1
|
Li X, Sun H, Zhang L, Liang H, Zhang B, Yang J, Peng X, Sun J, Zhou Y, Zhai M, Jiang L, Zhu H, Duan W. GDF15 attenuates sepsis-induced myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the SOCS1/GPX4 signaling pathway. Eur J Pharmacol 2024; 982:176894. [PMID: 39147013 DOI: 10.1016/j.ejphar.2024.176894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.
Collapse
Affiliation(s)
- Xiayun Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - He Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China; Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, 856100, China
| | - Jiachang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Xiangyan Peng
- School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jingwei Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Yang Zhou
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Sun H, Meng Y, Yao L, Du S, Li Y, Zhou Q, Liu Y, Dian Y, Sun Y, Wang X, Liang X, Deng G, Chen X, Zeng F. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm (Beijing) 2024; 5:e684. [PMID: 39135915 PMCID: PMC11318338 DOI: 10.1002/mco2.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Metastasis is a major contributing factor that affects the prognosis of melanoma patients. Nevertheless, the underlying molecular mechanisms involved in melanoma metastasis are not yet entirely understood. Here, we identified ubiquitin-specific protease 22 (USP22) as a pro-oncogenic protein in melanoma through screening the survival profiles of 52 ubiquitin-specific proteases (USPs). USP22 demonstrates a strong association with poor clinical outcomes and is significantly overexpressed in melanoma. Ablation of USP22 expression remarkably attenuates melanoma migration, invasion, and epithelial-mesenchymal transition in vitro and suppresses melanoma metastasis in vivo. Mechanistically, USP22 controls melanoma metastasis through the SIRT1/PTEN/PI3K pathway. In addition, we conducted an United States Food and Drug Administration-approved drug library screening and identified topotecan as a clinically applicable USP22-targeting molecule by promoting proteasomal degradation of USP22. Finally, we found that both pharmacological and genetic silence of USP22 sensitize RSL3-induced ferroptosis through suppressing the PI3K/Akt/mTOR pathway and its downstream SCD, and ferroptosis inhibitor could partly rescued the decreased lung metastasis by topotecan in vivo. Overall, our findings reveal a prometastatic role of USP22 and identify topotecan as a potent USP22-targeting drug to limit melanoma metastasis.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
- Department of Breast ReconstructionTianjin Medical UniversityCancer Institute and HospitalTianjinChina
| | - Yu Meng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Lei Yao
- Department of Liver SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Songtao Du
- Department of Colorectal Surgical OncologyThe Tumor Hospital of Harbin Medical UniversityHarbinChina
| | - Yayun Li
- Department of DermatologyThe Third Xiangya Hospital Central South UniversityChangshaChina
| | - Qian Zhou
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yihuang Liu
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yating Dian
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yuming Sun
- Department of Plastic and Cosmetic SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiaomin Wang
- Department of Breast SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiao‐wei Liang
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Guangtong Deng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Furong Zeng
- Department of OncologyXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
3
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
4
|
Cazzato G, Ingravallo G, Ribatti D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers (Basel) 2024; 16:1794. [PMID: 38791873 PMCID: PMC11120419 DOI: 10.3390/cancers16101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
5
|
Zhang Q, Wu Q, Huan XJ, Song SS, Bao XB, Miao ZH, Wang YQ. Co-inhibition of BET and NAE enhances BIM-dependent apoptosis with augmented cancer therapeutic efficacy. Biochem Pharmacol 2024; 223:116198. [PMID: 38588830 DOI: 10.1016/j.bcp.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Tan HB, Liu YS, Zhou JY, Cao M, Lei T, Ren SY, Lin CQ, Yang YF, Hu ZL, Xu ZG, Tang DY, Chen ZZ, Qu XY. Tandem Vinylogous Aldol and Intramolecular [2 + 2] Cycloaddition toward Benzocyclobutenes by UV Light Photocatalysis. Org Lett 2024; 26:3304-3309. [PMID: 38587334 DOI: 10.1021/acs.orglett.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Hong-Bo Tan
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Ying-Shan Liu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia-Ying Zhou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Man Cao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Lei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Si-Ying Ren
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chang-Qiu Lin
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yi-Fan Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhang-Liang Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xian-You Qu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| |
Collapse
|
7
|
Jin L, Dong L, Pei S, Chen X, Kuang Y, Chen W, Zhu W, Yin M. A BET inhibitor, NHWD-870, can downregulate dendritic cells maturation via the IRF7-mediated signaling pathway to ameliorate imiquimod-induced psoriasis-like murine skin inflammation. Eur J Pharmacol 2024; 968:176382. [PMID: 38311277 DOI: 10.1016/j.ejphar.2024.176382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1β, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Liang Dong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Shiyao Pei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China; Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| |
Collapse
|
8
|
Sobczuk P, Cholewiński M, Rutkowski P. Recent advances in tyrosine kinase inhibitors VEGFR 1-3 for the treatment of advanced metastatic melanoma. Expert Opin Pharmacother 2024; 25:501-510. [PMID: 38607407 DOI: 10.1080/14656566.2024.2342403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Increasing evidence from preclinical and clinical studies suggests the role of vascular endothelial growth factor (VEGF) signaling in melanoma progression, response to therapy, and overall survival. Moreover, the discovery of the potential involvement of the VEGF pathway in resistance to immunotherapy has led to new clinical trials with VEGFR inhibitors. AREAS COVERED We have reviewed recent literature, mainly published within the last 5 years, on VEGFR-targeted treatments for advanced melanoma, including mucosal, acral, and uveal melanoma. The VEGFR inhibitors were used as a single therapy or combined with either immunotherapy or chemotherapy, and they were employed in treatment for KIT-mutated cutaneous melanoma and for patients with brain metastases. EXPERT OPINION Trials involving monotherapy have been unsuccessful in demonstrating meaningful efficacy. Despite some activity, the combination of VEGFR-targeting tyrosine kinase inhibitors (TKIs) with immune checkpoint inhibitors (ICI) in patients with ICI-resistant melanoma, the combination did not significantly improve outcomes compared to anti-PD-1 monotherapy in the first-line settings. On the contrary, some patients with mucosal, acral or KIT-mutant melanoma may benefit from TKI-based therapies. Further studies focused on biomarker discovery and randomized trials are necessary to better understand the role of VEGFR1-3 as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research institute of Oncology in Warsaw, Warsaw, Poland
| | - Michał Cholewiński
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research institute of Oncology in Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Youssry I, Samy RM, AbdelMohsen M, Salama NM. The association between growth differentiation factor-15, erythroferrone, and iron status in thalassemic patients. Pediatr Res 2024; 95:1095-1100. [PMID: 37464096 PMCID: PMC10920194 DOI: 10.1038/s41390-023-02729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Iron overload can result in grave consequences in thalassemic patients, despite the availability of iron chelators. Therefore, alternative pathways aiming to reduce iron toxicity are currently investigated. Among which, reduction of iron absorption through control of hepcidin production appears to be promising. In this study, we investigated growth differentiation factor-15 (GDF15) and erythroferrone (ERFE) as potential suppressors of hepcidin. METHODS This cross-sectional study was conducted on 61 thalassemic patients and 60 healthy controls. The frequency of GDF15 gene polymorphism (rs4808793) (-3148C/G), serum level of GDF15 and erythroferrone were measured and correlated with those of hepcidin and serum ferritin. RESULTS The presence of GDF15 gene mutations were significantly higher in the patients' group compared to controls (P value 0.035). Also, thalassemia patients had significantly higher levels of GDF15 and ERFE and lower hepcidin levels than controls (P value < 0.001). Serum hepcidin level showed significantly negative correlations with GDF15, ERFE, reticulocyte count, LDH level, and serum ferritin. Contrarily, it had highly significant positive correlation with hemoglobin. CONCLUSIONS High level of GDF15 and/or ERFE may inhibit hepcidin production and increase iron load in patients with thalassemia; therefore, medications that suppress their actions may provide new therapeutic potentials for iron toxicity. IMPACT Iron overload continues to be a major contributor to high morbidity and mortality in patients with thalassemia. New strategies together with proper chelation, need to be developed to minimize the effect of iron toxicity. Growth differentiation factor-15 (GDF15) and erythroferrone (ERFE) inhibit hepcidin production and increase iron levels in conditions with ineffective erythropoiesis. Medications that suppress the production or interfere with the action of GDF15 or ERFE may represent new therapeutic potentials for iron toxicity. Prevention of iron toxicity will significantly reduce morbidity and mortality and improve the quality of life of thalassemia patients.
Collapse
Affiliation(s)
- Ilham Youssry
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M Samy
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Niveen M Salama
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
11
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Meng Y, Sun HY, He Y, Zhou Q, Liu YH, Su H, Yin MZ, Zeng FR, Chen X, Deng GT. BET inhibitors potentiate melanoma ferroptosis and immunotherapy through AKR1C2 inhibition. Mil Med Res 2023; 10:61. [PMID: 38049916 PMCID: PMC10694977 DOI: 10.1186/s40779-023-00497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Hui-Yan Sun
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Department of Breast Reconstruction, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Hui Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Ming-Zhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Fu-Rong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
| |
Collapse
|
13
|
Nasir I, McGuinness C, Poh AR, Ernst M, Darcy PK, Britt KL. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol 2023; 44:971-985. [PMID: 37995659 DOI: 10.1016/j.it.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Collapse
Affiliation(s)
- Ibraheem Nasir
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Conor McGuinness
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia; Cancer Immunology Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
15
|
Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, Park KS, Park R, Lee IK, Shong M, Houtkooper RH, Ryu D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 2023; 55:1595-1619. [PMID: 37612409 PMCID: PMC10474116 DOI: 10.1038/s12276-023-01046-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 08/25/2023] Open
Abstract
Mitochondria, ubiquitous double-membrane-bound organelles, regulate energy production, support cellular activities, harbor metabolic pathways, and, paradoxically, mediate cell fate. Evidence has shown mitochondria as points of convergence for diverse cell death-inducing pathways that trigger the various mechanisms underlying apoptotic and nonapoptotic programmed cell death. Thus, dysfunctional cellular pathways eventually lead or contribute to various age-related diseases, such as neurodegenerative, cardiovascular and metabolic diseases. Thus, mitochondrion-associated programmed cell death-based treatments show great therapeutic potential, providing novel insights in clinical trials. This review discusses mitochondrial quality control networks with activity triggered by stimuli and that maintain cellular homeostasis via mitohormesis, the mitochondrial unfolded protein response, and mitophagy. The review also presents details on various forms of mitochondria-associated programmed cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and paraptosis, and highlights their involvement in age-related disease pathogenesis, collectively suggesting therapeutic directions for further research.
Collapse
Affiliation(s)
- Thanh T Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Thu Ha Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Geneva, 1205, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
16
|
Winter LM, Reinhardt D, Schatter A, Tissen V, Wiora H, Gerlach D, Tontsch-Grunt U, Colbatzky F, Stierstorfer B, Yun SW. Molecular basis of GDF15 induction and suppression by drugs in cardiomyocytes and cancer cells toward precision medicine. Sci Rep 2023; 13:12061. [PMID: 37495707 PMCID: PMC10372009 DOI: 10.1038/s41598-023-38450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
GDF15 has recently emerged as a key driver of the development of various disease conditions including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation in human cardiomyocytes and cancer cell lines and analyzed in-house and public gene signature databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug- and cell type-specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of anticancer drugs and patients for precision medicine.
Collapse
Affiliation(s)
- Lisa-Maria Winter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Diana Reinhardt
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Ariane Schatter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Vivien Tissen
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Heike Wiora
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Daniel Gerlach
- Boehringer Ingelheim RCV, GmbH & Co KG, 1120, Vienna, Austria
| | | | - Florian Colbatzky
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Birgit Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany.
| |
Collapse
|