1
|
Oliveira BDS, Paula TDMD, Cardoso LC, Ferreira JVL, Machado CA, Fernandes HDB, Carvalho BC, Freitas IDS, Nogueira LT, Teixeira AL, de Brito Toscano EC, de Miranda AS, de Almeida FRCL. Caffeine intake during gestation and lactation causes long-term behavioral impairments in heterogenic mice offspring in a sex-dependent manner. Pharmacol Biochem Behav 2024; 247:173949. [PMID: 39681183 DOI: 10.1016/j.pbb.2024.173949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Growing evidence has indicated a potential association between maternal consumption of caffeine and impaired cognition and behavior in rodent offspring. However, potential sex differences, as well as caffeine-related effects in subsequent generations are still poorly investigated. We aimed to investigate the impact of pre-and/or neonatal exposition to caffeine on the neurodevelopment of male and female mice offspring. Adult female Swiss mice were randomly divided into four experimental groups, which received, via gavage, water or caffeine (120 mg/day). Control/control (CC) received water during pregnancy and lactation; treated/control (TC): received caffeine during pregnancy and water during lactation; control/treated (CT): received water during pregnancy and caffeine during lactation; treated/treated (TT): received caffeine during pregnancy and lactation. Dams were euthanized at gestational day 17.5 and fetal brains were collected. Adult mice of F1 and F2 generations were submitted to behavioral analysis and their pre-frontal cortex and hippocampi were dissected to measure the levels of BDNF and CX3CL1. Caffeine induced reduction of CX3CL1 levels in female fetuses compared with controls. Maternal intake of caffeine was associated with anxiety- and compulsive-like behavior in both F1 and F2 female mice offspring. Interestingly, only F2 female mice exhibited caffeine-induced impairment of work memory. Hippocampal levels of CX3CL1 and BDNF were decreased in female F1TT and F2TT groups; while among males exposed to caffeine, only F1 offspring had reduced hippocampal CX3CL1 levels. Our results suggest that both pre- and neonatal exposition to caffeine lead to long-term behavioral and neurochemical impairments in a sex-dependent manner, adversely affecting the subsequent female generation.
Collapse
Affiliation(s)
- Bruna da Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Carvalho Cardoso
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Vitor Lopes Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline Amaral Machado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Heliana de Barros Fernandes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Brener Cunha Carvalho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingrid Dos Santos Freitas
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Taveira Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Lúcio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Aline Silva de Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
2
|
Antonio J, Newmire DE, Stout JR, Antonio B, Gibbons M, Lowery LM, Harper J, Willoughby D, Evans C, Anderson D, Goldstein E, Rojas J, Monsalves-Álvarez M, Forbes SC, Gomez Lopez J, Ziegenfuss T, Moulding BD, Candow D, Sagner M, Arent SM. Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2024; 21:2323919. [PMID: 38466174 DOI: 10.1080/15502783.2024.2323919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords "caffeine" and "exercise" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon "crash?" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Daniel E Newmire
- Texas Woman's University, Exercise Physiology and Biochemistry Laboratory, School of Health Promotion and Kinesiology, Denton, TX, USA
| | - Jeffrey R Stout
- University of Central Florida, College of Health Professions and Sciences, Orlando, FL, USA
| | - Brandi Antonio
- University of Central Florida, College of Health Professions and Sciences, Orlando, FL, USA
| | | | - Lonnie M Lowery
- Nutrition, Exercise and Wellness Associates, Cuyahoga Falls, OH, USA
- Walsh University, Department of Exercise Science, North Canton, OH, USA
| | - Joseph Harper
- Walsh University, Department of Exercise Science, North Canton, OH, USA
| | - Darryn Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Dawn Anderson
- Indiana Tech, Exercise and Sport Performance Laboratory, Fort Wayne, IN, USA
| | - Erica Goldstein
- Stetson University, Department of Health Sciences, Deland, FL, USA
| | - Jose Rojas
- Keiser University, Fort Lauderdale, FL, USA
- Rocky Mountain University of Health Professions, Provo, UT, USA
| | - Matías Monsalves-Álvarez
- Universidad de O´Higgins, Exercise Metabolism and Nutrition Laboratory. Instituto de Ciencias de la Salud, Rancagua, Chile
- Motion Human Performance Laboratory, Lo Barnechea, Chile
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, CBrandon, MB, Canada
| | | | - Tim Ziegenfuss
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Blake D Moulding
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Darren Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Shawn M Arent
- University of South Carolina, Arnold School of Public Health, Columbia, SC, USA
| |
Collapse
|
3
|
Rohweder R, de Oliveira Schmalfuss T, Dos Santos Borniger D, Ferreira CZ, Zanardini MK, Lopes GPTF, Barbosa CP, Moreira TD, Schuler-Faccini L, Sanseverino MTV, da Silva AA, Abeche AM, Vianna FSL, Fraga LR. Caffeine intake during pregnancy and adverse outcomes: An integrative review. Reprod Toxicol 2024; 123:108518. [PMID: 38042437 DOI: 10.1016/j.reprotox.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Caffeine intake during pregnancy is common. Caffeine crosses the placenta, raising concerns about its possible deleterious effects on the developing embryo/fetus. Studies on this subject show conflicting results, and still there is no consensus on the recommended dose of caffeine during pregnancy. We performed an integrative review with studies from six databases, using broad MESH terms to allow the identification of publications that addressed the outcomes of caffeine use during pregnancy, with no date limit for publications, in English and Portuguese language. The research returned 16,192 articles. After removing duplicates, screening by title, abstract and full-text, we evaluated 257 and included 59 articles. We found association between caffeine intake and pregnancy loss, low birth weight, cardiac and genital anomalies, higher body mass, and neurodevelopmental and neurobehavioral outcomes. The effects were often dose dependent. No association with prematurity has been demonstrated, but one study showed a small reduction in gestational age with increasing doses of caffeine intake. Defining a safe dose for caffeine intake during pregnancy is a challenging task due to the heterogeneity in study designs and results, as well as the difficulty of reliably assessing the amount of caffeine consumed. In some studies, exposures below the recommended level of caffeine intake during pregnancy (200 mg/day), as suggested by the guidelines, were associated with pregnancy loss, low birth weight, cardiac and genital anomalies, higher body mass, and neurodevelopmental and neurobehavioral outcomes. Well-designed studies with reliable quantification of caffeine intake are needed to assess the safety of low doses during pregnancy.
Collapse
Affiliation(s)
- Ricardo Rohweder
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thanyse de Oliveira Schmalfuss
- Programa de Monitoramento de Defeitos Congênitos do Hospital de Clínicas de Porto Alegre (PMDC-HCPA), Porto Alegre, Brazil
| | - Diessy Dos Santos Borniger
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Zanfir Ferreira
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcos Kobren Zanardini
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Paulon Torrano Ferreira Lopes
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Pocharski Barbosa
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Taiane Dornelles Moreira
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavinia Schuler-Faccini
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Monitoramento de Defeitos Congênitos do Hospital de Clínicas de Porto Alegre (PMDC-HCPA), Porto Alegre, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - André Anjos da Silva
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Médicas - Universidade do Vale do Taquari - UNIVATES, Lajeado, Brazil; Universidade do Vale do Rio dos Sinos - UNISINOS, São Leopoldo, Brazil
| | - Alberto Mantovani Abeche
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina - Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Askari M, Bazshahi E, Payande N, Mobaderi T, Fahimfar N, Azadbakht L. Relationship between caffeine intake and small for gestational age and preterm birth: a dose-response meta-analysis. Crit Rev Food Sci Nutr 2023; 64:6942-6952. [PMID: 36825339 DOI: 10.1080/10408398.2023.2177606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Our meta-analysis aimed to determine the dose-response relationship between caffeine intake and risk of small for gestational age (SGA) and preterm birth (PB). A systematic search of PubMed, Web of science and Scopus was done from inception to January 2023 using relevant keywords. All case-control and cohort studies reported in English were included if the exposure of interest was caffeine intake during pregnancy, the outcome of interest was spontaneous SGA and PB, and multivariable-adjusted odds ratios (ORs) or risk ratios were provided or could be calculated. In all, 22 studies (15 cohort studies and seven case-control studies) were included in this review. Examining the association of caffeine intake with risk of PB, no significant relationship was found (Pooled ES: 1.04; 95% CI: 0.95 to 1.14, P = 0.019). Findings from this meta-analysis demonstrated that caffeine intake had a significantly higher risk of SGA respectively (Pooled ES: 1.28; 95% CI: 1.16 to 1.41, P < 0.001). A dose-response analysis proposed that an increase of 100 mg caffeine per day was associated with a 13% greater risk of SGA. This study confirmed that caffeine intake raises the risk of SGA. However, the risk of PB was not found to be reliably associated with maternal caffeine consumption.
Collapse
Affiliation(s)
- Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastran Payande
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Tofigh Mobaderi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Public Health, Department of Epidemiology and Biostatistics, Tehran University of Medical Science, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Association between maternal caffeine intake during pregnancy and child development at 6 and 12 months: The Japan Environment and Children's Study. Early Hum Dev 2022; 171:105607. [PMID: 35763937 DOI: 10.1016/j.earlhumdev.2022.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Caffeine intake by pregnant women may have neurodevelopmental effects on the fetus due to adenosine antagonism. However, there are insufficient data and inconsistent results from epidemiological studies on the effect of maternal caffeine intake on child development. AIMS This study examined the association between mothers' estimated caffeine intake during pregnancy and their children's score on the Japanese version of the Ages & Stages Questionnaires™ (J-ASQ) at 6 and 12 months of age. STUDY DESIGN The study is a part of nationwide prospective birth-cohort study: the Japan Environment and Children's Study. SUBJECTS In total, 87,106 participants with the Food Frequency Questionnaire (FFQ) data and J-ASQ at 6 or 12 months of age were included in the study. OUTCOME MEASURES The data were analyzed by logistic regression analysis to determine whether the scores of the five subscales on the J-ASQ were below the cutoff point as the dependent variable. RESULTS The results showed that children born to mothers who consumed >300 mg caffeine per day had a 1.11-fold increased odds of gross motor developmental delay at 12 months of age (adjusted odds ratio [AOR] = 1.114 [95 % CI: 1.013-1.226]). CONCLUSIONS Issues in gross motor development can emerge prior to future developmental issues. Therefore, further studies on developmental outcomes in older children, including the future outcomes of the children who participated in this study, are needed.
Collapse
|
7
|
Kobayashi S, Sata F, Kishi R. Gene-environment interactions related to maternal exposure to environmental and lifestyle-related chemicals during pregnancy and the resulting adverse fetal growth: a review. Environ Health Prev Med 2022; 27:24. [PMID: 35675978 PMCID: PMC9251623 DOI: 10.1265/ehpm.21-00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background There are only limited numbers of reviews on the association of maternal-child genetic polymorphisms and environmental and lifestyle-related chemical exposure during pregnancy with adverse fetal growth. Thus, this article aims to review: (1) the effect of associations between the above highlighted factors on adverse fetal growth and (2) recent birth cohort studies regarding environmental health risks. Methods Based on a search of the PubMed database through August 2021, 68 epidemiological studies on gene-environment interactions, focusing on the association between environmental and lifestyle-related chemical exposure and adverse fetal growth was identified. Moreover, we also reviewed recent worldwide birth cohort studies regarding environmental health risks. Results Thirty studies examined gene-smoking associations with adverse fetal growth. Sixteen maternal genes significantly modified the association between maternal smoking and adverse fetal growth. Two genes significantly related with this association were detected in infants. Moreover, the maternal genes that significantly interacted with maternal smoking during pregnancy were cytochrome P450 1A1 (CYP1A1), X-ray repair cross-complementing protein 3 (XRCC3), interleukin 6 (IL6), interleukin 1 beta (IL1B), human leukocyte antigen (HLA) DQ alpha 1 (HLA-DQA1), HLA DQ beta 1 (HLA-DQB1), and nicotinic acetylcholine receptor. Fetal genes that had significant interactions with maternal smoking during pregnancy were glutathione S-transferase theta 1 (GSTT1) and fat mass and obesity-associated protein (FTO). Thirty-eight studies examined the association between chemical exposures and adverse fetal growth. In 62 of the 68 epidemiological studies (91.2%), a significant association was found with adverse fetal growth. Across the studies, there was a wide variation in the analytical methods used, especially with respect to the genetic polymorphisms of interest, environmental and lifestyle-related chemicals examined, and the study design used to estimate the gene-environment interactions. It was also found that a consistently increasing number of European and worldwide large-scale birth cohort studies on environmental health risks have been conducted since approximately 1996. Conclusion There is some evidence to suggest the importance of gene-environment interactions on adverse fetal growth. The current knowledge on gene-environment interactions will help guide future studies on the combined effects of maternal-child genetic polymorphisms and exposure to environmental and lifestyle-related chemicals during pregnancy. Supplementary information The online version contains supplementary material available at https://doi.org/10.1265/ehpm.21-00033.
Collapse
Affiliation(s)
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University.,Health Center, Chuo University
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University
| |
Collapse
|
8
|
Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients 2022; 14:nu14112196. [PMID: 35683994 PMCID: PMC9182860 DOI: 10.3390/nu14112196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
This study aimed to assess the content of caffeine and its metabolites—paraxanthine, theophylline, and theobromine—in breast milk according to selected factors. Samples of human milk were collected from 100 women living in the east–northeast region of Poland. Information on the consumption of beverages and foods containing caffeine was collected using a 3 day food record. The determination of caffeine and its metabolite content was performed using liquid chromatography–mass spectrometry (LC–MS/MS). This study research showed that more caffeine was found in the milk of women living in cities, with secondary education, aged 34–43, and also in milk from the 3rd and 4th lactation periods (p ≤ 0.05). Factors such as place of residence, level of education, age, and stage of lactation influenced the nutritional choices of breastfeeding women, which had an impact on the level of caffeine and its metabolites in breast milk. A positive correlation was found between the consumption of caffeine with food and drinks and its level in human milk.
Collapse
|
9
|
Umeda N, Hirai T, Ohto-Nakanishi T, Tsuchiya KJ, Matsuzaki H. Linoleic acid and linoleate diols in neonatal cord blood influence birth weight. Front Endocrinol (Lausanne) 2022; 13:986650. [PMID: 36093109 PMCID: PMC9453817 DOI: 10.3389/fendo.2022.986650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Low-birth-weight infants exhibit a high risk for postnatal morbidity. Cytochrome P450 (CYP) and epoxide hydrolase (EH) are involved in the metabolism of factors responsible for low-birth-weight in infants. Both CYPs and EHs have high substrate specificity and are involved in polyunsaturated fatty acid (PUFA) metabolism. The CYP pathway produces epoxy fatty acids (EpFAs), which are further degraded by soluble EH (sEH). Additionally, sEH inhibition enhances the action of EpFAs and suppresses inflammatory responses. During pregnancy, excessive activation of maternal inflammatory response is a significant factor associated with low-birth-weight. However, the association of EpFAs, which have potential anti-inflammatory properties, with the low-birth-weight of infants remains uninvestigated. This study aimed to clarify the association between the umbilical cord serum EpFA and low-birth-weight using data obtained from the Hamamatsu Birth Cohort for Mothers and Children (HBC Study) by analyzing the umbilical cord blood samples. METHOD We selected a subgroup of 200 infants (106 boys and 94 girls), quantified EpFA concentration in their cord blood samples collected at birth, and examined its correlation with birth weight. RESULTS The comparison between the low-birth-weight and normal-birth-weight groups revealed no significant correlation between PUFA and EpFA concentrations, but a significant correlation was observed in the linoleate diol concentrations of the two groups. Furthermore, birth weight did not significantly correlate with PUFA, EpFA, and diol concentrations in cord blood; however, multiple regression analysis showed a significant negative correlation of birth weight with the concentration of linoleic acid (LA) (r = -0.101, p = 0.016) as well as LA-derived dihydroxyoctadecenoic acid (diHOME) (r = -0.126, p = 0.007), 9,10-diHOME (r = -0.115, p = 0.014), and 12,13-diHOME (r = -0.126, p = 0.007) after adjusting for obstetric factors, including gestational age, infant's sex, childbirth history, delivery method, and maternal height. CONCLUSIONS Birth weight was significantly correlated with the concentration of LA and linoleate diol diHOME after adjusting for obstetric confounders. Our results show that CYP and sEH involved in PUFA metabolism may influence the birth weight of infants. Further validation is needed to provide insights regarding maternal intervention strategies required to avoid low-birth-weight in infants in the future.
Collapse
Affiliation(s)
- Naoko Umeda
- Department of Functional Brain Activities, United Graduate School of Child Development, Hamamatsu University School of Medicine, Osaka University, Kanazawa University, Chiba University, and University of Fukui, Osaka, Japan
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Takaharu Hirai
- Department of Psychiatric and Mental Health Nursing, School of Nursing, University of Fukui, Fukui, Japan
| | | | - Kenji J. Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Hamamatsu University School of Medicine, Osaka University, Kanazawa University, Chiba University, and University of Fukui, Osaka, Japan
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- *Correspondence: Hideo Matsuzaki,
| |
Collapse
|
10
|
Apay S, Gur E, Cil M. The caffeine consumption among Turkish pregnant women. Niger J Clin Pract 2022; 25:1507-1516. [DOI: 10.4103/njcp.njcp_1983_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Kobayashi S, Sata F, Ikeda-Araki A, Miyashita C, Itoh S, Goudarzi H, Iwasaki Y, Mitsui T, Moriya K, Shinohara N, Cho K, Kishi R. Associations among maternal perfluoroalkyl substance levels, fetal sex-hormone enzymatic gene polymorphisms, and fetal sex hormone levels in the Hokkaido study. Reprod Toxicol 2021; 105:221-231. [PMID: 34536543 DOI: 10.1016/j.reprotox.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Prenatal sex hormones affect fetal growth; for example, prenatal exposure to low levels of androgen accelerates female puberty onset. We assessed the association of perfluoroalkyl substances (PFASs) in maternal sera and infant genotypes of genes encoding enzymes involved in sex steroid hormone biosynthesis on cord sera sex hormone levels in a prospective birth cohort study of healthy pregnant Japanese women (n = 224) recruited in Sapporo between July 2002 and October 2005. We analyzed PFAS and five sex hormone levels using liquid chromatography-tandem mass spectrometry. Cytochrome P450 (CYP) 17A1 (CYP17A1 rs743572), 19A1 (CYP19A1 rs10046, rs700519, and rs727479), 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1 rs6203), type 2 (HSD3B2 rs1819698, rs2854964, and rs4659175), 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1 rs605059, rs676387, and rs2676531), and type 3 (HSD17B3 rs4743709) were analyzed using real-time PCR. Multiple linear regression models were used to establish the influence of log10-transformed PFAS levels and infant genotypes on log10-transformed sex steroid hormone levels. When the interaction between perfluorooctanesulfonate (PFOS) levels and female infant genotype CYP17A1 (rs743572) on the androstenedione (A-dione) levels was considered, the estimated changes (95 % confidence intervals) in A-dione levels against PFOS levels, female infant genotype CYP17A1 (rs743572)-AG/GG, and interaction between them showed a mean increase of 0.445 (0.102, 0.787), mean increase of 0.392 (0.084, 0.707), and mean reduction of 0.579 (0.161, 0.997) (Pint = 0.007), respectively. Moreover, a female-specific interaction with testosterone levels was observed. A-dione and T levels showed positive main effects and negative interaction with PFOS levels and the female infant CYP17A1 genotype.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo, 162-8473, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yusuke Iwasaki
- Department of Biopharmaceutics and Analytical Science, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, 409-3898, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, North-14, West-7, Kita-ku, Sapporo, 060-8648, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
12
|
James JE. Maternal caffeine consumption and pregnancy outcomes: a narrative review with implications for advice to mothers and mothers-to-be. BMJ Evid Based Med 2021; 26:114-115. [PMID: 32843532 PMCID: PMC8165152 DOI: 10.1136/bmjebm-2020-111432] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Caffeine is a habit-forming substance consumed daily by the majority of pregnant women. Accordingly, it is important that women receive sound evidence-based advice about potential caffeine-related harm. This narrative review examines evidence of association between maternal caffeine consumption and negative pregnancy outcomes, and assesses whether current health advice concerning maternal caffeine consumption is soundly based. METHODS Database searches using terms linking caffeine and caffeinated beverages to pregnancy outcomes identified 1261 English language peer-reviewed articles. Screening yielded a total of 48 original observational studies and meta-analyses of maternal caffeine consumption published in the past two decades. The articles reported results for one or more of six major categories of negative pregnancy outcomes: miscarriage, stillbirth, low birth weight and/or small for gestational age, preterm birth, childhood acute leukaemia, and childhood overweight and obesity. RESULTS Of 42 separate sets of findings reported in 37 observational studies, 32 indicated significantly increased caffeine-related risk and 10 suggested no or inconclusive associations. Caffeine-related increased risk was reported with moderate to high levels of consistency for all pregnancy outcomes except preterm birth. Of 11 studies reporting 17 meta-analyses, there was unanimity among 14 analyses in finding maternal caffeine consumption to be associated with increased risk for the four outcome categories of miscarriage, stillbirth, low birth weight and/or small for gestational age, and childhood acute leukaemia. The three remaining meta-analyses were also unanimous in reporting absence of a reliable association between maternal caffeine consumption and preterm birth. No meta-analyses were identified for childhood overweight and obesity, although four of five original observational studies reported significant associations linking maternal caffeine consumption to that outcome category. CONCLUSIONS The substantial majority finding from observational studies and meta-analyses is that maternal caffeine consumption is reliably associated with major negative pregnancy outcomes. Reported findings were robust to threats from potential confounding and misclassification. Among both observational studies and meta-analyses, there were frequent reports of significant dose-response associations suggestive of causation, and frequent reports of no threshold of consumption below which associations were absent. Consequently, current evidence does not support health advice that assumes 'moderate' caffeine consumption during pregnancy is safe. On the contrary, the cumulative scientific evidence supports pregnant women and women contemplating pregnancy being advised to avoid caffeine.
Collapse
Affiliation(s)
- Jack E James
- Psychology, Reykjavik University, 101 Reykjavik, Iceland
| |
Collapse
|
13
|
Kishi R, Ikeda-Araki A, Miyashita C, Itoh S, Kobayashi S, Ait Bamai Y, Yamazaki K, Tamura N, Minatoya M, Ketema RM, Poudel K, Miura R, Masuda H, Itoh M, Yamaguchi T, Fukunaga H, Ito K, Goudarzi H. Hokkaido birth cohort study on environment and children's health: cohort profile 2021. Environ Health Prev Med 2021; 26:59. [PMID: 34022817 PMCID: PMC8141139 DOI: 10.1186/s12199-021-00980-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hokkaido Study on Environment and Children's Health is an ongoing study consisting of two birth cohorts of different population sizes: the Sapporo cohort and the Hokkaido cohort. Our primary objectives are to (1) examine the effects that low-level environmental chemical exposures have on birth outcomes, including birth defects and growth retardation; (2) follow the development of allergies, infectious diseases, and neurobehavioral developmental disorders, as well as perform a longitudinal observation of child development; (3) identify high-risk groups based on genetic susceptibility to environmental chemicals; and (4) identify the additive effects of various chemicals, including tobacco. METHODS The purpose of this report is to provide an update on the progress of the Hokkaido Study, summarize recent results, and suggest future directions. In particular, this report provides the latest details from questionnaire surveys, face-to-face examinations, and a collection of biological specimens from children and measurements of their chemical exposures. RESULTS The latest findings indicate different risk factors of parental characteristics on birth outcomes and the mediating effect between socioeconomic status and children that are small for the gestational age. Maternal serum folate was not associated with birth defects. Prenatal chemical exposure and smoking were associated with birth size and growth, as well as cord blood biomarkers, such as adiponectin, leptin, thyroid, and reproductive hormones. We also found significant associations between the chemical levels and neuro development, asthma, and allergies. CONCLUSIONS Chemical exposure to children can occur both before and after birth. Longer follow-up for children is crucial in birth cohort studies to reinforce the Developmental Origins of Health and Disease hypothesis. In contrast, considering shifts in the exposure levels due to regulation is also essential, which may also change the association to health outcomes. This study found that individual susceptibility to adverse health effects depends on the genotype. Epigenome modification of DNA methylation was also discovered, indicating the necessity of examining molecular biology perspectives. International collaborations can add a new dimension to the current knowledge and provide novel discoveries in the future.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan. .,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Kumiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Houman Goudarzi
- Faculty of Medicine and Graduate School of Medicine, Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
14
|
Gleason JL, Tekola-Ayele F, Sundaram R, Hinkle SN, Vafai Y, Buck Louis GM, Gerlanc N, Amyx M, Bever AM, Smarr MM, Robinson M, Kannan K, Grantz KL. Association Between Maternal Caffeine Consumption and Metabolism and Neonatal Anthropometry: A Secondary Analysis of the NICHD Fetal Growth Studies-Singletons. JAMA Netw Open 2021; 4:e213238. [PMID: 33764424 PMCID: PMC7994948 DOI: 10.1001/jamanetworkopen.2021.3238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPORTANCE Higher caffeine consumption during pregnancy has been associated with lower birth weight. However, associations of caffeine consumption, based on both plasma concentrations of caffeine and its metabolites, and self-reported caffeinated beverage intake, with multiple measures of neonatal anthropometry, have yet to be examined. OBJECTIVE To evaluate the association between maternal caffeine intake and neonatal anthropometry, testing effect modification by fast or slow caffeine metabolism genotype. DESIGN, SETTING, AND PARTICIPANTS A longitudinal cohort study, the National Institute of Child Health and Human Development Fetal Growth Studies-Singletons, enrolled 2055 nonsmoking women at low risk for fetal growth abnormalities with complete information on caffeine consumption from 12 US clinical sites between 2009 and 2013. Secondary analysis was completed in 2020. EXPOSURES Caffeine was evaluated by both plasma concentrations of caffeine and paraxanthine and self-reported caffeinated beverage consumption measured/reported at 10-13 weeks gestation. Caffeine metabolism defined as fast or slow using genotype information from the single nucleotide variant rs762551 (CYP1A2*1F). MAIN OUTCOMES AND MEASURES Neonatal anthropometric measures, including birth weight, length, and head, abdominal, arm, and thigh circumferences, skin fold and fat mass measures. The β coefficients represent the change in neonatal anthropometric measure per SD change in exposure. RESULTS A total of 2055 participants had a mean (SD) age of 28.3 (5.5) years, mean (SD) body mass index of 23.6 (3.0), and 580 (28.2%) were Hispanic, 562 (27.4%) were White, 518 (25.2%) were Black, and 395 (19.2%) were Asian/Pacific Islander. Delivery occurred at a mean (SD) of 39.2 (1.7) gestational weeks. Compared with the first quartile of plasma caffeine level (≤28 ng/mL), neonates of women in the fourth quartile (>659 ng/mL) had lower birth weight (β = -84.3 g; 95% CI, -145.9 to -22.6 g; P = .04 for trend), length (β = -0.44 cm; 95% CI, -0.78 to -0.12 cm; P = .04 for trend), and head (β = -0.28 cm; 95% CI, -0.47 to -0.09 cm; P < .001 for trend), arm (β = -0.25 cm; 95% CI, -0.41 to -0.09 cm: P = .02 for trend), and thigh (β = -0.29 cm; 95% CI, -0.58 to -0.04 cm; P = .07 for trend) circumference. Similar reductions were observed for paraxanthine quartiles, and for continuous measures of caffeine and paraxanthine concentrations. Compared with women who reported drinking no caffeinated beverages, women who consumed approximately 50 mg per day (~ 1/2 cup of coffee) had neonates with lower birth weight (β = -66 g; 95% CI, -121 to -10 g), smaller arm (β = -0.17 cm; 95% CI, -0.31 to -0.02 cm) and thigh (β = -0.32 cm; 95% CI, -0.55 to -0.09 cm) circumference, and smaller anterior flank skin fold (β = -0.24 mm; 95% CI, -0.47 to -0.01 mm). Results did not differ by fast or slow caffeine metabolism genotype. CONCLUSIONS AND RELEVANCE In this cohort study, small reductions in neonatal anthropometric measurements with increasing caffeine consumption were observed. Findings suggest that caffeine consumption during pregnancy, even at levels much lower than the recommended 200 mg per day of caffeine, are associated with decreased fetal growth.
Collapse
Affiliation(s)
- Jessica L. Gleason
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Rajeshwari Sundaram
- Biostatistics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stefanie N. Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yassaman Vafai
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Germaine M. Buck Louis
- Office of the Dean, College of Health and Human Services, George Mason University, Fairfax, Virginia
| | | | - Melissa Amyx
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alaina M. Bever
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Melissa M. Smarr
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, New York
- Department of Environmental Medicine, New York University School of Medicine, New York
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York
- Department of Environmental Medicine, New York University School of Medicine, New York
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
16
|
Effects of excessive tea consumption on pregnancy weight gain and neonatal birth weight. Obstet Gynecol Sci 2020; 64:34-41. [PMID: 33249804 PMCID: PMC7834757 DOI: 10.5468/ogs.20157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Tea lovers are increasing worldwide. We hope that this report is the first to discuss the possible impacts of high black tea consumption on gestational weight gain (GWG) and birth parameters. METHODS Throughout one year, a total of 7,063 pregnant ladies coming for first antenatal visit were screened in a major tertiary center. Of them, 1,138 were involved and divided according to their preference into 3 groups: excessive tea (ET), usual tea (UT), and mixed beverages group. The study included women who gave birth to healthy neonates. RESULTS The rate of ET consumption was 4.13% with a total of 41 cases. The UT group (controls) comprised 94 women. ET was significantly associated (P<0.05) with maternal age, parity, occupation, smoking, and poor GWG starting from 30 weeks' gestation until delivery, low birth weight, and small for gestational age (SGA). Poor GWG had a higher relative risk (with 95% confidence interval) in the ET group than in the UT group in crude (1.84 [0.85-2.43]) and risk adjusted models (1.25 [0.28-2.26]). Further, similar results were obtained for SGA in the crude and 3 adjusted models, where the first model was adjusted for bio-obstetrical variables, the second for social parameters, and the third for all factors included in the previous models (1.53 [0.62-2.81], 1.52 [0.71-2.50], and 1.46 [0.78-2.39]), respectively. CONCLUSION Consumption of large amounts of daily black tea during pregnancy (≥1,500 mL) is a significant cause of poor GWG and SGA.
Collapse
|
17
|
Torres ILS, Assumpção JAF, de Souza A, de Oliveira C, Adachi LNS, Scarabelot VL, Cioato SG, Rozisky JR, Caumo W, Silva RS, Battastini AMO, Medeiros LF. Effects of gestational and breastfeeding caffeine exposure in adenosine A1 agonist-induced antinociception of infant rats. Int J Dev Neurosci 2020; 80:709-716. [PMID: 33030219 DOI: 10.1002/jdn.10069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Caffeine is extensively consumed as a psychostimulant drug, acting on A1 and A2A adenosine receptors blockade. Chronic exposure to caffeine during gestation and breast-feeding may be involved in infant rat's behavioral and biochemical alterations. Our goal was to evaluate the effect of chronic caffeine exposure during gestation and breast-feeding in the functionality of adenosine A1 receptors in infant rats at P14. NTPDase and 5'-nucleotidase activities were also evaluated. METHODS Mating of adult female Wistar rats was confirmed by presence of sperm in vaginal smears. Rats were divided into three groups on the first day of pregnancy: (1) control: tap water, (2) caffeine: 0.3 g/L until P14, and (3) washout caffeine: caffeine was changed to tap water at P7. Evaluation of nociceptive response was performed at P14 using hot plate (HP) and tail-flick latency (TFL) tests. A1 receptor involvement was assessed using caffeine agonist (CPA) and antagonist (DPCPX). Enzymatic activities assays were conducted in the spinal cord. RESULTS Gestational and breastfeeding exposure to caffeine (caffeine and washout groups) did not induce significant alterations in thermal nociceptive thresholds (HP and TF tests). Both caffeine groups did not show analgesic response induced by CPA when compared to the control group at P14, indicating chronic exposure to caffeine in the aforementioned periods inhibits the antinociceptive effects of the systemic A1 receptor agonist administration. No effect was observed upon ectonucleotidase activities. CONCLUSIONS Our results demonstrate that chronic caffeine exposure in gestational and breastfeeding alters A1-mediated analgesic response in rats.
Collapse
Affiliation(s)
- Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - José A F Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| | - Carla de Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lauren N S Adachi
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa L Scarabelot
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Stefania G Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Joanna R Rozisky
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
| | - Ana Maria O Battastini
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liciane F Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| |
Collapse
|
18
|
Jin F, Qiao C. Association of maternal caffeine intake during pregnancy with low birth weight, childhood overweight, and obesity: a meta-analysis of cohort studies. Int J Obes (Lond) 2020; 45:279-287. [PMID: 32518355 DOI: 10.1038/s41366-020-0617-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Epidemiological studies reported inconsistent results on the associations between maternal caffeine intake during pregnancy and risk of low birth weight (LBW) and childhood overweight and obesity in their offspring. METHODS We conducted a meta-analysis of cohort studies to quantitatively assess these associations. Pertinent studies were identified by searching PubMed and Embase through June 2019. Study-specifics risk estimates were combined using fixed effects models, or random-effects models when significant heterogeneity was detected. Dose-response analysis was modeled by using restricted cubic splines. RESULTS A total of 15 cohort studies, with 102,347 pregnancy women, was included in the meta-analysis. The pooled relative risk (RR) for LBW was 1.33 (95% CI: 1.12, 1.57) for mothers with the highest compared with the lowest level of caffeine intake during pregnancy, with significant heterogeneity across studies (I2 = 49.3%, P = 0.032). The pooled RR was 1.07 (95% CI: 1.02, 1.11) for each 100 mg/day increase of caffeine intake. The pooled RR for childhood overweight and obesity was 1.39 (95% CI: 1.15, 1.69) for mothers with the highest compared with the lowest level of caffeine intake during pregnancy. No significant heterogeneity across studies was detected (I2 = 38.9%, P = 0.179). The pooled RR was 1.31 (95% CI: 1.11, 1.55) for each 100 mg/day increase of caffeine intake. No evidence of publication bias was indicated. CONCLUSIONS Maternal caffeine intake during pregnancy is associated with higher risk of LBW and childhood overweight and obesity. Further studies may focus on investigating the potential mechanisms before the recommendation of complete avoidance of caffeine intake during pregnancy.
Collapse
Affiliation(s)
- Feng Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol Metab 2020; 31:218-227. [PMID: 31818639 PMCID: PMC7035149 DOI: 10.1016/j.tem.2019.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have revealed that caffeine consumption during pregnancy is associated with adverse gestational outcomes, yet the underlying mechanisms remain obscure. Recent animal studies with physiologically relevant dosages have begun to dissect adverse effects of caffeine during pregnancy with respect to oviduct contractility, embryo development, uterine receptivity, and placentation that jointly contribute to pregnancy complications. Interestingly, caffeine's effects are highly variable between individual animals under well-controlled experimental settings, suggesting the possibility of epigenetic regulation of these phenotypes, in addition to genetic variants. Moreover, caffeine exposure during sensitive windows of pregnancy may induce epigenetic changes in the developing fetus or even the germ cells to cause adult-onset diseases in subsequent generations. We discuss these research frontiers in light of emerging data.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Valodara AM, SR KJ. Sexual Dimorphism in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2020; 20:1154-1166. [DOI: 10.2174/1389200220666191021094906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Background:Sex and gender-based differences are observed well beyond the sex organs and affect several physiological and biochemical processes involved in the metabolism of drug molecules. It is essential to understand not only the sex and gender-based differences in the metabolism of the drug but also the molecular mechanisms involved in the regulation of drug metabolism for avoiding sex-related adverse effects of drugs in the human.Method:The articles on the sex and gender-based differences in the metabolism of drug molecules were retrieved from the Pub Med database. The articles were classified into the metabolism of the drug molecule, gene expression regulation of drug-metabolizing enzymes, the effect of sex hormones on the metabolism of drug, expression of drugmetabolizing enzymes, etc.Result:Several drug molecules are known, which are metabolized differently in males and females. These differences in metabolism may be due to the genomic and non-genomic action of sex hormones. Several other drug molecules still require further evaluation at the molecular level regarding the sex and gender-based differences in their metabolism. Attention is also required at the effect of signaling cascades associated with the metabolism of drug molecules.Conclusion:Sex and gender-based differences in the metabolism of drugs exist at various levels and it may be due to the genomic and non-genomic action of sex hormones. Detailed understanding of the effect of sex and related condition on the metabolism of drug molecules will help clinicians to determine the effective therapeutic doses of drugs dependingon the condition of patient and disease.
Collapse
Affiliation(s)
- Askhi M. Valodara
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar SR
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
21
|
Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X. New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 2020; 10:91-104. [PMID: 31998606 PMCID: PMC6984740 DOI: 10.1016/j.apsb.2019.11.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
Collapse
Key Words
- CYP, cytochrome P450
- CYP1A
- EOAs, cis-epoxyoctadecenoics
- Endogenous substances
- FSH, follicle stimulating hormone
- HODEs, hydroxyoctadecdienoic acids
- IQ, 2-amino-3-methylimidazo [4,5-f] quinoline
- KO, knockout
- LIF/STAT3, inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3
- Metabolism and disease
- PhIP, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine
- SNPs
- SNPs, single nucleotide polymorphisms
- WT, wild type
- Xenobiotics
- t-RA, all-trans-retinoic acid
- t-ROH, all-trans-retinol
Collapse
Affiliation(s)
- Jian Lu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Qian J, Zhang Y, Qu Y, Zhang L, Shi J, Zhang X, Liu S, Kim BH, Hwang SJ, Zhou T, Chen Q, Ward SM, Duan E, Zhang Y. Caffeine consumption during early pregnancy impairs oviductal embryo transport, embryonic development and uterine receptivity in mice. Biol Reprod 2019; 99:1266-1275. [PMID: 29982366 DOI: 10.1093/biolre/ioy155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Caffeine consumption has been widely used as a central nervous system stimulant. Epidemiological studies, however, have suggested that maternal caffeine exposure during pregnancy is associated with increased abnormalities, including decreased fertility, delayed conception, early spontaneous abortions, and low birth weight. The mechanisms underlying the negative outcomes of caffeine consumption, particularly during early pregnancy, remain unclear. In present study, we found that pregnant mice treated with moderate (5 mg/kg) or high (30 mg/kg) dosage of caffeine (intraperitoneally or orally) during preimplantation resulted in retention of early embryos in the oviduct, defective embryonic development, and impaired embryo implantation. Transferring normal blastocysts into the uteri of caffeine-treated pseudopregnant females also showed abnormal embryo implantation, thus indicating impaired uterine receptivity by caffeine administration. The remaining embryos that managed to implant after caffeine treatment also showed increased embryo resorption rate and abnormal development at mid-term stage, and decreased weight at birth. In addition to a dose-dependent effect, significant variations between individual mice under the same caffeine dosage were also observed, suggesting different sensitivities to caffeine, similar to that observed in human populations. Collectively, our data revealed that caffeine exposure during early pregnancy impaired oviductal embryo transport, embryonic development, and uterine receptivity, which are responsible for abnormal implantation and pregnancy loss. The study raises the concern of caffeine consumption during early stages of pregnancy.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Xudong Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shichao Liu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Bo Hyun Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Kobayashi S, Sata F, Murata K, Saijo Y, Araki A, Miyashita C, Itoh S, Minatoya M, Yamazaki K, Ait Bamai Y, Kishi R. Dose-dependent associations between prenatal caffeine consumption and small for gestational age, preterm birth, and reduced birthweight in the Japan Environment and Children's Study. Paediatr Perinat Epidemiol 2019; 33:185-194. [PMID: 31020683 DOI: 10.1111/ppe.12551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Few previous studies have investigated the association between prenatal caffeine intake and birth size (small for gestational age [SGA], preterm birth, and birthweight Z-score) in Japan. OBJECTIVES We examined the dose-dependency of this association (prenatal caffeine consumption and birth size) as part of the Japan Environment and Children's Study. METHODS A prospective birth cohort included 94 876 fetuses in Japan. Participants were enrolled between January 2011 and March 2014. Adjusted multiple linear regression and Cox regression models were used to examine the association between prenatal caffeine levels and infant birth size. RESULTS The median estimated caffeine consumption during pregnancy was 125.5 mg/day, as determined by self-administered questionnaires. There were 7252 SGA infants (7.6%) and 4281 preterm birth infants (4.5%). Compared with infants of mothers whose caffeine consumption during pregnancy was in the lowest quartile (4.2 to <86.4 mg/day), infants of mothers whose caffeine consumption was in the highest quartile 4 (205.5-5080.0 mg/day) were at an increased risk of SGA (relative risk [RR] 1.18, 95% confidence interval [CI] 1.10, 1.27), and at an increased risk of preterm birth at the second trimester of gestation (RR 1.94, 95% CI 1.12, 3.37), with a 0.32-day reduction in gestational age (95% CI -0.52, -0.12) and with a 0.07 reduction in birthweight Z-score observed (95% CI -0.09, -0.05). CONCLUSIONS Prenatal caffeine consumption was associated with birth size. However, as the association between prenatal caffeine consumption and birth size was likely confounded by unpredicted potential factors, our confidence in the true causality of the association is moderate.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.,Health Center, Chuo University, Tokyo, Japan
| | - Katsuyuki Murata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasuaki Saijo
- Department of Social Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
24
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
25
|
Caffeine Intake During Pregnancy and Neonatal Anthropometric Parameters. Nutrients 2019; 11:nu11040806. [PMID: 30970673 PMCID: PMC6520888 DOI: 10.3390/nu11040806] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 11/17/2022] Open
Abstract
Caffeine is a psychoactive substance that may affect the normal course of pregnancy, therefore its intake during that time should not exceed 200 mg/day. The aim of this study was to evaluate caffeine intake among pregnant women from the Warsaw region. The study was conducted among 100 pregnant women who delivered at the Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw. Caffeine intake from coffee, tea, and energy drinks was measured using a questionnaire. Direct interviewing was used, with all interviews conducted by the same dietitian. Multiple regression analysis was used to investigate the relationship between caffeine intake and anthropometric measurements of the newborns. Mean caffeine intake among pregnant women was 68 ± 51 mg/day. Only 2% of the respondents exceeded the safe dose of 200 mg. Tea (mostly black) was the source of 63% of all caffeine. No relationships were found between caffeine intake and neonatal weight, length, or head and chest circumference (p > 0.05). Caffeine intake in our study population was relatively low and did not negatively affect fetal growth.
Collapse
|
26
|
R G A. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicol Res (Camb) 2019; 8:196-205. [PMID: 30997021 PMCID: PMC6415617 DOI: 10.1039/c8tx00227d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
The objective of this examination was to explore the impact of gestational caffeine (1,3,7-trimethylxanthine) exposure on the maternofetal thyroid axis and fetal thyroid-cytokine communications during gestation. Pregnant rats (Rattus norvegicus) were intraperitoneally administered caffeine (120 or 150 mg kg-1) from gestation day (GD) 1 to 20. Both doses of caffeine resulted in maternal hyperthyroidism, whereas the elevation in the concentration of serum free triiodothyronine (FT3) and free thyroxine (FT4) was related to a depletion in the level of TSH at GD 20. Maternal body weight gain and food consumption were markedly increased, while fetal body weight was significantly reduced. These alterations caused fetal hypothyroidism and several pathological lesions in the fetal thyroid gland including a vacuolar colloid, destructive degeneration, atrophy and hyperplasia at embryonic day (ED) 20. The abnormalities in the fetal thyroid gland seemed to depend on the activation of caspase-3, Bcl-2, BAX, Cox2, and NF-κB mRNA expression. Both maternal caffeine doses caused a marked attenuation in the values of fetal serum GH, IGF-II, VEGF, TGF-β, TNF-α, IL-1β, IL-6, leptin and MCP-1, and a noticeable elevation in the value of fetal serum adiponectin at ED 20. Thus, gestational caffeine exposure might disrupt the fetal thyroid-cytokine axis.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology , Zoology Department , Faculty of Science , Beni-Suef University , Beni-Suef , Egypt . ;
| |
Collapse
|
27
|
Kishi R, Araki A, Miyashita C, Itoh S, Minatoya M, Kobayashi S, Yamazaki K, Ait Bamai Y, Miura R, Tamura N. [Importance of Two Birth Cohorts (n=20,926 and n=514): 15 Years' Experience of the Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy]. Nihon Eiseigaku Zasshi 2018; 73:164-177. [PMID: 29848869 DOI: 10.1265/jjh.73.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since "Our Stolen Future" by Theo Colborn was published in 1996, global interest on the impact of chemical substances, such as the endocrine-disrupting action of chemicals, has increased. In Japan, "The Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy" was launched in 2001. It was a model of Japan Environment and Children's Study of the Ministry of the Environment. In a large-scale, Hokkaido cohort, we obtained the consent of 20,926 mothers at the organogenesis stage with the cooperation of 37 obstetrics clinics in Hokkaido. We tracked the effects of endocrine disruptors on developmental disorders. In a small-scale Sapporo cohort, we observed in detail the neuropsychiatric development of children with the consent of 514 mothers in their late pregnancy. We examined how prenatal exposure to low concentrations of environmental chemicals affect the development of organs and the postnatal development of children. Maternal exposure to POPs, such as PCB/dioxins and perfluorinated alkyl substances, has affected not only children's birth size, thyroid functions, and sex hormone levels, but also postnatal neurodevelopment, infection, and allergy among others. The associations of short-half-life substances, such as DEHP and BPA, with obesity, ASD, and ADHD have been investigated. Gene-environment interactions have been found for smoking, caffeine, folic acid, and PCB/dioxin. In 2015, our center was officially designated as the WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, and we continue to the contribute to the global perspectives of child health.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Atsuko Araki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sachiko Itoh
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Machiko Minatoya
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Ryu Miura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Naomi Tamura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| |
Collapse
|
28
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|