1
|
Chang YS, Yang M, Ahn SY, Sung SI, Park WS. Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. Stem Cells Transl Med 2024; 13:941-948. [PMID: 39120439 PMCID: PMC11465171 DOI: 10.1093/stcltm/szae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Gangnam Cha Hospital, Cha University, Seoul, Korea
| |
Collapse
|
2
|
Mohammadzadeh A, Lahouty M, Charkhian H, Ghafour AA, Moazzendizaji S, Rezaei J, Alipour S, Irannejad VS, Ansari MHK. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate the severity of experimental autoimmune encephalomyelitis and enhance lag-3 expression on foxp3 + CD4 + T cells. Mol Biol Rep 2024; 51:522. [PMID: 38627337 DOI: 10.1007/s11033-024-09433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear. METHODS In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS. RESULTS Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results. CONCLUSIONS These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3's precise role in these conditions.
Collapse
Affiliation(s)
- Adel Mohammadzadeh
- Department of Immunology and Genetics, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Arash Adamnejad Ghafour
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Türkiye, Turkey
| | - Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jafar Rezaei
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
3
|
Fu J, Song W, Hao Z, Fan M, Li Y. Research trends and hotspots of exosomes in respiratory diseases. Medicine (Baltimore) 2023; 102:e35381. [PMID: 37773786 PMCID: PMC10545307 DOI: 10.1097/md.0000000000035381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Currently, theoretical studies on exosomes in respiratory diseases have received much attention from many scholars and have made remarkable progress, which has inestimable value and potential in future clinical and scientific research. Unfortunately, no scholar has yet addressed this field's bibliometric analysis and summary. We aim to comprehensively and profoundly study and explore the present situation and highlights of exosome research at the stage of respiratory diseases and to provide meaningful insights for the future development of this field. The WOSCC literature was gathered for the study using bibliometrics, and the data were collected and analyzed using CiteSpace, VOSviewer, Microsoft Excel, and Endnote software. The publication language is "English," and the search strategy is TS = (exosome OR exosomes OR exosomal) AND TS = (respiratory OR lung). The search time is from the beginning of the WOS construction, and the deadline is July 11, 2022, at 22:00 hours. The literature types selected were dissertation, review paper, and online published paper. The analysis includes 2456 publications in 738 journals from 76 countries, 2716 institutions, and 14,568 authors. The field's annual publications have been rising, especially in recent years. China and the US lead research, and prominent universities, including Harvard Medical School, Shanghai Jiao Tong University, and Fudan University, are essential research institutes. Takahiro Ochiya, whose research focuses on exosomes and lung cancer, and Clotilde Théry, a pioneering exosome researcher, are the most cited authors in this field. The key terms include lung cancer, non-small cell lung cancer, mesenchymal stem cells, intercellular communication, exosomal miRNAs, and oncology. Cell biology, biochemistry & biotechnology, and oncology are related fields. The final summary of research hotspots is exosomes and lung cancer, mesenchymal stem cell-derived exosomes and lung inflammation, and miRNAs in exosomes as biomarkers for respiratory illnesses. The present research situation and relevant hotspots of the area were analyzed through bibliometric studies on exosomes in respiratory diseases. The research development in this field has a considerable upside, and the exosome's function in diagnosing, treating, monitoring, and prognosis of respiratory illnesses cannot be taken lightly. Moreover, we believe the research results will bring the gospel to many patients with clinical respiratory diseases shortly.
Collapse
Affiliation(s)
- Jinjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Song
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Medical History and Literature Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Zheng Hao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Medical History and Literature Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Mengzhen Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
5
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
6
|
Thébaud B. Stem cell therapies for neonatal lung diseases: Are we there yet? Semin Perinatol 2023; 47:151724. [PMID: 36967368 DOI: 10.1016/j.semperi.2023.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada.; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Zhong XQ, Wang D, Chen S, Zheng J, Hao TF, Li XH, Luo LH, Gu J, Lian CY, Li XS, Chen DJ. Umbilical cord blood-derived exosomes from healthy term pregnancies protect against hyperoxia-induced lung injury in mice. Clin Transl Sci 2023. [PMID: 36869608 DOI: 10.1111/cts.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic, devastating disease primarily occurring in premature infants. To date, intervention strategies to prevent or treat BPD are limited. We aimed to determine the effects of umbilical cord blood-derived exosomes (UCB-EXOs) from healthy term pregnancies on hyperoxia-induced lung injury and to identify potential targets for BPD intervention. A mouse model of hyperoxia-induced lung injury was created by exposing neonatal mice to hyperoxia after birth until the 14th day post birth. Age-matched neonatal mice were exposed to normoxia as the control. Hyperoxia-induced lung injury mice were intraperitoneally injected with UCB-EXO or vehicle daily for 3 days, starting on day 4 post birth. Human umbilical vein endothelial cells (HUVECs) were insulted with hyperoxia to establish an in vitro model of BPD to investigate angiogenesis dysfunction. Our results showed that UCB-EXO alleviated lung injuries in hyperoxia-insulted mice by reducing histopathological grade and collagen contents in the lung tissues. UCB-EXO also promoted vascular growth and increased miR-185-5p levels in the lungs of hyperoxia-insulted mice. Additionally, we found that UCB-EXO elevated miR-185-5p levels in HUVECs. MiR-185-5p overexpression inhibited cell apoptosis, whereas promoted cell migration in HUVECs exposed to hyperoxia. The luciferase reporter assay results revealed that miR-185-5p directly targeted cyclin-dependent kinase 6 (CDK6), which was downregulated in the lungs of hyperoxia-insulted mice. Together, these data suggest that UCB-EXO from healthy term pregnancies protect against hyperoxia-induced lung injuries via promoting neonatal pulmonary angiogenesis partially by elevating miR-185-5p.
Collapse
Affiliation(s)
- Xin-Qi Zhong
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China
| | - Ding Wang
- Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, Department of Medical Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tao-Fang Hao
- Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Hua Luo
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Gu
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-Yu Lian
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Sa Li
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dun-Jin Chen
- Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China.,Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Hossein Norooznezhad A, Maedeh Nabavian S. Mesenchymal Stromal Cell Extracellular Vesicles: A Possible Strategy for Prevention of Preterm Birth. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
10
|
Rasaei R, Tyagi A, Rasaei S, Lee SJ, Yang SR, Kim KS, Ramakrishna S, Hong SH. Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Res Ther 2022; 13:433. [PMID: 36056418 PMCID: PMC9438152 DOI: 10.1186/s13287-022-03136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Shima Rasaei
- Department of Cellular and Molecular Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea.
- Institute of Medical Science, Kangwon National University, Chuncheon, 24341, South Korea.
- KW-Bio Co., Ltd, Wonju, South Korea.
| |
Collapse
|
11
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
12
|
N V Lakshmi Kavya A, Subramanian S, Ramakrishna S. Therapeutic applications of exosomes in various diseases: A review. BIOMATERIALS ADVANCES 2022; 134:112579. [PMID: 35525729 DOI: 10.1016/j.msec.2021.112579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Exosomes (30-150 nm in diameter) a subset of extracellular vesicles, secreted by mostly all cells, have been gaining enormous recognition from the last decade. In recent times, several studies have included exosomes to design novel therapeutic applications along with their contribution to diagnostic evaluations and pathophysiological processes. Based on cell origin, they show diverse functions and characteristics. This article is classified into several sections that include exosomes biogenesis, isolation methods, and application as therapeutic tools, commercialized exosome products, clinical trials, benefits, and challenges faced in the progress of exosome-dependent therapeutics. This work aims to give a thorough review of the numerous studies where exosomes act as therapeutic tools in the treatment of various disorders including heart, kidney, liver, and lung illnesses. The clinical trials involving exosomes, their advantages, and hazards, and difficulties involved during storage and large-scale production, applications of nanotechnology in exosome research while applying for therapeutic applications, and future directions are summarized.
Collapse
Affiliation(s)
| | - Sundarrajan Subramanian
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| |
Collapse
|
13
|
Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 2022; 477:815-832. [PMID: 35059925 DOI: 10.1007/s11010-021-04326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Dinesh Kaul
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Anil Sachdev
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
14
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Xi Y, Ju R, Wang Y. Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Treatment of Bronchopulmonary Dysplasia. Front Pediatr 2022; 10:852034. [PMID: 35444971 PMCID: PMC9013803 DOI: 10.3389/fped.2022.852034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in premature infants. However, there is a lack of effective treatment. Mesenchymal stromal cells derived extracellular vesicles (MSC-EVs), as nano- and micron-sized heterogeneous vesicles secreted by MSCs, are the main medium for information exchange between MSCs and injured tissue and organ, playing an important role in repairing tissue and organ injury. EVs include exosomes, microvesicles and so on. They are rich with various proteins, nucleic acids, and lipids. Now, EVs are considered as a new way of cell-to-cell communication. EVs mainly induce regeneration and therapeutic effects in different tissues and organs through the biomolecules they carry. The surface membrane protein or loaded protein and nucleic acid molecules carried by EVs, can activate the signal transduction of target cells and regulate the biological behavior of target cells after binding and cell internalization. MSC-EVs can promote the development of pulmonary vessels and alveoli and reduce pulmonary hypertension (PH) and inflammation and play an important role in the repair of lung injury in BPD. The regeneration potential of MSC-EVs is mainly due to the regulation of cell proliferation, survival, migration, differentiation, angiogenesis, immunoregulation, anti-inflammatory, mitochondrial activity and oxidative stress. As a new type of cell-free therapy, MSC-EVs have non-immunogenic, and are small in size and go deep into most tissues. What's more, it has good biological stability and can be modified and loaded with drugs of interest. Obviously, MSC-EVs have a good application prospect in the treatment of lung injury and BPD. However, there are still many challenges to make MSC-EVs really enter clinical application.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Willis GR, Reis M, Gheinani AH, Fernandez-Gonzalez A, Taglauer ES, Yeung V, Liu X, Ericsson M, Haas E, Mitsialis SA, Kourembanas S. Extracellular Vesicles Protect the Neonatal Lung from Hyperoxic Injury through the Epigenetic and Transcriptomic Reprogramming of Myeloid Cells. Am J Respir Crit Care Med 2021; 204:1418-1432. [PMID: 34699335 PMCID: PMC8865710 DOI: 10.1164/rccm.202102-0329oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mesenchymal stem/stromal cell (MSC)-small extracellular vesicle (MEx) treatment has shown promise in experimental models of neonatal lung injury. The molecular mechanisms by which MEx afford beneficial effects remain incompletely understood. Objectives: To investigate the therapeutic mechanism of action through assessment of MEx biodistribution and impact on immune cell phenotypic heterogeneity. Methods: MEx were isolated from the conditioned medium of human umbilical cord Wharton's jelly-derived MSCs. Newborn mice were exposed to hyperoxia (HYRX, 75% O2) from birth and returned to room air at Postnatal Day 14 (PN14). Mice received either a bolus intravenous MEx dose at PN4 or bone marrow-derived myeloid cells (BMDMy) pretreated with MEx. Animals were killed at PN4, PN7, PN14, or PN28 to characterize MEx biodistribution or for assessment of pulmonary parameters. The therapeutic role of MEx-educated BMDMy was determined in vitro and in vivo. Measurements and Main Results: MEx therapy ameliorated core histological features of HYRX-induced neonatal lung injury. Biodistribution and mass cytometry studies demonstrated that MEx localize in the lung and interact with myeloid cells. MEx restored the apportion of alveolar macrophages in the HYRX-injured lung and concomitantly suppressed inflammatory cytokine production. In vitro and ex vivo studies revealed that MEx promoted an immunosuppressive BMDMy phenotype. Functional assays demonstrated that the immunosuppressive actions of BMDMy are driven by phenotypically and epigenetically reprogrammed monocytes. Adoptive transfer of MEx-educated BMDMy, but not naive BMDMy, restored alveolar architecture, blunted fibrosis and pulmonary vascular remodeling, and improved exercise capacity. Conclusions: MEx ameliorate hyperoxia-induced neonatal lung injury though epigenetic and phenotypic reprogramming of myeloid cells.
Collapse
Affiliation(s)
- Gareth R. Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Monica Reis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Ali Hashemi Gheinani
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth S. Taglauer
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Vincent Yeung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Xianlan Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts; and
| | - Eric Haas
- Mass Cytometry Core, Dana Farber Cancer Institute, Boston, Massachusetts
| | - S. Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
A review of the role of extracellular vesicles in neonatal physiology and pathology. Pediatr Res 2021; 90:289-299. [PMID: 33184501 DOI: 10.1038/s41390-020-01240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles, extensively investigated across many fields to improve the understanding of pathophysiological processes, as biomarkers of disease and as therapeutic targets for pharmacological intervention. We aim to describe the current knowledge of EVs detected in the body fluids of human neonates, both term and preterm, from birth to 4 weeks of age. To date, EVs have been described in several neonatal body fluids, including cerebrospinal fluid, umbilical cord blood, neonatal blood, tracheal aspirates and urine. These studies demonstrate some important roles of EVs in the neonatal population, particularly in haemostasis. Moreover, some studies have demonstrated the pathophysiological mechanisms and the identification of potential biomarkers of neonatal disease. We must continue to build on this knowledge, evaluating the role of EVs in neonatal pathology, particularly in prematurity and during the perinatal adaption period. Future studies should use larger numbers, robust EV characterisation techniques and always correlate the findings to clinical outcomes. IMPACT: This article summarises the current knowledge of the effect of EVs in neonates. It describes the potential compensatory role of EVs in neonatal haemostasis. It also describes the role of EVs as mediators of pathology and as potential biomarkers of perinatal and neonatal disease.
Collapse
|
19
|
Abstract
Despite important advances in neonatal care, rates of bronchopulmonary dysplasia (BPD) have remained persistently high. Numerous drugs and ventilator strategies are used for the prevention and treatment of BPD. Some, such as exogenous surfactant, volume targeted ventilation, caffeine, and non-invasive respiratory support, are associated with modest but important reductions in rates of BPD and long-term respiratory morbidities. Many other therapies, such as corticosteroids, diuretics, nitric oxide, bronchodilators and anti-reflux medications, are widely used despite conflicting, limited or no evidence of efficacy and safety. This paper examines the range of therapies used for the prevention or treatment of BPD. They are classified into those supported by evidence of effectiveness, and those which are widely used despite limited evidence or unclear risk to benefit ratios. Finally, the paper explores emerging therapies and approaches which aim to prevent or reduce BPD and long-term respiratory morbidity.
Collapse
|
20
|
Zhong XQ, Yan Q, Chen ZG, Jia CH, Li XH, Liang ZY, Gu J, Wei HL, Lian CY, Zheng J, Cui QL. Umbilical Cord Blood-Derived Exosomes From Very Preterm Infants With Bronchopulmonary Dysplasia Impaired Endothelial Angiogenesis: Roles of Exosomal MicroRNAs. Front Cell Dev Biol 2021; 9:637248. [PMID: 33842462 PMCID: PMC8027316 DOI: 10.3389/fcell.2021.637248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Premature infants have a high risk of bronchopulmonary dysplasia (BPD), which is characterized by abnormal development of alveoli and pulmonary vessels. Exosomes and exosomal miRNAs (EXO-miRNAs) from bronchoalveolar lavage fluid are involved in the development of BPD and might serve as predictive biomarkers for BPD. However, the roles of exosomes and EXO-miRNAs from umbilical cord blood of BPD infants in regulating angiogenesis are yet to be elucidated. In this study, we showed that umbilical cord blood-derived exosomes from BPD infants impaired angiogenesis in vitro. Next-generation sequencing of EXO-miRNAs from preterm infants without (NBPD group) or with BPD (BPD group) uncovered a total of 418 differentially expressed (DE) EXO-miRNAs. These DE EXO-miRNAs were primarily enriched in cellular function-associated pathways including the PI3K/Akt and angiogenesis-related signaling pathways. Among those EXO-miRNAs which are associated with PI3K/Akt and angiogenesis-related signaling pathways, BPD reduced the expression of hsa-miR-103a-3p and hsa-miR-185-5p exhibiting the most significant reduction (14.3% and 23.1% of NBPD group, respectively); BPD increased hsa-miR-200a-3p expression by 2.64 folds of the NBPD group. Furthermore, overexpression of hsa-miR-103a-3p and hsa-miR-185-5p in normal human umbilical vein endothelial cells (HUVECs) significantly enhanced endothelial cell proliferation, tube formation, and cell migration, whereas overexpressing hsa-miR-200a-3p inhibited these cellular responses. This study demonstrates that exosomes derived from umbilical cord blood of BPD infants impair angiogenesis, possibly via DE EXO-miRNAs, which might contribute to the development of BPD.
Collapse
Affiliation(s)
- Xin-Qi Zhong
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Qin Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Jia
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yan Liang
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Gu
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Wei
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-Yu Lian
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qi-Liang Cui
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
21
|
Fernandez-Gonzalez A, Willis GR, Yeung V, Reis M, Liu X, Mitsialis SA, Kourembanas S. Therapeutic Effects of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Oxygen-Induced Multi-Organ Disease: A Developmental Perspective. Front Cell Dev Biol 2021; 9:647025. [PMID: 33796534 PMCID: PMC8007882 DOI: 10.3389/fcell.2021.647025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in neonatal intensive care, infants born at extremely low birth weight still face an increased risk for chronic illness that may persist into adulthood. Pulmonary, retinal, and neurocognitive morbidities associated with preterm birth remain widespread despite interventions designed to minimize organ dysfunction. The design of therapeutic applications for preterm pathologies sharing common underlying triggers, such as fluctuations in oxygen supply or in the inflammatory state, requires alternative strategies that promote anti-inflammatory, pro-angiogenic, and trophic activities—ideally as a unitary treatment. Mesenchymal stem/stromal cell-derived extracellular vesicles (MEx) possess such inherent advantages, and they represent a most promising treatment candidate, as they have been shown to contribute to immunomodulation, homeostasis, and tissue regeneration. Current pre-clinical studies into the MEx mechanism of action are focusing on their restorative capability in the context of preterm birth-related pathologies, albeit not always with a multisystemic focus. This perspective will discuss the pathogenic mechanisms underlying the multisystemic lesions resulting from early-life disruption of normal physiology triggered by high oxygen exposures and pro-inflammatory conditions and introduce the application of MEx as immunomodulators and growth-promoting mediators for multisystem therapy.
Collapse
Affiliation(s)
- Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Monica Reis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
23
|
Fröhlich E. Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases-Intravenous Administration versus Inhalation. Pharmaceutics 2021; 13:232. [PMID: 33562240 PMCID: PMC7915745 DOI: 10.3390/pharmaceutics13020232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr 24, 8010 Graz, Austria; ; Tel.: +43-316-385-73011
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
24
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
25
|
Lin J, Deng H, Zhang Y, Zou L, Fu Z, Dai J. Effect of human umbilical cord-derived mesenchymal stem cells on murine model of bronchiolitis obliterans like injury. Pediatr Pulmonol 2021; 56:129-137. [PMID: 33085211 DOI: 10.1002/ppul.25128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bronchiolitis obliterans is a fatal respiratory disease characterized by the obliteration of small airways. Mesenchymal stem cells (MSCs) is a promising candidate for cell-based therapy. OBJECTIVE To evaluate the therapeutic effect of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on a murine model of bronchiolitis obliterans like injury (BOLI). METHOD The murine model of BOLI was established by administrating of diacetyl (DA) via intratracheal instillation. Treatment of HUC-MSCs or HUC-MSCs culture medium (HUC-MSCs-CM) was conducted in the BOLI model. RESULTS The pathogenic manifestations, lung function, and the number of neutrophils were similar between the oropharyngeal inhalation DA group (OPI-DA), intratracheal instillation group (ITI-DA); however, less reduction of weight and higher survival rate were observed in ITI-DA groups. Compared with the control groups, the trend of weight loss was significantly reduced (p < .05), and the pulmonary function was significantly improved (p < .05) in HUC-MSCs and HUC-MSCs-CM groups. Masson staining and hematoxylin and eosin staining showed that the deposition of collagen around bronchioles and blood vessels is less and airway epithelial cells and basal cells in lung tissue repaired better in HUC-MSCs and HUC-MSCs-CM groups compared with the control groups. Immunofluorescence shows the expression of E-cadherin and cytokeratin 5 (CK-5) were significantly higher in HUC-MSCs and HUC-MSCs-CM groups compared with control groups, while HUC-MSCs themselves did not express E-cadherin or CK-5. The DiI label showed HUC-MSCs gradually reduced after 2 days in the bronchus and 4 days in bronchiole. CONCLUSION HUC-MSCs could help to repair airway epithelial cells in a murine model of BOLI. It might be related to paracrine factors of HUC-MSCs.
Collapse
Affiliation(s)
- Jilei Lin
- Department of Respiratory Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huarong Deng
- Guangzhou Women and Children's Medical Center, Guangdong, China
| | - Yin Zhang
- Department of Respiratory Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lin Zou
- Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jihong Dai
- Department of Respiratory Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
26
|
Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020; 6:00123-2020. [PMID: 33123557 PMCID: PMC7569162 DOI: 10.1183/23120541.00123-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
Collapse
Affiliation(s)
- Darcy E. Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- These authors contributed equally
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- These authors contributed equally
| | - Sarah E. Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chelsea M. Magin
- Depts of Medicine and Bioengineering, University of Colorado, Denver, Aurora, CO, USA
| | - Fernanda Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allison Greaney
- Dept of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara Rolandsson Enes
- Dept of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Division of Lung Biology, Lund University, Lund, Sweden
| | | | - Mareike Lehmann
- Comprehensive Pneumology Center, Lung Repair and Regeneration Unit, Helmholtz Center Munich, Munich, Germany
| | | | - John Stegmayr
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Evan T. Hoffman
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J. Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
- Dept of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Moreira A, Naqvi R, Hall K, Emukah C, Martinez J, Moreira A, Dittmar E, Zoretic S, Evans M, Moses D, Mustafa S. Effects of mesenchymal stromal cell-conditioned media on measures of lung structure and function: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:399. [PMID: 32933584 PMCID: PMC7493362 DOI: 10.1186/s13287-020-01900-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung disease is a leading cause of morbidity and mortality. A breach in the lung alveolar-epithelial barrier and impairment in lung function are hallmarks of acute and chronic pulmonary illness. This review is part two of our previous work. In part 1, we demonstrated that CdM is as effective as MSCs in modulating inflammation. Herein, we investigated the effects of mesenchymal stromal cell (MSC)-conditioned media (CdM) on (i) lung architecture/function in animal models mimicking human lung disease, and (ii) performed a head-to-head comparison of CdM to MSCs. METHODS Adhering to the animal Systematic Review Centre for Laboratory animal Experimentation protocol, we conducted a search of English articles in five medical databases. Two independent investigators collected information regarding lung: alveolarization, vasculogenesis, permeability, histologic injury, compliance, and measures of right ventricular hypertrophy and right pulmonary pressure. Meta-analysis was performed to generate random effect size using standardized mean difference with 95% confidence interval. RESULTS A total of 29 studies met inclusion. Lung diseases included bronchopulmonary dysplasia, asthma, pulmonary hypertension, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis. CdM improved all measures of lung structure and function. Moreover, no statistical difference was observed in any of the lung measures between MSCs and CdM. CONCLUSIONS In this meta-analysis of animal models recapitulating human lung disease, CdM improved lung structure and function and had an effect size comparable to MSCs.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Rija Naqvi
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Kristen Hall
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Chimobi Emukah
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - John Martinez
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Axel Moreira
- Department of Pediatrics, Division of Critical Care, Baylor College of Medicine, Houston, TX, USA
| | - Evan Dittmar
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Sarah Zoretic
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Mary Evans
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Delanie Moses
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Shamimunisa Mustafa
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
28
|
Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases. Ann Am Thorac Soc 2020; 16:657-668. [PMID: 30917290 DOI: 10.1513/annalsats.201812-890cme] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis, result in severely impaired quality of life and impose significant burdens on healthcare systems worldwide. Current disease management involves pharmacologic interventions, oxygen administration, reduction of infections, and lung transplantation in advanced disease stages. An increasing understanding of mechanisms of respiratory epithelial and pulmonary vascular endothelial maintenance and repair and the underlying stem/progenitor cell populations, including but not limited to airway basal cells and type II alveolar epithelial cells, has opened the possibility of cell replacement-based regenerative approaches for treatment of lung diseases. Further potential for personalized therapies, including in vitro drug screening, has been underscored by the recent derivation of various lung epithelial, endothelial, and immune cell types from human induced pluripotent stem cells. In parallel, immunomodulatory treatments using allogeneic or autologous mesenchymal stromal cells have shown a good safety profile in clinical investigations for acute inflammatory conditions, such as acute respiratory distress syndrome and septic shock. However, as yet, no cell-based therapy has been shown to be both safe and effective for any lung disease. Despite the investigational status of cell-based interventions for lung diseases, businesses that market unproven, unlicensed and potentially harmful cell-based interventions for respiratory diseases have proliferated in the United States and worldwide. The current status of various cell-based regenerative approaches for lung disease as well as the effect of the regulatory environment on clinical translation of such approaches are presented and critically discussed in this review.
Collapse
|
29
|
Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, Hu L. The Application of MSCs-Derived Extracellular Vesicles in Bone Disorders: Novel Cell-Free Therapeutic Strategy. Front Cell Dev Biol 2020; 8:619. [PMID: 32793590 PMCID: PMC7387669 DOI: 10.3389/fcell.2020.00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is crucial for supporting the body, protecting other organs, providing minerals, and secreting hormone to regulate other organ's function. Bone disorders result in pain and disability, severely affecting human health, reducing the quality of life and increasing costs to society. With the rapid increase in the aging population worldwide, bone disorders have become one major disease. As a result, efficacious therapies of bone disorders have become the focus of attention worldwide. Mesenchymal stem cells (MSCs) have been widely explored as a new therapeutic method for numerous diseases. Recent evidence suggests that the therapeutic effects of MSCs are mainly mediated by their extracellular vesicles (EV). MSCs-derived extracellular vesicles (MSCs-EV) is indicated as a novel cell-free alternative to cell therapy with MSCs in regenerative medicine. Here, we review the current knowledge of EV and highlight the application studies of MSCs-EV in bone disorders by focusing on osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP), and bone fracture. Moreover, we discuss the key issues and perspectives of MSCs-EV as a clinical therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Shuyu Liu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xia Xu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Shujing Liang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhihao Chen
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yan Zhang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lifang Hu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
30
|
Willis GR, Fernandez-Gonzalez A, Reis M, Yeung V, Liu X, Ericsson M, Andrews NA, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell-derived small extracellular vesicles restore lung architecture and improve exercise capacity in a model of neonatal hyperoxia-induced lung injury. J Extracell Vesicles 2020; 9:1790874. [PMID: 32939235 PMCID: PMC7480622 DOI: 10.1080/20013078.2020.1790874] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Early administration of mesenchymal stromal cell (MSC)-derived small extracellular vesicles (MEx) has shown considerable promise in experimental models of bronchopulmonary dysplasia (BPD). However, the ability of MEx to reverse the long-term pulmonary complications associated with established BPD remains unknown. In this study, MEx were isolated from media conditioned by human Wharton’s Jelly-derived MSC cultures. Newborn mice (FVB strain) were exposed to hyperoxia (HYRX (75% O2)) before returning to room air at postnatal day 14 (PN14). Following prolonged HYRX-exposure, animals received a single MEx dose at PN18 or serial MEx treatments at PN18-39 (“late” intervention). This group was compared to animals that received an early single MEx dose at PN4 (“early” intervention). Animals were harvested at PN28 or 60 for assessment of pulmonary parameters. We found that early and late MEx interventions effectively ameliorated core features of HYRX-induced neonatal lung injury, improving alveolar simplification, pulmonary fibrosis, vascular remodelling and blood vessel loss. Exercise capacity testing and assessment of pulmonary hypertension (PH) showed functional improvements following both early and late MEx interventions. In conclusion, delivery of MEx following prolonged HYRX-exposure improves core features of experimental BPD, restoring lung architecture, decreasing pulmonary fibrosis and vascular muscularization, ameliorating PH and improving exercise capacity. Taken together, delivery of MEx may not only be effective in the immediate neonatal period to prevent the development of BPD but may provide beneficial effects for the management and potentially the reversal of cardiorespiratory complications in infants and children with established BPD.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Reis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Vincent Yeung
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xianlan Liu
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nick A Andrews
- F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M. Exosomes in Sepsis and Inflammatory Tissue Injury. Curr Pharm Des 2020; 25:4486-4495. [PMID: 31738129 DOI: 10.2174/1381612825666191116125525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Sepsis is the leading cause of death in medical intensive care units, and thus represents a serious healthcare problem worldwide. Sepsis is often caused by the aberrant host responses to infection, which induce dysregulated inflammation that leads to life-threatening multiple organ failures. Mediators such as proinflammatory cytokines that drive the sepsis pathogenesis have been extensively studied. Exosomes, biological lipid bilayer nanoparticles secreted via the endosomal pathway of cells, have recently emerged as important cargos that carry multiple mediators critical for the pathogenesis of sepsis-associated organ dysfunctions. Here we will review current knowledge on the exosomes in sepsis and relevant inflammatory tissue injuries.
Collapse
Affiliation(s)
- Eun J Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Phyoe K Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| |
Collapse
|
32
|
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020; 9:E1157. [PMID: 32392899 PMCID: PMC7290908 DOI: 10.3390/cells9051157] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Collapse
Affiliation(s)
- Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwasweong-si, Gyeonggi-do 18450, Korea;
| | | | | | | | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Sumi Sung
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| |
Collapse
|
33
|
Molavipordanjani S, Khodashenas S, Abedi SM, Moghadam MF, Mardanshahi A, Hosseinimehr SJ. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging. Eur J Pharm Sci 2020; 148:105312. [PMID: 32198014 DOI: 10.1016/j.ejps.2020.105312] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Exosomes represent unique features including nontoxicity, non-immunogenicity, biodegradability, and targeting ability that make them suitable candidates for clinical applications. Therefore, in this study, 99mTc-radiolabel HER2 targeted exosomes (99mTc-exosomes) were provided for tumor imaging. These exomes are obtained from genetically engineered cells and possessed DARPin G3 as a ligand for HER2 receptors. These exosomes were radiolabeled using fac-[99mTc(CO)3(H2O)3]+ synthon. The quality control showed high radiochemical purity (RCP) for 99mTc-exosomes (>96%). 99mTc-exosomes displayed a higher affinity toward SKOV-3 cells (higher HER2 expression) in comparison with MCF-7, HT29, U87-MG, A549 cell lines at different levels of HER2 expression. Trastuzumab (an antibody with a high affinity toward HER2) inhibited the binding of 99mTc-exosomes to SKOV-3 cells up to 40%. Biodistribution study in SKOV-3 tumor bearing nude mice confirmed the ability of 99mTc-exosomes for accumulation in the tumor. 99mTc-exosomes can visualize tumor in SKOV-3 tumor-bearing nude mouse. The blockage of HER2 receptors using trastuzumab (excessive amount) suggests the 99mTc-exosomes binding to the receptors and reduced the accumulation of 99mTc-exosomes in the tumor site. This suggest that 99mTc-exosomes interact with HER2 receptors and act through specific targeting.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
34
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
35
|
Wang W, Zhou X, Cui F, Shi C, Wang Y, Men Y, Zhao W, Zhao J. Proteomic Analysis on Exosomes Derived from Patients' Sera Infected with Echinococcus granulosus. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:489-497. [PMID: 31715689 PMCID: PMC6851256 DOI: 10.3347/kjp.2019.57.5.489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
Abstract
Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.
Collapse
Affiliation(s)
- Wen Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojing Zhou
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fang Cui
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Chunli Shi
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yulan Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yanfei Men
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.,The Medical Scientific Institute of Ningxia, Yinchuan 750004, China.,Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.,The Medical Scientific Institute of Ningxia, Yinchuan 750004, China.,Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
36
|
Zaramella P, Munari F, Stocchero M, Molon B, Nardo D, Priante E, Tosato F, Bonadies L, Viola A, Baraldi E. Innate immunity ascertained from blood and tracheal aspirates of preterm newborn provides new clues for assessing bronchopulmonary dysplasia. PLoS One 2019; 14:e0221206. [PMID: 31483807 PMCID: PMC6726193 DOI: 10.1371/journal.pone.0221206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022] Open
Abstract
Aim The study aimed to establish how granulocytes, monocytes and macrophages contribute to the development of bronchopulmonary dysplasia (BPD). Materials and methods Study A: samples of blood and tracheal aspirates (TAs) collected from preterm newborn infants during the first 3 days of life were investigated by flow cytometry, and testing for white blood cells (WBCs), neutrophils and neutrophil extracellular traps (NETs). Maternal blood samples were also collected. Study B: data from previously-tested samples of TAs collected from preterm newborn infants were re-analyzed in the light of the findings in the new cohort. Results Study A: 39 preterm newborn infants were studied. A moderate correlation emerged between maternal WBCs and neutrophils and those of their newborn in the first 3 days of life. WBCs and neutrophils correlated in the newborn during the first 8 days of life. Decision rules based on birth weight (BW) and gestational age (GA) can be used to predict bronchopulmonary dysplasia (BPD). Neutrophil levels were lower in the TAs from the newborn with the lowest GAs and BWs. Study B: after removing the effect of GA on BPD development, previously-tested newborn were matched by GA. Monocyte phenotype 1 (Mon1) levels were lower in the blood of newborn with BPD, associated with a higher ratio of Monocyte phenotype 3 (Mon3) to Mon1. Newborn infants from mothers with histological chorioamnionitis (HCA) had lower levels of classically-activated macrophages (M1) and higher levels of alternatively-activated macrophages (M2) in their TAs than newborn infants from healthy mothers. Conclusion Immune cell behavior in preterm newborn infants was examined in detail. Surprisingly, neutrophil levels were lower in TAs from the newborn with the lowest GA and BW, and no correlation emerged between the neutrophil and NET levels in TAs and the other variables measured. Interestingly, monocyte phenotype seemed to influence the onset of BPD. The rise in the ratio of Mon 3 to Mon 1 could contribute to endothelial dysfunction in BPD.
Collapse
Affiliation(s)
- Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, Via Giustiniani, Padova, Italy
- * E-mail:
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Pediatric Research Institute (IRP), Città della Speranza Foundation, Padova, Italy
| | - Matteo Stocchero
- Pediatric Research Institute (IRP), Città della Speranza Foundation, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Pediatric Research Institute (IRP), Città della Speranza Foundation, Padova, Italy
| | - Daniel Nardo
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, Via Giustiniani, Padova, Italy
| | - Elena Priante
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, Via Giustiniani, Padova, Italy
| | - Francesca Tosato
- Department of Laboratory Medicine, Padova University Hospital, Padova, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, Via Giustiniani, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Pediatric Research Institute (IRP), Città della Speranza Foundation, Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, Via Giustiniani, Padova, Italy
- Pediatric Research Institute (IRP), Città della Speranza Foundation, Padova, Italy
| |
Collapse
|
37
|
Popova AP. Mesenchymal Cells and Bronchopulmonary Dysplasia: New Insights about the Dark Side of Oxygen. Am J Respir Cell Mol Biol 2019; 60:501-502. [PMID: 30768912 PMCID: PMC6503614 DOI: 10.1165/rcmb.2019-0010ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Antonia P Popova
- 1 Division of Pediatric Pulmonology University of Michigan Medical Ann Arbor, Michigan
| |
Collapse
|
38
|
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9:19. [PMID: 30815248 PMCID: PMC6377728 DOI: 10.1186/s13578-019-0282-2] [Citation(s) in RCA: 1177] [Impact Index Per Article: 235.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles released into surrounding body fluids upon fusion of multivesicular bodies and the plasma membrane. They were shown to carry cell-specific cargos of proteins, lipids, and genetic materials, and can be selectively taken up by neighboring or distant cells far from their release, reprogramming the recipient cells upon their bioactive compounds. Therefore, the regulated formation of exosomes, specific makeup of their cargo, cell-targeting specificity are of immense biological interest considering extremely high potential of exosomes as non-invasive diagnostic biomarkers, as well as therapeutic nanocarriers. In present review, we outline and discuss recent progress in the elucidation of the regulatory mechanisms of exosome biogenesis, the molecular composition of exosomes, and technologies used in exosome research. Furthermore, we focus on the potential use of exosomes as valuable diagnostic and prognostic biomarkers for their cell-lineage and state-specific contents, and possibilities as therapeutic vehicles for drug and gene delivery. Exosome research is now in its infancy, in-depth understanding of subcellular components and mechanisms involved in exosome formation and specific cell-targeting will bring light on their physiological activities.
Collapse
Affiliation(s)
- Yuan Zhang
- 1Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Yunfeng Liu
- 2Clinical Laboratory Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Haiying Liu
- 2Clinical Laboratory Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Wai Ho Tang
- 1Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| |
Collapse
|
39
|
Salaets T, Gie A, Jimenez J, Aertgeerts M, Gheysens O, Vande Velde G, Koole M, Murgia X, Casiraghi C, Ricci F, Salomone F, Villetti G, Allegaert K, Deprest J, Toelen J. Local pulmonary drug delivery in the preterm rabbit: feasibility and efficacy of daily intratracheal injections. Am J Physiol Lung Cell Mol Physiol 2019; 316:L589-L597. [PMID: 30675804 DOI: 10.1152/ajplung.00255.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent clinical trials in newborns have successfully used surfactant as a drug carrier for an active compound, to minimize systemic exposure. To investigate the translational potential of surfactant-compound mixtures and other local therapeutics, a relevant animal model is required in which intratracheal administration for maximal local deposition is technically possible and well tolerated. Preterm rabbit pups (born at 28 days of gestation) were exposed to either hyperoxia or normoxia and randomized to receive daily intratracheal surfactant, daily intratracheal saline, or no injections for 7 days. At day 7, the overall lung function and morphology were assessed. Efficacy in terms of distribution was assessed by micro-PET-CT on both day 0 and day 7. Lung function as well as parenchymal and vascular structure were altered by hyperoxia, thereby reproducing a phenotype reminiscent of bronchopulmonary dysplasia (BPD). Neither intratracheal surfactant nor saline affected the survival or the hyperoxia-induced BPD phenotype of the pups. Using PET-CT, we demonstrate that 82.5% of the injected radioactive tracer goes and remains in the lungs, with a decrease of only 4% after 150 min. Surfactant and saline can safely and effectively be administered in spontaneously breathing preterm rabbits. The described model and method enable researchers to evaluate intratracheal pharmacological interventions for the treatment of BPD.
Collapse
Affiliation(s)
- Thomas Salaets
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium
| | - André Gie
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium
| | - Julio Jimenez
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium.,Facultad de Medicina, Universidad del Desarollo, Clínica Alemana, Santiago de Chile, Chile
| | - Margo Aertgeerts
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, KU Leuven , Leuven , Belgium
| | | | - Michel Koole
- Department of Imaging and Pathology, KU Leuven , Leuven , Belgium
| | - Xabi Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland , Saarbrücken , Germany
| | | | | | | | | | - Karel Allegaert
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium.,Division of Neonatology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium.,Institute for Women's Health, University College London Hospital , London , United Kingdom
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Woman and Child, KU Leuven , Leuven , Belgium
| |
Collapse
|
40
|
Crain SK, Robinson SR, Thane KE, Davis AM, Meola DM, Barton BA, Yang VK, Hoffman AM. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model. Stem Cells Dev 2019; 28:212-226. [PMID: 30412034 DOI: 10.1089/scd.2018.0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely investigated as potential therapeutic agents due to their potent immunomodulatory capacity. Although specific mechanisms by which MSC acts on immune cells are emerging, many questions remain, including the potential of extracellular vesicles (EVs) to mediate biological activities. Canine MSCs are of interest for both veterinary and comparative models of disease and have been shown to suppress CD4pos T cell proliferation. The aim of this study was to determine whether EV isolated from canine Wharton's jelly-derived MSC (WJ-MSC EV) suppresses CD4pos T cell proliferation using biochemical mechanisms previously ascribed to soluble mediators [transforming growth factor beta (TGF-β) and adenosine]. WJ-MSC EV exhibited mode of 125 nm diameter, low buoyant density (1.1 g/mL), and expression of EV proteins Alix and TSG101. Functionally, EVs inhibited CD4pos T cell proliferation in a dose-dependent manner, which was absent in EV-depleted samples and EVs from non-MSC fibroblasts. EV suppression of CD4pos T cell proliferation was inhibited by a TGF-βRI antagonist, neutralizing antibodies to TGF-β, or A2A adenosine receptor blockade. TGF-β was present on EVs as latent complexes most likely tethered to EV membrane by betaglycan. These data demonstrate that canine WJ-MSC EV utilizes TGF-β and adenosine signaling to suppress proliferation of CD4pos T cell and will enable further investigation into mechanisms of immune cell modulation, as well as refinement of WJ-MSC and their EVs for therapeutic application.
Collapse
Affiliation(s)
- Sarah K Crain
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Sally R Robinson
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Kristen E Thane
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Airiel M Davis
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Dawn M Meola
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Bruce A Barton
- 2 Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vicky K Yang
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Andrew M Hoffman
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| |
Collapse
|
41
|
Burgess JK, Heijink IH. Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7122497 DOI: 10.1007/978-3-030-29403-8_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic neonatal lung disease characterized by inflammation and arrest of alveolarization. Its common sequela, pulmonary hypertension (PH), presents with elevated pulmonary vascular resistance associated with remodeling of the pulmonary arterioles. Despite notable advancements in neonatal medicine, there is a severe lack of curative treatments to help manage the progressive nature of these diseases. Numerous studies in preclinical models of BPD and PH have demonstrated that therapies based on mesenchymal stem/stromal cells (MSCs) can resolve pulmonary inflammation and ameliorate the severity of disease. Recent evidence suggests that novel, cell-free approaches based on MSC-derived exosomes (MEx) might represent a compelling therapeutic alternative offering major advantages over treatments based on MSC transplantation. Here, we will discuss the development of MSC-based therapies, stressing the centrality of paracrine action as the actual vector of MSC therapeutic functionality, focusing on MEx. We will briefly present our current understanding of the biogenesis and secretion of MEx, and discuss potential mechanisms by which they afford such beneficial effects, including immunomodulation and restoration of homeostasis in diseased states. We will also review ongoing clinical trials using MSCs as treatment for BPD that pave the way for bringing cell-free, MEx-based therapeutics from the bench to the NICU setting.
Collapse
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
42
|
Michael Z, Spyropoulos F, Ghanta S, Christou H. Bronchopulmonary Dysplasia: An Update of Current Pharmacologic Therapies and New Approaches. Clin Med Insights Pediatr 2018; 12:1179556518817322. [PMID: 30574005 PMCID: PMC6295761 DOI: 10.1177/1179556518817322] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most prevalent long-term morbidity of surviving extremely preterm infants and is associated with significant health care utilization in infancy and beyond. Recent advances in neonatal care have resulted in improved survival of extremely low birth weight (ELBW) infants; however, the incidence of BPD has not been substantially impacted by novel interventions in this vulnerable population. The multifactorial cause of BPD requires a multi-pronged approach for prevention and treatment. New approaches in assisted ventilation, optimal nutrition, and pharmacologic interventions are currently being evaluated. The focus of this review is the current state of the evidence for pharmacotherapy in BPD. Promising future approaches in need of further study will also be reviewed.
Collapse
Affiliation(s)
- Zoe Michael
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Vergadi E, Vaporidi K, Tsatsanis C. Regulation of Endotoxin Tolerance and Compensatory Anti-inflammatory Response Syndrome by Non-coding RNAs. Front Immunol 2018; 9:2705. [PMID: 30515175 PMCID: PMC6255943 DOI: 10.3389/fimmu.2018.02705] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The onset and the termination of innate immune response must be tightly regulated to maintain homeostasis and prevent excessive inflammation, which can be detrimental to the organism, particularly in the context of sepsis. Endotoxin tolerance and compensatory anti-inflammatory response syndrome (CARS) describe a state of hypo-responsiveness characterized by reduced capacity of myeloid cells to respond to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide (LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed as “innate immune training”, is required that leads to both modifications of the intracellular components of TLR signaling and also to alterations in extracellular soluble mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579, miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2, THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid cell tolerance is not only regulated by intracellular mediators but is also affected by other TLR-independent soluble signals that often achieve their effect via modulation of intracellular ncRNAs. In this article, we review recent evidence on the role of different ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate their impact on immune system homeostasis.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Heraklion, Greece.,Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
44
|
Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S. Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension? Int J Mol Sci 2018; 19:ijms19092534. [PMID: 30150544 PMCID: PMC6164282 DOI: 10.3390/ijms19092534] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of the pulmonary arteries, increased pulmonary infiltrates, loss of vascular cross-sectional area, and elevated pulmonary vascular resistance. Despite recent advances in the management of PAH, there is a pressing need for the development of new tools to effectively treat and reduce the risk of further complications. Dysregulated immunity underlies the development of PAH, and macrophages orchestrate both the initiation and resolution of pulmonary inflammation, thus, manipulation of lung macrophage function represents an attractive target for emerging immunomodulatory therapies, including cell-based approaches. Indeed, mesenchymal stem cell (MSC)-based therapies have shown promise, effectively modulating the macrophage fulcrum to favor an anti-inflammatory, pro-resolving phenotype, which is associated with both histological and functional benefits in preclinical models of pulmonary hypertension (PH). The complex interplay between immune system homeostasis and MSCs remains incompletely understood. Here, we highlight the importance of macrophage function in models of PH and summarize the development of MSC-based therapies, focusing on the significance of MSC exosomes (MEx) and the immunomodulatory and homeostatic mechanisms by which such therapies may afford their beneficial effects.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Monica Reis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - S Alex Mitsialis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, Eldridge MW. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun 2018; 503:2653-2658. [PMID: 30093115 DOI: 10.1016/j.bbrc.2018.08.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cell (MSC) derived exosomes mediate tissue protection and regeneration in many injuries and diseases by modulating cell protein production, protecting from apoptosis, inhibiting inflammation, and increasing angiogenesis. In the present study, daily intraperitoneal injection of MSC-derived exosomes protected alveolarization and angiogenesis in a newborn rat model of bronchopulmonary dysplasia (BPD) induced by 14 days of neonatal hyperoxia exposure (85% O2). Exosome treatment during hyperoxia prevented disruption of alveolar growth, increased small blood vessel number, and inhibited right heart hypertrophy at P14, P21, and P56. In vitro, exosomes significantly increased tube-like network formation by HUVEC, in part through a VEGF mediated mechanism. In summary, daily intraperitoneal injection of exosomes increased blood vessel number and size in the lung through pro-angiogenic mechanisms. MSC-derived exosomes therefore have both anti-inflammatory and pro-angiogenic mechanism to protect the lung from hyperoxia induced lung and heart disease associated with BPD.
Collapse
Affiliation(s)
- Rudolf K Braun
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA.
| | - Chandramu Chetty
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA
| | | | - Ryan Centanni
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA
| | | | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin Madison, Madison, WI, USA
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|