1
|
Bleesing J. The Fas-mediated apoptosis assay: From concept to clinical application. J Immunol Methods 2025:113812. [PMID: 39875002 DOI: 10.1016/j.jim.2025.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Abnormal lymphocyte homeostasis underly several Inborn Errors of Immunity (IEoI). In vitro assessment of lymphocyte homeostasis is achieved by specific apoptosis assays reflective of specific homeostasis programs and pathways that are mediated through specific proteins. This review discusses those programs, pathways and proteins and describes the development and use of the in vitro Fas-mediated apoptosis assay, as it relates to the IEoI Autoimmune Lymphoproliferative Syndrome (ALPS) and describes other disorders of lymphocyte homeostasis in the context of other forms of in vitro apoptosis assessment.
Collapse
Affiliation(s)
- Jack Bleesing
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Basu S, Nadig PL, Bhattacharjee U, Banday AZ, Jindal AK, Pilania RK, Vignesh P, Rawat A, Khadwal A, Suri D. Hodgkin lymphoma in a child with biallelic FASL variant (ALPS-FASL): Case report and review of literature. Pediatr Allergy Immunol 2024; 35:e14275. [PMID: 39513705 DOI: 10.1111/pai.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallavi L Nadig
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Urmimala Bhattacharjee
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Christensen TD, Maag E, Theile S, Madsen K, Lindgaard SC, Hasselby JP, Nielsen DL, Johansen JS, Chen IM. Circulating immune-related proteins associated with immune checkpoint inhibitor efficacy in patients with pancreatic ductal adenocarcinoma. ESMO Open 2024; 9:103489. [PMID: 38838501 PMCID: PMC11190466 DOI: 10.1016/j.esmoop.2024.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Most patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint inhibitor treatment. However, the phase II study CheckPAC (NCT02866383) showed a clinical benefit (CB) rate of 37% and a response rate of 14% in patients with metastatic PDAC receiving stereotactic radiation therapy and nivolumab with or without ipilimumab. Translational studies were initiated to characterize the patients who would benefit from this treatment. Here, we evaluated the association between treatment outcome and 92 circulating immuno-oncology-related proteins in patients from the CheckPAC trial. MATERIALS AND METHODS The study included 78 patients with chemoresistant metastatic PDAC treated with nivolumab ± ipilimumab combined with radiotherapy. Proteins were measured in serum samples collected at baseline and on treatment with the use of the Olink Target 96 Immuno-Oncology panel. A cohort of 234 patients with metastatic PDAC treated with first-line chemotherapy were also included. RESULTS High levels of Fas ligand (FASLG) and galectin 1 (Gal-1) and low levels of C-C motif chemokine 4 were associated with CB. High FASLG and Gal-1 were associated with longer progression-free survival in univariable analysis. In the multivariable Cox regression analysis, the association was significant for Gal-1 (P < 0.001) but not significant for FASLG (P = 0.06). A focused unsupervised hierarchal clustering analysis, including T-cell activation and immune checkpoint-related proteins, identified clusters of patients with higher CB rate and higher tumor expression of leukocyte or T-cell markers (CD3, CD45, granzyme B). Thirty-six proteins increased significantly during immunotherapy. Several proteins (including FASLG, checkpoint proteins, and immune activation markers) increased independently of response during immunotherapy but did not increase in the cohort of patients treated with chemotherapy. CONCLUSIONS Circulating levels of immune-related proteins like FASLG and Gal-1 might be used to predict the efficacy of checkpoint inhibitors in patients with metastatic PDAC.
Collapse
Affiliation(s)
- T D Christensen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev.
| | | | - S Theile
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev
| | - K Madsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev
| | - S C Lindgaard
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev
| | - J P Hasselby
- Department of Pathology, Copenhagen University Hospital-Rigshospitalet, Copenhagen
| | - D L Nielsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - J S Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen; Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - I M Chen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev
| |
Collapse
|
4
|
Segura-Tudela A, López-Nevado M, Nieto-López C, García-Jiménez S, Díaz-Madroñero MJ, Delgado Á, Cabrera-Marante O, Pleguezuelo D, Morales P, Paz-Artal E, Gil-Niño J, Marco FM, Serrano C, González-Granado LI, Quesada-Espinosa JF, Allende LM. Enrichment of Immune Dysregulation Disorders in Adult Patients with Human Inborn Errors of Immunity. J Clin Immunol 2024; 44:61. [PMID: 38363452 PMCID: PMC10873437 DOI: 10.1007/s10875-024-01664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Human inborn errors of immunity (IEI) comprise a group of diseases resulting from molecular variants that compromise innate and adaptive immunity. Clinical features of IEI patients are dominated by susceptibility to a spectrum of infectious diseases, as well as autoimmune, autoinflammatory, allergic, and malignant phenotypes that usually appear in childhood, which is when the diagnosis is typically made. However, some IEI patients are identified in adulthood due to symptomatic delay of the disease or other reasons that prevent the request for a molecular study. The application of next-generation sequencing (NGS) as a diagnostic technique has given rise to an ever-increasing identification of IEI-monogenic causes, thus improving the diagnostic yield and facilitating the possibility of personalized treatment. This work was a retrospective study of 173 adults with IEI suspicion that were sequenced between 2005 and 2023. Sanger, targeted gene-panel, and whole exome sequencing were used for molecular diagnosis. Disease-causing variants were identified in 44 of 173 (25.43%) patients. The clinical phenotype of these 44 patients was mostly related to infection susceptibility (63.64%). An enrichment of immune dysregulation diseases was found when cohorts with molecular diagnosis were compared to those without. Immune dysregulation disorders, group 4 from the International Union of Immunological Societies Expert Committee (IUIS), were the most prevalent among these adult patients. Immune dysregulation as a new item in the Jeffrey Model Foundation warning signs for adults significantly increases the sensitivity for the identification of patients with an IEI-producing molecular defect.
Collapse
Affiliation(s)
- Alejandro Segura-Tudela
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Celia Nieto-López
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Sandra García-Jiménez
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - María J Díaz-Madroñero
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
| | - Ángeles Delgado
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
| | - Oscar Cabrera-Marante
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Daniel Pleguezuelo
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Pablo Morales
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Gil-Niño
- Department of Internal Medicine, University Hospital, 12 de Octubre, Madrid, Spain
| | - Francisco M Marco
- Unit of Immunology, University Hospital General Dr Balmis, Alicante, Spain
| | - Cristina Serrano
- Department of Immunology, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Unit of Immunodeficiencies, Department of Pediatrics, University Hospital, 12 de Octubre, Madrid, Spain
| | - Juan F Quesada-Espinosa
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- Department of Genetics, University Hospital, 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): A proposed approach to redefining ALPS and other lymphoproliferative immune disorders. J Allergy Clin Immunol 2024; 153:67-76. [PMID: 37977527 PMCID: PMC10841637 DOI: 10.1016/j.jaci.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - David T Teachey
- Division of Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Frederic Rieux-Laucat
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Paskiewicz A, Niu J, Chang C. Autoimmune lymphoproliferative syndrome: A disorder of immune dysregulation. Autoimmun Rev 2023; 22:103442. [PMID: 37683818 DOI: 10.1016/j.autrev.2023.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Autoimmune Lymphoproliferative Syndrome (ALPS) is an autoimmune disease that has been reported in over 2200 patients. It is a rare, genetic disease where pathogenic variants occur in the extrinsic pathway of apoptosis. Various mutations in different genes, such as FAS, FASL, and CASP10, can result in ALPS. Most commonly, pathogenic variants occur in the FAS receptor. This malfunctioning pathway allows for the abnormal accumulation of lymphocytes, namely CD3 + TCRαβ+CD4 - CD8- (double negative (DN) T) cells, which are a hallmark of the disease. This disease usually presents in childhood with lymphadenopathy and splenomegaly as a result of lymphoproliferation. Over time, these patients may develop cytopenias or lymphomas because of irregularities in the immune system. Current treatments include glucocorticoids, mycophenolate mofetil, sirolimus, immunoglobulin G, and rituximab. These medications serve to manage the symptoms and there are no standardized recommendations for the management of ALPS. The only curative therapy is a bone marrow transplant, but this is rarely done because of the complications. This review serves to broaden the understanding of ALPS by discussing the mechanism of immune dysregulation, how the symptoms manifest, and the mechanisms of treatment. Additionally, we discuss the epidemiology, comorbidities, and medications relating to ALPS patients across the United States using data from Cosmos.
Collapse
Affiliation(s)
- Amy Paskiewicz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL 33021, USA.
| | - Christopher Chang
- Division of Immunology, Allergy and Pediatric Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL 33021, USA.
| |
Collapse
|
7
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Khodayari Moez E, Warkentin MT, Brhane Y, Lam S, Field JK, Liu G, Zulueta JJ, Valencia K, Mesa-Guzman M, Nialet AP, Atkar-Khattra S, Davies MPA, Grant B, Murison K, Montuenga LM, Amos CI, Robbins HA, Johansson M, Hung RJ. Circulating proteome for pulmonary nodule malignancy. J Natl Cancer Inst 2023; 115:1060-1070. [PMID: 37369027 PMCID: PMC10483334 DOI: 10.1093/jnci/djad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules. METHODS Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated. RESULTS We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1 year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P < .001). CONCLUSIONS Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.
Collapse
Affiliation(s)
- Elham Khodayari Moez
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Matthew T Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John K Field
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Geoffrey Liu
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Javier J Zulueta
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY, USA
| | - Karmele Valencia
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Miguel Mesa-Guzman
- Thoracic Surgery Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Andrea Pasquier Nialet
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Michael P A Davies
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Benjamin Grant
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Kiera Murison
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Luis M Montuenga
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Maccari ME, Schneider P, Smulski CR, Meinhardt A, Pinto F, Gonzalez-Granado LI, Schuetz C, Sica MP, Gross M, Fuchs I, Kury P, Heeg M, Vocat T, Willen L, Thomas C, Hühn R, Magerus A, Lorenz M, Schwarz K, Rieux-Laucat F, Ehl S, Rensing-Ehl A. Revisiting autoimmune lymphoproliferative syndrome caused by Fas ligand mutations. J Allergy Clin Immunol 2023; 151:1391-1401.e7. [PMID: 36621650 DOI: 10.1016/j.jaci.2022.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fas ligand (FasL) is expressed by activated T cells and induces death in target cells upon binding to Fas. Loss-of-function FAS or FASLG mutations cause autoimmune-lymphoproliferative syndrome (ALPS) characterized by expanded double-negative T cells (DNT) and elevated serum biomarkers. While most ALPS patients carry heterozygous FAS mutations, FASLG mutations are rare and usually biallelic. Only 2 heterozygous variants were reported, associated with an atypical clinical phenotype. OBJECTIVE We revisited the significance of heterozygous FASLG mutations as a cause of ALPS. METHODS Clinical features and biomarkers were analyzed in 24 individuals with homozygous or heterozygous FASLG variants predicted to be deleterious. Cytotoxicity assays were performed with patient T cells and biochemical assays with recombinant FasL. RESULTS Homozygous FASLG variants abrogated cytotoxicity and resulted in early-onset severe ALPS with elevated DNT, raised vitamin B12, and usually no soluble FasL. In contrast, heterozygous variants affected FasL function by reducing expression, impairing trimerization, or preventing Fas binding. However, they were not associated with elevated DNT and vitamin B12, and they did not affect FasL-mediated cytotoxicity. The dominant-negative effects of previously published variants could not be confirmed. Even Y166C, causing loss of Fas binding with a dominant-negative effect in biochemical assays, did not impair cellular cytotoxicity or cause vitamin B12 and DNT elevation. CONCLUSION Heterozygous loss-of-function mutations are better tolerated for FASLG than for FAS, which may explain the low frequency of ALPS-FASLG.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Cristian Roberto Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Fernando Pinto
- Department of Haematology, Royal Hospital for Children Glasgow, Glasgow, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 octubre, Madrid, France; Instituto de Investigation Hospital 12 octubre (imas12), Madrid, France; School of Medicine, Complutense University, Madrid, France
| | - Catharina Schuetz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Mauricio Pablo Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Miriam Gross
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tatjana Vocat
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Laure Willen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caroline Thomas
- Department of Pediatric Oncology and Hematology, University Hospital of Nantes, Nantes, France
| | - Regina Hühn
- Clinic for Paediatrics and Adolescent Medicine, University Hospital Halle (Saale), Halle, Germany
| | - Aude Magerus
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg, Hessen, Ulm, Germany
| | - Frederic Rieux-Laucat
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Ura B, Capaci V, Aloisio M, Di Lorenzo G, Romano F, Ricci G, Monasta L. A Targeted Proteomics Approach for Screening Serum Biomarkers Observed in the Early Stage of Type I Endometrial Cancer. Biomedicines 2022; 10:1857. [PMID: 36009404 PMCID: PMC9405144 DOI: 10.3390/biomedicines10081857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy, and it arises in the inner part of the uterus. Identification of serum biomarkers is essential for diagnosing the disease at an early stage. In this study, we selected 44 healthy controls and 44 type I EC at tumor stage 1, and we used the Immuno-oncology panel and the Target 96 Oncology III panel to simultaneously detect the levels of 92 cancer-related proteins in serum, using a proximity extension assay. By applying this methodology, we identified 20 proteins, associated with the outcome at binary logistic regression, with a p-value below 0.01 for the first panel and 24 proteins with a p-value below 0.02 for the second one. The final multivariate logistic regression model, combining proteins from the two panels, generated a model with a sensitivity of 97.67% and a specificity of 83.72%. These results support the use of the proposed algorithm after a validation phase.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Valeria Capaci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Federico Romano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| |
Collapse
|
11
|
Sharma S, Pilania RK, Anjani G, Sudhakar M, Arora K, Tyagi R, Dhaliwal M, Vignesh P, Rawat A, Singh S. Lymphoproliferation in Inborn Errors of Immunity: The Eye Does Not See What the Mind Does Not Know. Front Immunol 2022; 13:856601. [PMID: 35603189 PMCID: PMC9114776 DOI: 10.3389/fimmu.2022.856601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a group of heterogeneous disorders characterized by a broad clinical spectrum of recurrent infections and immune dysregulation including autoimmunity and lymphoproliferation (LP). LP in the context of IEI may be the presenting feature of underlying immune disorder or may develop during the disease course. However, the correct diagnosis of LP in IEI as benign or malignant often poses a diagnostic dilemma due to the non-specific clinical features and overlapping morphological and immunophenotypic features which make it difficult to treat. There are morphological clues to LP associated with certain IEIs. A combination of ancillary techniques including EBV-associated markers, flow cytometry, and molecular assays may prove useful in establishing a correct diagnosis in an appropriate clinical setting. The present review attempts to provide comprehensive insight into benign and malignant LP, especially the pathogenesis, histological clues, diagnostic strategies, and treatment options in patients with IEIs.
Collapse
Affiliation(s)
- Saniya Sharma
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gummadi Anjani
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Murugan Sudhakar
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Tyagi
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Khan RIN, Sahu AR, Malla WA, Praharaj MR, Hosamani N, Kumar S, Gupta S, Sharma S, Saxena A, Varshney A, Singh P, Verma V, Kumar P, Singh G, Pandey A, Saxena S, Gandham RK, Tiwari AK. Systems biology under heat stress in Indian cattle. Gene 2021; 805:145908. [PMID: 34411649 DOI: 10.1016/j.gene.2021.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Transcriptome profiling of Vrindavani and Tharparkar cattle (n = 5 each) revealed that more numbers of genes were dysregulated in Vrindavani than in Tharparkar. A contrast in gene expression was observed with 18.9 % of upregulated genes in Vrindavani downregulated in Tharparkar and 17.8% upregulated genes in Tharparkar downregulated in Vrindavani. Functional annotation of genes differentially expressed in Tharparkar and Vrindavani revealed that the systems biology in Tharparkar is moving towards counteracting the effects due to heat stress. Unlike Vrindavani, Tharparkar is not only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. Further, higher expression of the antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat stress. In this study, we found relevant genes dysregulated in Tharparkar in the direction that can counter heat stress.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Neelima Hosamani
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Shakti Kumar
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Smita Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shweta Sharma
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Archana Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Anshul Varshney
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Pragya Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Vinay Verma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Puneet Kumar
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India.
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India.
| |
Collapse
|
13
|
Lambert MP. Presentation and diagnosis of autoimmune lymphoproliferative syndrome (ALPS). Expert Rev Clin Immunol 2021; 17:1163-1173. [PMID: 34503378 DOI: 10.1080/1744666x.2021.1978842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autoimmune lymphoproliferative syndrome (ALPS) is a rare disorder of immune dysregulation characterized by derangements in first apoptosis signal-mediated apoptosis and elevations in CD3+TCRαβ+CD4-CD8- 'double negative' T cells. As our understanding of this pleomorphic disorder expands, the importance of molecular diagnosis is ever more apparent due to the growing number of disorders that may present with overlapping initial symptoms, but for which there is an ever-increasing list of therapeutic options. AREAS COVERED This review will cover the current understanding of the molecular biology and pathophysiology of ALPS as well as describe some of the overlapping syndromes in order to better demonstrate the importance of establishing the correct diagnosis. EXPERT OPINION Going forward, international, multicenter collaboration to fully characterize ALPS and the ALPS-like disorders, including with particular focus on defining the defects for those patients with undefined ALPS, is important to both continue to improve our understanding of this disorder and to drive patient care forward to provide the best outcomes. Additionally, it is probably time to re-convene an international expert panel to re-define diagnostic criteria taking into consideration the most recent available data in order to optimize patient care.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Magerus A, Bercher-Brayer C, Rieux-Laucat F. The genetic landscape of the FAS pathway deficiencies. Biomed J 2021; 44:388-399. [PMID: 34171534 PMCID: PMC8514852 DOI: 10.1016/j.bj.2021.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dysfunction of the FAS-FASLG pathway causes a lymphoproliferative disorder with autoimmunity called Autoimmune lymphoproliferative syndrome (ALPS) mainly caused by FAS mutations. The goal of this review is to describe the genetic bases of the autoimmune lymphoproliferative syndrome and to underline their genetic complexity with the contribution of both germline and somatic events accounting for the variable clinical penetrance of the FAS mutations. Starting from the cohort of patients studied in the French cohort (>165 cases), we also reviewed the literature cases in order to depict a full description of the mutations affecting the FAS-FASLG pathway involved in the outcome of this rare non-malignant and non-infectious pediatric lymphoproliferative disease. We also discussed the variable clinical penetrance associated with mutations affecting the extracellular domain of the protein. Such non-penetrant germline mutations are frequently associated with an additional somatic event impacting the second allele of FAS. Moreover, the uncomplete clinical penetrance associated with mutations affecting the intracellular domain of FAS, in patient lacking additional FAS somatic event, suggested a potential digenic inheritance with a FAS mutation accompanied by a genetic modifier possibly impacting another player of the lymphocytes homeostasis (affecting the survival, activation or apoptosis of the peripheral leukocytes).
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France.
| | - Clara Bercher-Brayer
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
15
|
Kaya Z, Işık M, Oruklu N, Kirkiz S, Bağrıaçık EÜ, Allende LM, Díaz-Madroñero MJ, Ruiz-García R, Pınarlı FG, Göçün Uyar P, Koçak Ü. Autoimmune Lymphoproliferative Syndrome in Children with Nonmalignant Organomegaly, Chronic Immune Cytopenia, and Newly Diagnosed Lymphoma. Turk J Haematol 2020; 38:145-150. [PMID: 33375216 PMCID: PMC8171202 DOI: 10.4274/tjh.galenos.2020.2020.0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This study investigated the frequency of and predictive factors for autoimmune lymphoproliferative syndrome (ALPS) in children with lymphoma, chronic immune cytopenia, and nonmalignant organomegaly. Thirty-four children with suspected ALPS (n=13, lymphoma; n=12, immune cytopenia; n=9, nonmalignant organomegaly) were included. Double-negative T-cells, lymphocyte apoptosis, and genetic findings were analyzed. Patients were stratified into two groups as proven/probable ALPS and clinically suspected patients according to the ALPS diagnostic criteria. Of the 34 patients, 18 (53%) were diagnosed with proven/probable ALPS. One patient had a mutation (c.652-2A>C) in the FAS gene. The remaining 16 (47%) patients were defined as clinically suspected patients. Predictive factors for ALPS were anemia and thrombocytopenia in patients with lymphoma, splenomegaly and lymphadenopathy in patients with immune cytopenia, and young age in patients with nonmalignant organomegaly. ALPS may not be rare in certain risk groups. Our study indicates that screening for ALPS may be useful in children having lymphoma with cytopenia at diagnosis, in those having nonmalignant organomegaly with immune cytopenia, and in those having chronic immune thrombocytopenic purpura or autoimmune hemolytic anemia with organomegaly developing during follow-up.
Collapse
Affiliation(s)
- Zühre Kaya
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Melek Işık
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Nihan Oruklu
- Gazi University Faculty of Medicine, Department of Immunology and Life Science Research Center, Ankara, Turkey
| | - Serap Kirkiz
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Emin Ümit Bağrıaçık
- Gazi University Faculty of Medicine, Department of Immunology and Life Science Research Center, Ankara, Turkey
| | - Luis M. Allende
- Immunology Department and Research Institute i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María J. Díaz-Madroñero
- Immunology Department and Research Institute i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department and Research Institute i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Faruk Güçlü Pınarlı
- Gazi University Faculty of Medicine, Department of Pediatric Oncology, Ankara, Turkey
| | - Pınar Göçün Uyar
- Gazi University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Ülker Koçak
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| |
Collapse
|
16
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
De Loma J, Gliga AR, Levi M, Ascui F, Gardon J, Tirado N, Broberg K. Arsenic Exposure and Cancer-Related Proteins in Urine of Indigenous Bolivian Women. Front Public Health 2020; 8:605123. [PMID: 33381488 PMCID: PMC7767847 DOI: 10.3389/fpubh.2020.605123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Indigenous people living in the Bolivian Andes are exposed through their drinking water to inorganic arsenic, a potent carcinogen. However, the health consequences of arsenic exposure in this region are unknown. The aim of this study was to evaluate associations between arsenic exposure and changes in cancer-related proteins in indigenous women (n = 176) from communities around the Andean Lake Poopó, Bolivia. Arsenic exposure was assessed in whole blood (B-As) and urine (as the sum of arsenic metabolites, U-As) by inductively coupled plasma-mass spectrometry (ICP-MS). Cancer-related proteins (N = 92) were measured in urine using the proximity extension assay. The median B-As concentration was 2.1 (range 0.60-9.1) ng/g, and U-As concentration was 67 (12-399) μg/L. Using linear regression models adjusted for age, urinary osmolality, and urinary leukocytes, we identified associations between B-As and four putative cancer-related proteins: FASLG, SEZ6L, LYPD3, and TFPI2. Increasing B-As concentrations were associated with lower protein expression of SEZ6L, LYPD3, and TFPI2, and with higher expression of FASLG in urine (no association was statistically significant after correcting for multiple comparisons). The associations were similar across groups with different arsenic metabolism efficiency, a susceptibility factor for arsenic toxicity. In conclusion, arsenic exposure in this region was associated with changes in the expression of some cancer-related proteins in urine. Future research is warranted to understand if these proteins could serve as valid biomarkers for arsenic-related toxicity.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, Ivanisenko VA. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics 2019; 12:47. [PMID: 30871556 PMCID: PMC6417156 DOI: 10.1186/s12920-019-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. METHODS In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. RESULTS An assessment of the quality of prioritization was performed using criteria, which involved an analysis of the enrichment of the top-most priority genes by genes, which are known to have simultaneous interactions with lymphedema and endothelial cell apoptosis, as well as by genes differentially expressed in murine model of lymphedema. In particular, among genes involved in endothelial apoptosis, KDR, TNF, TEK, BMPR2, SERPINE1, IL10, CD40LG, CCL2, FASLG and ABL1 had the highest priority. The identified priority genes can be considered as candidates for genotyping in the studies involving the search for associations with lymphedema. CONCLUSIONS Analysis of interactions of these genes in the associative gene network of lymphedema can improve understanding of mechanisms of interaction between endothelial apoptosis and lymphangiogenesis, and shed light on the role of disturbance of these processes in the development of edema, chronic inflammation and connective tissue transformation during the progression of the disease.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Vadim V. Nimaev
- Laboratory of Surgical Lymphology and Lymphodetoxication, Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, st. Timakova 2, Novosibirsk, 630117 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Dilovarkhuja B. Usmonov
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
- Department of Neurosurgery, Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, st. Frunze 17, Novosibirsk, 630091 Russia
| | - Pavel S. Demenkov
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Timofey V. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Inna N. Lavrik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Medical Faculty, Pfalzer Platz 28, 39106 Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| |
Collapse
|
19
|
Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martínez-Lostao L. Role of Exosomes in the Regulation of T-cell Mediated Immune Responses and in Autoimmune Disease. Cells 2019; 8:cells8020154. [PMID: 30759880 PMCID: PMC6406439 DOI: 10.3390/cells8020154] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
: T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4 and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane microvesicles called exosomes during these regulatory processes. In this review, we revise the role of exosome secretion in the different pathways of immune regulation described to date and its importance in the prevention or development of autoimmune disease. The expression of membrane-bound death ligands on the surface of exosomes during AICD or the more recently described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will be analyzed.
Collapse
Affiliation(s)
- Alberto Anel
- Immunity, Cancer & Stem Cells Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Ana Gallego-Lleyda
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Diego de Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, Gower St, Bloomsbury, WC1E 6BT London, UK.
| | - Javier Naval
- Immunity, Cancer & Stem Cells Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| | - Luis Martínez-Lostao
- Immunology Department, Lozano Blesa Clinical Hospital, and Aragón Health Research Institute (IIS Aragón), E-50009 Zaragoza, Spain.
| |
Collapse
|
20
|
Chen X, Zeng XH, Wang M, Chen L, Zhang N, Rao M, Yang PC, Song J. Bcl2-Like Protein 12 Is Required for the Aberrant T Helper-2 Polarization in the Heart by Enhancing Interleukin-4 Expression and Compromising Apoptotic Machinery in CD4+ T Cells. Circulation 2018; 138:2559-2568. [DOI: 10.1161/circulationaha.118.033890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| | - Xian-Hai Zeng
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, China (X.-H.Z., P.-C.Y)
| | - Mangyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| | - Man Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, China (X.-H.Z., P.-C.Y)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.C., M.W., L.C., N.Z., M.R., J.S.)
| |
Collapse
|
21
|
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited syndrome characterized by abnormal lymphocyte survival caused by failure of apoptotic mechanisms to maintain lymphocyte homeostasis. This failure leads to the clinical manifestations of non-infectious and non-malignant lymphadenopathy, splenomegaly, and autoimmune pathology, most commonly, autoimmune cytopenias. Since ALPS was first characterized in the early 1990s, insights in disease biology have improved both diagnosis and management of this syndrome. Sirolimus is the best-studied and most effective corticosteroid-sparing therapy for ALPS and should be considered first-line for patients in need of chronic treatment. This review highlights practical clinical considerations for the diagnosis and management of ALPS. Further studies could reveal new proteins and regulatory pathways that are critical for lymphocyte activation and apoptosis.
Collapse
Affiliation(s)
- Karen Bride
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Teachey
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|