoli
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Farahani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Vaes JEG, van Kammen CM, Trayford C, van der Toorn A, Ruhwedel T, Benders MJNL, Dijkhuizen RM, Möbius W, van Rijt SH, Nijboer CH. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2020; 69:655-680. [PMID: 33045105 PMCID: PMC7821154 DOI: 10.1002/glia.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caren M van Kammen
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed 2020; 105:563-568. [PMID: 32253200 DOI: 10.1136/archdischild-2019-317896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia .,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
32
|
Cho KH, Davidson JO, Dean JM, Bennet L, Gunn AJ. Cooling and immunomodulation for treating hypoxic-ischemic brain injury. Pediatr Int 2020; 62:770-778. [PMID: 32119180 DOI: 10.1111/ped.14215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.
Collapse
Affiliation(s)
- Kenta Ht Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Lee K, Xue Y, Lee J, Kim HJ, Liu Y, Tebon P, Sarikhani E, Sun W, Zhang S, Haghniaz R, Çelebi-Saltik B, Zhou X, Ostrovidov S, Ahadian S, Ashammakhi N, Dokmeci MR, Khademhosseini A. A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000086. [PMID: 33071712 PMCID: PMC7567343 DOI: 10.1002/adfm.202000086] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/20/2020] [Indexed: 05/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been widely used for regenerative therapy. In most current clinical applications, MSCs are delivered by injection but face significant issues with cell viability and penetration into the target tissue due to a limited migration capacity. Some therapies have attempted to improve MSC stability by their encapsulation within biomaterials; however, these treatments still require an enormous number of cells to achieve therapeutic efficacy due to low efficiency. Additionally, while local injection allows for targeted delivery, injections with conventional syringes are highly invasive. Due to the challenges associated with stem cell delivery, a local and minimally invasive approach with high efficiency and improved cell viability is highly desired. In this study, we present a detachable hybrid microneedle depot (d-HMND) for cell delivery. Our system consists of an array of microneedles with an outer poly(lactic-co-glycolic) acid (PLGA) shell and an internal gelatin methacryloyl (GelMA)-MSC mixture (GMM). The GMM was characterized and optimized for cell viability and mechanical strength of the d-HMND required to penetrate mouse skin tissue was also determined. MSC viability and function within the d-HMND was characterized in vitro and the regenerative efficacy of the d-HMND was demonstrated in vivo using a mouse skin wound model.
Collapse
Affiliation(s)
- KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Reihaneh Haghniaz
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Betül Çelebi-Saltik
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Xingwu Zhou
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Serge Ostrovidov
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet R. Dokmeci
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Volpe JJ. Commentary - Exosomes: Realization of the great therapeutic potential of stem cells. J Neonatal Perinatal Med 2020; 13:287-291. [PMID: 32444568 PMCID: PMC7592649 DOI: 10.3233/npm-200477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
36
|
Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res 2020; 87:265-276. [PMID: 31086355 PMCID: PMC6854309 DOI: 10.1038/s41390-019-0425-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, MO, USA
| | - Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
37
|
Shahror RA, Linares GR, Wang Y, Hsueh SC, Wu CC, Chuang DM, Chiang YH, Chen KY. Transplantation of Mesenchymal Stem Cells Overexpressing Fibroblast Growth Factor 21 Facilitates Cognitive Recovery and Enhances Neurogenesis in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 37:14-26. [PMID: 31298621 DOI: 10.1089/neu.2019.6422] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is a progressive and complex pathological condition that results in multiple adverse consequences, including impaired learning and memory. Transplantation of mesenchymal stem cells (MSCs) has produced limited benefits in experimental TBI models. Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that has neuroprotective effects, promotes remyelination, enhances angiogenesis, and elongates astrocytic processes. In this study, MSCs were genetically engineered to overexpress FGF21 in order to improve their efficacy in TBI. MSCs overexpressing FGF21 (MSC-FGF21) were transplanted to mouse brain by intracerebroventricular injection 24 h after TBI was induced by controlled cortical impact (CCI). Hippocampus-dependent spatial learning and memory, assessed by the Morris water maze test, was markedly decreased 3-4 weeks after TBI, a deficit that was robustly recovered by treatment with MSC-FGF21, but not MSC-mCherry control. Hippocampus-independent learning and memory, assessed by the novel object recognition test, was also impaired; these effects were blocked by treatment with both MSC-FGF21 and MSC-mCherry control. FGF21 protein levels in the ipsilateral hippocampus were drastically reduced 4 weeks post-TBI, a loss that was restored by treatment with MSC-FGF21, but not MSC-mCherry. MSC-FGF21 treatment also partially restored TBI-induced deficits in neurogenesis and maturation of immature hippocampal neurons, whereas MSC-mCherry was less effective. Finally, MSC-FGF21 treatment also normalized TBI-induced impairments in dendritic arborization of hippocampal neurons. Taken together, the results indicate that MSC-FGF21 treatment significantly improved TBI-induced spatial memory deficits, impaired hippocampal neurogenesis, and abnormal dendritic morphology. Future clinical investigations using MSC-FGF21 to improve post-TBI outcomes are warranted.
Collapse
Affiliation(s)
- Rami Ahmad Shahror
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Gabriel R Linares
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Chang Hsueh
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chung-Che Wu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - De-Maw Chuang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Yung-Hsiao Chiang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M, Stolzing A, Danielyan L, Nguyen HHP. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells 2019; 8:E595. [PMID: 31208073 PMCID: PMC6628278 DOI: 10.3390/cells8060595] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Intrastriatal administration of mesenchymal stem cells (MSCs) has shown beneficial effects in rodent models of Huntington disease (HD). However, the invasive nature of surgical procedure and its potential to trigger the host immune response may limit its clinical use. Hence, we sought to evaluate the non-invasive intranasal administration (INA) of MSC delivery as an effective alternative route in HD. GFP-expressing MSCs derived from bone marrow were intranasally administered to 4-week-old R6/2 HD transgenic mice. MSCs were detected in the olfactory bulb, midbrain and striatum five days post-delivery. Compared to phosphate-buffered saline (PBS)-treated littermates, MSC-treated R6/2 mice showed an increased survival rate and attenuated circadian activity disruption assessed by locomotor activity. MSCs increased the protein expression of DARPP-32 and tyrosine hydroxylase (TH) and downregulated gene expression of inflammatory modulators in the brain 7.5 weeks after INA. While vehicle treated R6/2 mice displayed decreased Iba1 expression and altered microglial morphology in comparison to the wild type littermates, MSCs restored both, Iba1 level and the thickness of microglial processes in the striatum of R6/2 mice. Our results demonstrate significantly ameliorated phenotypes of R6/2 mice after MSCs administration via INA, suggesting this method as an effective delivering route of cells to the brain for HD therapy.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Katrin Arnold
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Patrycja Bambynek-Dziuk
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| | - Claire Fabian
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Janine Magg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Alexandra Stolzing
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany.
- Departments of Medical Chemistry and Biochemistry, Yerevan State Medical University, 0025 Yerevan, Armenia.
| |
Collapse
|
39
|
Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic⁻Ischemic Brain Injury. Int J Mol Sci 2019; 20:ijms20102449. [PMID: 31108944 PMCID: PMC6566762 DOI: 10.3390/ijms20102449] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023] Open
Abstract
Cerebral palsy (CP) is a permanent motor disorder that results from brain injury and neuroinflammation during the perinatal period. Mesenchymal stromal cells (MSCs) have been explored as a therapy in multiple adult neuroinflammatory conditions. Our study examined the therapeutic benefits of intranasal delivery of human umbilical cord tissue (UC) derived-MSCs in a rat model of neonatal hypoxic–ischemic (HI) brain injury. To do this, HI was performed on postnatal day 10 Sprague-Dawley rat pups via permanent ligation of the left carotid artery, followed by a hypoxic challenge of 8% oxygen for 90 min. A total of 200,000 UC-MSCs (10 million/kg) were administered intranasally 24 h post-HI. Motor control was assessed after seven days, followed by post-mortem. Analysis included brain immunohistochemistry, gene analysis and serum cytokine measurement. Neonatal HI resulted in brain injury with significant loss of neurons, particularly in the hippocampus. Intranasal administration of UC-MSCs significantly reduced the loss of brain tissue and increased the number of hippocampal neurons. HI significantly upregulated brain inflammation and expression of pro-inflammatory cytokines, while intranasal UC-MSCs significantly reduced markers of neuroinflammation. This study demonstrated that a clinically relevant dose (10 million/kg) of UC-MSCs was neuroprotective following HI by restoring neuronal cell numbers and reducing brain inflammation. Therefore, intranasal delivery of UC-MSCs may be an effective therapy for neonatal brain injury.
Collapse
|
40
|
Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA. The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 2019; 10:540. [PMID: 31143126 PMCID: PMC6521595 DOI: 10.3389/fphys.2019.00540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.
Collapse
Affiliation(s)
- Josine E G Vaes
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marit A Vink
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G M de Theije
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freek E Hoebeek
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cora H A Nijboer
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
41
|
Barkhuizen M, van Mechelen R, Vermeer M, Chedraui P, Paes D, van den Hove DL, Vaes B, Mays RW, Steinbusch HW, Robertson NJ, Kramer BW, Gavilanes AW. Systemic multipotent adult progenitor cells improve long-term neurodevelopmental outcomes after preterm hypoxic-ischemic encephalopathy. Behav Brain Res 2019; 362:77-81. [DOI: 10.1016/j.bbr.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
|
42
|
van Bel F, Vaes J, Groenendaal F. Prevention, Reduction and Repair of Brain Injury of the Preterm Infant. Front Physiol 2019; 10:181. [PMID: 30949060 PMCID: PMC6435588 DOI: 10.3389/fphys.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Josine Vaes
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
van den Heuij LG, Fraser M, Miller SL, Jenkin G, Wallace EM, Davidson JO, Lear CA, Lim R, Wassink G, Gunn AJ, Bennet L. Delayed intranasal infusion of human amnion epithelial cells improves white matter maturation after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 2019; 39:223-239. [PMID: 28895475 PMCID: PMC6365606 DOI: 10.1177/0271678x17729954] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury remains highly associated with neurodevelopmental disability after preterm birth. There is increasing evidence that disability is linked with impaired white matter maturation, but there is no specific treatment. In this study, we evaluated whether, in preterm fetal sheep, delayed intranasal infusion of human amnion epithelial cells (hAECs) given 1, 3 and 10 days after severe HI, induced by umbilical cord occlusion for 25 min, can restore white matter maturation or reduce delayed cell loss. After 21 days recovery, asphyxia was associated with reduced electroencephalographic (EEG) maturation, brain weight and cortical area, impaired maturation of oligodendrocytes (OLs), no significant loss of total OLs but a marked reduction in immature/mature OLs and reduced myelination. Intranasal infusion of hAECs was associated with improved brain weight and restoration of immature/mature OLs and fractional area of myelin basic protein, with reduced microglia and astrogliosis. Cortical EEG frequency distribution was partially improved, with reduced loss of cortical area, and attenuated cleaved-caspase-3 expression and microgliosis. Neuronal survival in deep grey matter nuclei was improved, with reduced microglia, astrogliosis and cleaved-caspase-3-positive apoptosis. These findings suggest that delayed intranasal hAEC administration has potential to alleviate chronic dysmaturation after perinatal HI.
Collapse
Affiliation(s)
- Lotte G van den Heuij
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graham Jenkin
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Euan M Wallace
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Joanne O Davidson
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca Lim
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Guido Wassink
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Keller T, Körber F, Oberthuer A, Schafmeyer L, Mehler K, Kuhr K, Kribs A. Intranasal breast milk for premature infants with severe intraventricular hemorrhage-an observation. Eur J Pediatr 2019; 178:199-206. [PMID: 30386923 PMCID: PMC6339661 DOI: 10.1007/s00431-018-3279-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
For nasal application of neurotrophins and mesenchymal stem cells, successful delivery to the brain and therapeutic effects are known from experimental data in animals. Human breast milk contains neurotrophins and stem cells, but gavage tube feeding in preterm infants bypasses the naso-oropharynx. This is a first exploration on additional nasal breast milk and neuromorphological outcome after severe neonatal brain injury. We present a retrospective summary of 31 very low birth weight preterm infants with intraventricular hemorrhage °3/4 from one third-level neonatal center. All were breast milk fed. Sixteen infants additionally received nasal drops of fresh breast milk daily with informed parental consent for at least 28 days. Cerebral ultrasound courses were reviewed by a pediatric radiologist blinded to the intervention. The main outcome measure was severity of porencephalic defects before discharge. Clinical covariates were comparable in both groups. With nasal breast milk, a trend to a lower incidence for severe porencephalic defects (21% vs. 58%) was detected. Incidences were lower for progressive ventricular dilatation (71% vs. 91%) and surgery for posthemorrhagic hydrocephalus (50% vs. 67%).Conclusion: The hypothesis is generated that early intranasal application of breast milk could have a beneficial effect on neurodevelopment in preterm infants. Controlled investigation is needed. What is Known: • Successful delivery to the brain and therapeutic effects are known for nasal application of neurotrophins and mesenchymal stem cells from experimental data in animal studies. • Human breast milk contains neurotrophins and stem cells, but gavage tube feeding in preterm infants bypasses the naso-oropharynx. What is New: • This is the first report on additional nasal breast milk application in very low birth weight preterm infants with severe brain injury observing a trend for less severe porencephalic defects. • The hypothesis is generated that nasal breast milk might exert neuroprotective effects in preterm infants.
Collapse
Affiliation(s)
- Titus Keller
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany.
| | | | - André Oberthuer
- Division of Neonatology, Children’s Hospital, University of Cologne, Cologne, Germany
| | - Leonie Schafmeyer
- Division of Neonatology, Children’s Hospital, University of Cologne, Cologne, Germany
| | - Katrin Mehler
- Division of Neonatology, Children’s Hospital, University of Cologne, Cologne, Germany
| | - Kathrin Kuhr
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Angela Kribs
- Division of Neonatology, Children’s Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Li WX, Tang J, Zou R, Zeng Y, Yue Y, Qiu X, Qu Y, Mu DZ. [A visualization analysis of current research on stem cell transplantation in the treatment of neonatal hypoxic-ischemic encephalopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:1002-1007. [PMID: 30572988 PMCID: PMC7389493 DOI: 10.7499/j.issn.1008-8830.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To reveal the current research status on stem cell transplantation in the treatment of neonates with hypoxic-ischemic encephalopathy (HIE), and to summarize the recent hotspots of the research in this field. METHODS Using the key words of "stem cells" and "HIE", a computerized search was performed for the articles in English published before June 1, 2018 in PubMed, EMBASE, and Web of Science. Microsoft Office Excel 2013 was used for the statistical analysis of key words. Bicomb 2.0 and VOSviewer 1.6.6 were used for the cluster analysis of hot words and plotting of knowledge maps, respectively. RESULTS A total of 106 articles were included and 43 high-frequency key words were extracted. The words of "cell transplantation" and "hypoxia-ischemia" were in the core position of the co-word map. The cluster analysis showed that the studies of stem cell transplantation in the treatment of neonatal HIE mainly focused on umbilical cord blood cell transplantation (32.6%), mesenchymal stem cells and neural stem cells (29.5%), perinatal brain injury (28.1%), and other topics (9.8%). CONCLUSIONS In the current studies of stem cell transplantation in the treatment of neonatal HIE, umbilical cord blood cell transplantation, mesenchymal stem cells, neural stem cells, and perinatal brain injury are popular research topics at different levels.
Collapse
Affiliation(s)
- Wen-Xing Li
- Department of Pediatrics, West China Second University Hospital/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cisplatin treatment induces attention deficits and impairs synaptic integrity in the prefrontal cortex in mice. Sci Rep 2018; 8:17400. [PMID: 30479361 PMCID: PMC6258730 DOI: 10.1038/s41598-018-35919-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Patients treated for cancer frequently experience chemobrain, characterized by impaired memory and reduced attention. These deficits often persist after treatment, and no preventive or curative interventions exist. In mice, we assessed the effect of cisplatin chemotherapy on attention using the 5-choice serial reaction time task and on synaptic integrity. We also assessed the capacity of mesenchymal stem cells to normalize the characteristics of chemobrain. Mice were trained in the 5-choice serial reaction time task. After reaching advancement criteria at a 4-second stimulus time, they were treated with cisplatin followed by nasal administration of mesenchymal stem cells. Cisplatin reduced the percentage of correct responses due to an increase in omissions, indicating attention deficits. Mesenchymal stem cell treatment reversed these cisplatin-induced deficits in attention. Cisplatin also induced abnormalities in markers of synaptic integrity in the prefrontal cortex. Specifically, cisplatin decreased expression of the global presynaptic marker synaptophysin and the glutamatergic presynaptic marker vGlut2. Expression of the presynaptic GABAergic marker vGAT increased. Nasal mesenchymal stem cell administration normalized these markers of synaptic integrity. In conclusion, cisplatin induces long-lasting attention deficits that are associated with decreased synaptic integrity in the prefrontal cortex. Nasal administration of mesenchymal stem cells reversed these behavioural and structural deficits.
Collapse
|
47
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
48
|
Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 2018; 9:35581-35597. [PMID: 30473752 PMCID: PMC6238972 DOI: 10.18632/oncotarget.26272] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairments are a common side effect of chemotherapy that often persists long after treatment completion. There are no FDA-approved interventions to treat these cognitive deficits also called ‘chemobrain’. We hypothesized that nasal administration of mesenchymal stem cells (MSC) reverses chemobrain. To test this hypothesis, we used a mouse model of cognitive deficits induced by cisplatin that we recently developed. Mice were treated with two cycles of cisplatin followed by nasal administration of MSC. Cisplatin treatment induced deficits in the puzzle box, novel object/place recognition and Y-maze tests, indicating cognitive impairment. Nasal MSC treatment fully reversed these cognitive deficits in males and females. MSC also reversed the cisplatin-induced damage to cortical myelin. Resting state functional MRI and connectome analysis revealed a decrease in characteristic path length after cisplatin, while MSC treatment increased path length in cisplatin-treated mice. MSCs enter the brain but did not survive longer than 12-72 hrs, indicating that they do not replace damaged tissue. RNA-sequencing analysis identified mitochondrial oxidative phosphorylation as a top pathway activated by MSC administration to cisplatin-treated mice. Consistently, MSC treatment restored the cisplatin-induced mitochondrial dysfunction and structural abnormalities in brain synaptosomes. Nasal administration of MSC did not interfere with the peripheral anti-tumor effect of cisplatin. In conclusion, nasal administration of MSC may represent a powerful, non-invasive, and safe regenerative treatment for resolution of chemobrain.
Collapse
|
49
|
Park JS, Kim HK, Kang EY, Cho R, Oh YM. Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells. Tuberc Respir Dis (Seoul) 2018; 82:158-165. [PMID: 30302955 PMCID: PMC6435932 DOI: 10.4046/trd.2018.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. Methods We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs (1×104/mouse) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. Results Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were 59.02±2.42 µm (n=6), 72.80±2.87 µm (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were 41.25±0.98 [n=6] for WJMSCs and38.97±0.61 µm [n=6] for pioWJMSCs) compared to smoking control mice (51.65±1.36 µm, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). Conclusion PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.
Collapse
Affiliation(s)
| | - Hyun Kuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | | | | | - Yeon Mok Oh
- Asan Institute for Life Sciences, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
50
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|