1
|
Zhang Y, Mei H, Chang R, Li C, Zhang H, Zhang J. The associations among maternal gestational weight gain, cord blood DNA methylation, and offspring childhood high BMI. Obesity (Silver Spring) 2025; 33:766-776. [PMID: 40108365 DOI: 10.1002/oby.24257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE The objective of this study was to explore the associations among maternal gestational weight gain (GWG), cord blood DNA methylation, and high BMI. METHODS Using the Illumina Infinium MethylationEPIC Bead Chip, GWG-related methylation sites were screened in 40 cord blood samples using a cohort design, and the association of these sites with children's BMI status at 3 years was examined. Sites simultaneously related to GWG and children's BMI were validated in an external dataset. The mediation effect of target differential methylation probes in the association between GWG and children's BMI was also explored. RESULTS We identified 66 GWG-related differential methylation probes in cord blood, and four sites, including cg09973771 (SNTG2), cg00254258 (PRDM16), cg02672830 (MCPH1), and cg15424377, were found to be associated with children's BMI at age 3 years. The mediating effect of cord blood DNA methylation was not detected in the association between GWG and children's high BMI status. Out of the four sites screened, methylation level of site cg09973771 (SNTG2) in peripheral blood showed nominal significant differences among children with different BMI statuses at age 3 years. CONCLUSIONS Maternal GWG and childhood BMI status at age 3 years were associated with newborn cord blood DNA methylation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixia Chang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhong Zhang
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Inkster AM, Matthews AM, Phung TN, Plaisier SB, Wilson MA, Brown CJ, Robinson WP. Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Biol Sex Differ 2025; 16:18. [PMID: 40038810 DOI: 10.1186/s13293-025-00696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The human placenta is distinct from most organs due to its uniquely low-methylated genome. DNA methylation (DNAme) is particularly depleted in the placenta at partially methylated domains and on the inactive X chromosome (Xi) in XX samples. While Xi DNAme is known to be critical for X-chromosome inactivation (XCI) in other tissues, its role in the placenta remains unclear. Understanding X-linked DNAme variation in the placenta may provide insights into XCI and have implications for prenatal development and phenotypic sex differences. METHODS DNAme data were analyzed from over 350 human placental (chorionic villus) samples, along with samples from cord blood, amnion and chorion placental membranes, and fetal somatic tissues. We characterized X chromosome DNAme variation in the placenta relative to sample variables including cell composition, ancestry, maternal age, placental weight, and fetal birth weight, and compared these patterns to other tissues. We also evaluated the relationship between X-linked DNAme and previously reported XCI gene expression status in placenta. RESULTS Our findings confirm that the placenta exhibits significant depletion of DNAme on the Xi compared to other tissues. Additionally, we observe that X chromosome DNAme profiles in the placenta are influenced by cell composition, particularly trophoblast proportion, with minimal DNAme variation across gestation. Notably, low promoter DNAme is observed at most genes on the Xi regardless of XCI status, challenging known associations in somatic tissues between low promoter DNAme and escape from XCI. CONCLUSIONS This study provides evidence that the human placenta has a distinct Xi DNAme landscape, which may inform our understanding of sex differences during prenatal development. Future research should explore the mechanisms underlying the placenta's unique X-linked DNAme profile, and the factors involved in placental XCI maintenance.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada.
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 221 Wesbrook Mall, Vancouver, BC, V6T 1Z7, Canada
| | - Tanya N Phung
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Seema B Plaisier
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| |
Collapse
|
3
|
Louwen F, Kreis NN, Ritter A, Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch Gynecol Obstet 2024; 309:2279-2288. [PMID: 38494514 PMCID: PMC11147848 DOI: 10.1007/s00404-024-07462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor outcomes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.
Collapse
Affiliation(s)
- Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
4
|
Denisova EI, Makarova EN. Influence of leptin administration to pregnant mice on fetal gene expression and adaptation to sweet and fatty food in adult offspring of different sexes. Vavilovskii Zhurnal Genet Selektsii 2024; 28:288-298. [PMID: 38952707 PMCID: PMC11214896 DOI: 10.18699/vjgb-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 07/03/2024] Open
Abstract
Elevated leptin in pregnant mice improves metabolism in offspring fed high-calorie diet and its influence may be sex-specific. Molecular mechanisms mediating leptin programming action are unknown. We aimed to investigate programming actions of maternal leptin on the signaling function of the placenta and fetal liver and on adaptation to high-calorie diet in male and female offspring. Female C57BL/6J mice received leptin injections in mid-pregnancy. Gene expression was assessed in placentas and in the fetal brain and liver at the end of pregnancy. Metabolic parameters and gene expression in the liver, brown fat and hypothalamus were assessed in adult male and female offspring that had consumed sweet and fatty diet (SFD: chow, lard, sweet biscuits) for 2 weeks. Females had lower blood levels of leptin, glucose, triglycerides and cholesterol than males. Consuming SFD, females had increased Ucp1 expression in brown fat, while males had accumulated fat, decreased blood triglycerides and liver Fasn expression. Leptin administration to mothers increased Igf1 and Dnmt3b expression in fetal liver, decreased post-weaning growth rate, and increased hypothalamic Crh expression in response to SFD in both sexes. Only in male offspring this administration decreased expression of Fasn and Gck in the mature liver, increased fat mass, blood levels of glucose, triglycerides and cholesterol and Dmnt3a expression in the fetal liver. The results suggest that the influence of maternal leptin on the expression of genes encoding growth factors and DNA methyltransferases in the fetal liver may mediate its programming effect on offspring metabolic phenotypes.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Gómez-Vilarrubla A, Mas-Parés B, Carreras-Badosa G, Bonmatí-Santané A, Martínez-Calcerrada JM, Niubó-Pallàs M, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. DNA Methylation Signatures in Paired Placenta and Umbilical Cord Samples: Relationship with Maternal Pregestational Body Mass Index and Offspring Metabolic Outcomes. Biomedicines 2024; 12:301. [PMID: 38397903 PMCID: PMC10886657 DOI: 10.3390/biomedicines12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
An epigenomic approach was used to study the impact of maternal pregestational body mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the offspring's metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical cord samples. The differentially methylated CpGs associated with maternal pregestational BMI were identified and the metabolic pathways and the potentially related diseases affected by their annotated genes were determined. Two top differentially methylated CpGs were studied in 90 additional samples and the relationship with the offspring's metabolic phenotype was determined. The results showed that maternal pregestational BMI is associated with the methylation of genes involved in endocrine and developmental pathways with potential effects on type 2 diabetes and obesity. The methylation and expression of HADHA and SLC2A8 genes in placenta and umbilical cord were related to several metabolic parameters in the offspring at 6 years (weight SDS, height SDS, BMI SDS, Δ BW-BMI SDS, FM SDS, waist, SBP, TG, HOMA-IR, perirenal fat; all p < 0.05). Our data suggest that epigenetic analysis in placenta and umbilical cord may be useful for identifying individual vulnerability to later metabolic diseases.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | | | | | - Maria Niubó-Pallàs
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium;
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children’s Hospital, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III (ISCIII), 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
6
|
Li S, Spitz N, Ghantous A, Abrishamcar S, Reimann B, Marques I, Silver MJ, Aguilar-Lacasaña S, Kitaba N, Rezwan FI, Röder S, Sirignano L, Tuhkanen J, Mancano G, Sharp GC, Metayer C, Morimoto L, Stein DJ, Zar HJ, Alfano R, Nawrot T, Wang C, Kajantie E, Keikkala E, Mustaniemi S, Ronkainen J, Sebert S, Silva W, Vääräsmäki M, Jaddoe VWV, Bernstein RM, Prentice AM, Cosin-Tomas M, Dwyer T, Håberg SE, Herceg Z, Magnus MC, Munthe-Kaas MC, Page CM, Völker M, Gilles M, Send T, Witt S, Zillich L, Gagliardi L, Richiardi L, Czamara D, Räikkönen K, Chatzi L, Vafeiadi M, Arshad SH, Ewart S, Plusquin M, Felix JF, Moore SE, Vrijheid M, Holloway JW, Karmaus W, Herberth G, Zenclussen A, Streit F, Lahti J, Hüls A, Hoang TT, London SJ, Wiemels JL. A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation. Commun Biol 2024; 7:66. [PMID: 38195839 PMCID: PMC10776586 DOI: 10.1038/s42003-023-05698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.
Collapse
Affiliation(s)
- Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Natalia Spitz
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brigitte Reimann
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Irene Marques
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Negusse Kitaba
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Giulia Mancano
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Rondebosch, South Africa
| | - Heather J Zar
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Rondebosch, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Rossella Alfano
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Eero Kajantie
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Pediatric Research Centre, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Elina Keikkala
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Sanna Mustaniemi
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wnurinham Silva
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marja Vääräsmäki
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robin M Bernstein
- Department of Anthropology and Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Terence Dwyer
- Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Siri Eldevik Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maja Völker
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tabea Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Luigi Gagliardi
- Woman and Child Health Department, Ospedale Versilia, AUSL Toscana Nord Ovest, Pisa, Italy
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy
| | - Darina Czamara
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC. University of Southern California, Los Angeles, CA, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michelle Plusquin
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Ana Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
7
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
8
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GAS, Ng JWY, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. Epigenetics Chromatin 2023; 16:37. [PMID: 37794499 PMCID: PMC10548571 DOI: 10.1186/s13072-023-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. RESULTS Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry-informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, as well as over very long placental processing times. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. CONCLUSIONS This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust approach to compare variables across different datasets. Finally, we present a general framework for the processing and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.
Collapse
Affiliation(s)
- A Khan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Center, Toronto, ON, M5G 2C4, Canada
| | - A M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - M S Peñaherrera
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - S King
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, QC, H4H 1R3, Canada
| | - S Kildea
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, 4000, Australia
| | - T F Oberlander
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - D M Olson
- Department of Obstetrics and Gynecology, University of Alberta, 220 HMRC, Edmonton, AB, T6G 2S2, Canada
| | - C Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network, Laval, QC, H7V 1B7, Canada
| | - U Brain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - E O Beraldo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - A G Beristain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - V L Clifton
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - G F Del Gobbo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - W L Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - G A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - J W Y Ng
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - E M Price
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - J M Schuetz
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - V Yuan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - É Portales-Casamar
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| | - W P Robinson
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
9
|
Mas-Parés B, Xargay-Torrent S, Gómez-Vilarrubla A, Carreras-Badosa G, Prats-Puig A, De Zegher F, Ibáñez L, Bassols J, López-Bermejo A. Gestational Weight Gain Relates to DNA Methylation in Umbilical Cord, Which, In Turn, Associates with Offspring Obesity-Related Parameters. Nutrients 2023; 15:3175. [PMID: 37513594 PMCID: PMC10386148 DOI: 10.3390/nu15143175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Excessive gestational weight gain (GWG) has a negative impact on offspring's health. Epigenetic modifications mediate these associations by causing changes in gene expression. We studied the association between GWG and DNA methylation in umbilical cord tissue; and determined whether the DNA methylation and the expression of corresponding annotated genes were associated with obesity-related parameters in offspring at 6 years of age. The methylated CpG sites (CpGs) associated with GWG were identified in umbilical cord tissue by genome-wide DNA methylation (n = 24). Twelve top CpGs were validated in a wider sample by pyrosequencing (n = 87), and the expression of their 5 annotated genes (SETD8, TMEM214, SLIT3, RPTOR, and HOXC8) was assessed by RT-PCR. Pyrosequencing results validated the association of SETD8, SLIT3, and RPTOR methylation with GWG and showed that higher levels of SETD8 and RPTOR methylation and lower levels of SLIT3 methylation relate to a higher risk of obesity in the offspring. The association of SETD8 and SLIT3 gene expression with offspring outcomes paralleled the association of methylation levels in opposite directions. Epigenetic changes in the umbilical cord tissue could explain, in part, the relationship between GWG and offspring obesity risk and be early biomarkers for the prevention of overweight and obesity in childhood.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, 17190 Salt, Spain
| | - Francis De Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| |
Collapse
|
10
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GA, Ng JW, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. RESEARCH SQUARE 2023:rs.3.rs-3069705. [PMID: 37461679 PMCID: PMC10350117 DOI: 10.21203/rs.3.rs-3069705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background : Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. Results : Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, but reassuringly were robust to placental processing time. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. Conclusions : This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. Further, we demonstrate that estimating epiphenotype variables from the DNAme data itself, when possible, provides both an independent check of clinically-obtained data and can provide a robust approach to compare variables across different datasets.
Collapse
Affiliation(s)
- Almas Khan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | | | | | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network
| | - Ursula Brain
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | - Wan L Lam
- British Columbia Cancer Research Centre
| | | | | | | | | | - Victor Yuan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | |
Collapse
|
11
|
Liu YH, Lin XM, Li DZ. Precision medicine based on circulating cell-free DNA in maternal blood: there is still a long way to go. Am J Obstet Gynecol 2023; 228:247-248. [PMID: 36183776 DOI: 10.1016/j.ajog.2022.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Yan-Hui Liu
- Prenatal Diagnostic Center, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Tesfaye M, Wu J, Biedrzycki RJ, Grantz KL, Joseph P, Tekola-Ayele F. Prenatal social support in low-risk pregnancy shapes placental epigenome. BMC Med 2023; 21:12. [PMID: 36617561 PMCID: PMC9827682 DOI: 10.1186/s12916-022-02701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Poor social support during pregnancy has been linked to inflammation and adverse pregnancy and childhood health outcomes. Placental epigenetic alterations may underlie these links but are still unknown in humans. METHODS In a cohort of low-risk pregnant women (n = 301) from diverse ethnic backgrounds, social support was measured using the ENRICHD Social Support Inventory (ESSI) during the first trimester. Placental samples collected at delivery were analyzed for DNA methylation and gene expression using Illumina 450K Beadchip Array and RNA-seq, respectively. We examined association between maternal prenatal social support and DNA methylation in placenta. Associated cytosine-(phosphate)-guanine sites (CpGs) were further assessed for correlation with nearby gene expression in placenta. RESULTS The mean age (SD) of the women was 27.7 (5.3) years. The median (interquartile range) of ESSI scores was 24 (22-25). Prenatal social support was significantly associated with methylation level at seven CpGs (PFDR < 0.05). The methylation levels at two of the seven CpGs correlated with placental expression of VGF and ILVBL (PFDR < 0.05), genes known to be involved in neurodevelopment and energy metabolism. The genes annotated with the top 100 CpGs were enriched for pathways related to fetal growth, coagulation system, energy metabolism, and neurodevelopment. Sex-stratified analysis identified additional significant associations at nine CpGs in male-bearing pregnancies and 35 CpGs in female-bearing pregnancies. CONCLUSIONS The findings suggest that prenatal social support is linked to placental DNA methylation changes in a low-stress setting, including fetal sex-dependent epigenetic changes. Given the relevance of some of these changes in fetal neurodevelopmental outcomes, the findings signal important methylation targets for future research on molecular mechanisms of effect of the broader social environment on pregnancy and fetal outcomes. TRIAL REGISTRATION NCT00912132 ( ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Jing Wu
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA
| | - Paule Joseph
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA.
| |
Collapse
|
13
|
Fernandez-Jimenez N, Fore R, Cilleros-Portet A, Lepeule J, Perron P, Kvist T, Tian FY, Lesseur C, Binder AM, Lozano M, Martorell-Marugán J, Loke YJ, Bakulski KM, Zhu Y, Forhan A, Sammallahti S, Everson TM, Chen J, Michels KB, Belmonte T, Carmona-Sáez P, Halliday J, Daniele Fallin M, LaSalle JM, Tost J, Czamara D, Fernández MF, Gómez-Martín A, Craig JM, Gonzalez-Alzaga B, Schmidt RJ, Dou JF, Muggli E, Lacasaña M, Vrijheid M, Marsit CJ, Karagas MR, Räikkönen K, Bouchard L, Heude B, Santa-Marina L, Bustamante M, Hivert MF, Bilbao JR. A meta-analysis of pre-pregnancy maternal body mass index and placental DNA methylation identifies 27 CpG sites with implications for mother-child health. Commun Biol 2022; 5:1313. [PMID: 36446949 PMCID: PMC9709064 DOI: 10.1038/s42003-022-04267-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain
| | - Ruby Fore
- grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Ariadna Cilleros-Portet
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain
| | - Johanna Lepeule
- grid.418110.d0000 0004 0642 0153University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Patrice Perron
- grid.411172.00000 0001 0081 2808Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC Canada
| | - Tuomas Kvist
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Fu-Ying Tian
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA
| | - Corina Lesseur
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexandra M. Binder
- grid.410445.00000 0001 2188 0957Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA ,grid.19006.3e0000 0000 9632 6718Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Manuel Lozano
- grid.5338.d0000 0001 2173 938XEpidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain ,grid.5338.d0000 0001 2173 938XPreventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jordi Martorell-Marugán
- grid.4489.10000000121678994Department of Statistics and Operations Research, University of Granada, Granada, Spain ,grid.4489.10000000121678994Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Yuk J. Loke
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Kelly M. Bakulski
- grid.214458.e0000000086837370Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Yihui Zhu
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA USA
| | - Anne Forhan
- grid.508487.60000 0004 7885 7602Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Sara Sammallahti
- grid.5645.2000000040459992XDepartment of Child and Adolescent Psychiatry and Psychology, Erasmus MC Rotterdam, The Netherlands
| | - Todd M. Everson
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA USA
| | - Jia Chen
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Karin B. Michels
- grid.19006.3e0000 0000 9632 6718Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA ,grid.5963.9Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Thalia Belmonte
- grid.411342.10000 0004 1771 1175Health Research Institute of Asturias, ISPA and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pedro Carmona-Sáez
- grid.4489.10000000121678994Department of Statistics and Operations Research, University of Granada, Granada, Spain ,grid.4489.10000000121678994Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jane Halliday
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - M. Daniele Fallin
- grid.21107.350000 0001 2171 9311Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Janine M. LaSalle
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA USA
| | - Jorg Tost
- grid.418135.a0000 0004 0641 3404Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Darina Czamara
- grid.419548.50000 0000 9497 5095Max-Planck-Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Mariana F. Fernández
- grid.4489.10000000121678994University of Granada, Center for Biomedical Research (CIBM), Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Gómez-Martín
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Jeffrey M. Craig
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Beatriz Gonzalez-Alzaga
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Rebecca J. Schmidt
- grid.27860.3b0000 0004 1936 9684Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA USA
| | - John F. Dou
- grid.214458.e0000000086837370Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Evelyne Muggli
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Marina Lacasaña
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Martine Vrijheid
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.434607.20000 0004 1763 3517ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen J. Marsit
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA USA
| | - Margaret R. Karagas
- grid.86715.3d0000 0000 9064 6198Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC Canada
| | - Katri Räikkönen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Luigi Bouchard
- grid.86715.3d0000 0000 9064 6198Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC Canada ,grid.459278.50000 0004 4910 4652Department of Laboratory Medicine, CIUSSS du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Chicoutimi, QC Canada
| | - Barbara Heude
- grid.508487.60000 0004 7885 7602Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Loreto Santa-Marina
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.432380.eBiodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Basque Country Spain ,Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Basque Country Spain
| | - Mariona Bustamante
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.434607.20000 0004 1763 3517ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marie-France Hivert
- grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA ,grid.411172.00000 0001 0081 2808Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC Canada ,grid.32224.350000 0004 0386 9924Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Jose Ramon Bilbao
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain ,grid.512890.7CIBER of diabetes and associated metabolic disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
14
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
15
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
16
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Zhao D, Liu Y, Jia S, He Y, Wei X, Liu D, Ma W, Luo W, Gu H, Yuan Z. Influence of maternal obesity on the multi-omics profiles of the maternal body, gestational tissue, and offspring. Biomed Pharmacother 2022; 151:113103. [PMID: 35605294 DOI: 10.1016/j.biopha.2022.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epidemiological studies show that obesity during pregnancy affects more than half of the pregnancies in the developed countries and is associated with obstetric problems and poor outcomes. Obesity tends to increase the incidence of complications. Furthermore, the resulting offspring are also adversely affected. However, the molecular mechanisms of obesity leading to poor pregnancy outcomes remain unclear. Omics methods are used for genetic diagnosis and marker discovery. The aim of this review was to summarize the maternal and fetal pathophysiological alterations induced by gestational obesity,identified using multi-omics detection techniques, and to generalize the biological functions and potential mechanisms of the differentially expressed molecules.
Collapse
Affiliation(s)
- Duan Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
19
|
Zhao SK, Yeung EH, Ouidir M, Hinkle SN, Grantz KL, Mitro SD, Wu J, Stevens DR, Chatterjee S, Tekola-Ayele F, Zhang C. Recreational physical activity before and during pregnancy and placental DNA methylation-an epigenome-wide association study. Am J Clin Nutr 2022; 116:1168-1183. [PMID: 35771992 PMCID: PMC9535520 DOI: 10.1093/ajcn/nqac111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/22/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Physical activity (PA) prior to and during pregnancy may have intergenerational effects on offspring health through placental epigenetic modifications. We are unaware of epidemiologic studies on longitudinal PA and placental DNA methylation. OBJECTIVES We evaluated the association between PA before and during pregnancy and placental DNA methylation. METHODS Placental tissues were obtained at delivery and methylation was measured using HumanMethylation450 Beadchips for participants in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies-Singletons among 298 participants. Using the Pregnancy Physical Activity Questionnaire, women recalled periconception PA (past 12 mo) at 8-13 wk of gestation and PA since last visit at 4 follow-up visits at 16-22, 24-29, 30-33, and 34-37 wk. We conducted linear regression for associations of PA at each visit with methylation controlling for false discovery rate (FDR). Top 100 CpGs were queried for enrichment of functional pathways using Ingenuity Pathway Analysis. RESULTS Periconception PA was significantly associated with 1 CpG site. PA since last visit for visits 1-4 was associated with 2, 2, 8, and 0 CpGs (log fold changes ranging from -0.0319 to 0.0080, after controlling for FDR). The largest change in methylation occurred at a site in TIMP2 , which is known to encode a protein critical for vasodilation, placentation, and uterine expansion during pregnancy (log fold change: -0.05; 95% CI: -0.06, -0.03 per metabolic equivalent of task-h/wk at 30-33 wk). Most significantly enriched pathways include cardiac hypertrophy signaling, B-cell receptor signaling, and netrin signaling. Significant CpGs and enriched pathways varied by visit. CONCLUSIONS Recreational PA in the year prior and during pregnancy was associated with placental DNA methylation. The associated CpG sites varied based on timing of PA. If replicated, the findings may inform the mechanisms underlying the impacts of PA on placenta health. This study was registered at clinicaltrials.gov as NCT00912132.
Collapse
Affiliation(s)
- Sifang Kathy Zhao
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stefanie N Hinkle
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Susanna D Mitro
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Glotech, Inc, Rockville, MD, USA
| | - Danielle R Stevens
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
20
|
Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines 2022; 10:biomedicines10020467. [PMID: 35203678 PMCID: PMC8962258 DOI: 10.3390/biomedicines10020467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The serotonin receptor 2A gene (HTR2A) is a strong candidate for the fetal programming of future behavior and metabolism. Maternal obesity and gestational diabetes mellitus (GDM) have been associated with an increased risk of metabolic and psychological problems in offspring. We tested the hypothesis that maternal metabolic status affects methylation of HTR2A in the placenta. The prospective study included 199 pairs of mothers and healthy full-term newborns. Genomic DNA was extracted from feto-placental samples and analyzed for genotypes of two polymorphisms (rs6311, rs6306) and methylation of four cytosine residues (−1665, −1439, −1421, −1224) in the HTR2A promoter region. Placental HTR2A promoter methylation was higher in male than female placentas and depended on both rs6311 and rs6306 genotypes. A higher maternal pre-gestational body mass index (pBMI) and, to a lesser extent, diagnosis of GDM were associated with reduced HTR2A promoter methylation in female but not male placentas. Higher pBMI was associated with reduced methylation both directly and indirectly through increased GDM incidence. Tobacco use during pregnancy was associated with reduced HTR2A promoter methylation in male but not female placentas. The obtained results suggest that HTR2A is a sexually dimorphic epigenetic target of intrauterine exposures. The findings may contribute to a better understanding of the early developmental origins of neurobehavioral and metabolic disorders associated with altered HTR2A function.
Collapse
|
21
|
Comparison of global definitions of metabolic syndrome in early pregnancy among the Rajarata Pregnancy Cohort participants in Sri Lanka. Sci Rep 2022; 12:2009. [PMID: 35132136 PMCID: PMC8821546 DOI: 10.1038/s41598-022-05919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolic syndrome (MetS) in pregnancy shows epigenetic associations with intergenerational inheritance of metabolic diseases. The presence of different diagnostic criteria influences MetS prevalence estimates. We evaluated MetS and metabolic derangements to determine the utility of its assessment in early pregnancy. A cross-sectional analysis of metabolic derangements in pregnant women with period of gestation (POG) ≤ 12 weeks was done among Rajarata Pregnancy Cohort participants in Sri Lanka. 2682 women with mean age 27.9 year (SD-5.5) and median POG 8.0wk (IQR-3) were analyzed. Mean levels of triglycerides (TG), total cholesterol (TC), high-density-lipoprotein (HDL), low-density-lipoprotein (LDL), fasting plasma glucose, and 2 h oral glucose tolerance test were 87.71 (SD 38.7), 172.2 (SD 34.7), 49.6 (SD 11.5), 122.6 (SD 32.3), 82.2 (SD 12.8) and 120.3 (SD 11.5) respectively. All serum lipids except LDL increase significantly from 6 to 12 weeks, with TG by 23 and TC by 8 units. High MetS prevalence was observed with AHA/NHLBI (n = 150, 5.6%, 95% CI 4.8–6.5) followed by IDF (n = 144, 5.4%, 95% CI 4.6–6.3), NCEP-ATP III (n = 112, 4.2%, 95% CI 3.4–5.0) and WHO (n = 81, 3.0%, 95% CI 2.4–3.7) definitions respectively. Significant difference in prevalence was noted among different sociodemographic characteristics (p < 0.001). Regardless of the criterion used, the change of metabolic parameters in early pregnancy leads to significant differences in prevalence estimates of MetS. The best MetS definition concerning pregnancy outcomes needs to be determined with prospective studies.
Collapse
|
22
|
Shen WB, Ni J, Yao R, Goetzinger KR, Harman C, Reece EA, Wang B, Yang P. Maternal obesity increases DNA methylation and decreases RNA methylation in the human placenta. Reprod Toxicol 2021; 107:90-96. [PMID: 34890771 DOI: 10.1016/j.reprotox.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 01/10/2023]
Abstract
Maternal obesity is associated with increased risk of adverse pregnancy and birth outcomes. While increasing body of evidence supports that the etiology is related to fetal and placental hypoxia, molecular signaling changes in response to this pathophysiological condition in human placenta have remained elusive. Here by using varied approaches including immunocytochemistry staining, Western blot, RT-qPCR, and ELISA, we aimed to investigate the changes in epigenetic markers in placentas from obese pregnant women following delivery by Caesarean-section at term. Our results revealed that the levels of 5-methylcytosine (5mC), a methylated form commonly occurring in CpG dinucleotides and an important repressor of gene transcription in the genome, were significantly increased coupled with decreased activity of Ten-Eleven Translocation (TETs) enzymes that principally function by oxidizing 5mC in the obese placenta, consistent with hypoxia-induced genome-wide DNA hypermethylation observed in varied types of cells and tissues. N6-methyladenosine (m6A) represents the most abundant and conserved modification of gene transcripts, especially within mRNAs, which is stalled by m6A methyltransferases or "writers" including METTL-3/-14, WTAP, RBM15B, and KIAA1429. We further showed that obese placentas demonstrated significantly down-regulated levels of m6A along with reduced gene expression of WTAP, RBM15B, and KIAA1429. Our data support that maternal obesity-induced hypoxia may play an important role in triggering genome-wide DNA hypermethylation in the human placenta, and in turn leading to transcriptome-wide inhibition of RNA modifications. Our results further suggest that selectively modulating these pathways may facilitate development of novel therapeutic approaches for controlling and managing maternal obesity-associated adverse clinical outcomes.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jingxiang Ni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ruofan Yao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherine R Goetzinger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Harman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Chatterjee S, Ouidir M, Tekola-Ayele F. Genetic and in utero environmental contributions to DNA methylation variation in placenta. Hum Mol Genet 2021; 30:1968-1976. [PMID: 34155504 PMCID: PMC8522638 DOI: 10.1093/hmg/ddab161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic and prenatal environmental factors shape fetal development and cardiometabolic health in later life. A key target of genetic and prenatal environmental factors is the epigenome of the placenta, an organ that is implicated in fetal growth and diseases in later life. This study had two aims: (1) to identify and functionally characterize placental variably methylated regions (VMRs), which are regions in the epigenome with high inter-individual methylation variability; and (2) to investigate the contributions of fetal genetic loci and 12 prenatal environmental factors (maternal cardiometabolic-,psychosocial-, demographic- and obstetric-related) on methylation at each VMR. Akaike's information criterion was used to select the best model out of four models [prenatal environment only, genotype only, additive effect of genotype and prenatal environment (G + E), and their interaction effect (G × E)]. We identified 5850 VMRs in placenta. Methylation at 70% of VMRs was best explained by G × E, followed by genotype only (17.7%), and G + E (12.3%). Prenatal environment alone best explained only 0.03% of VMRs. We observed that 95.4% of G × E models and 93.9% of G + E models included maternal age, parity, delivery mode, maternal depression or gestational weight gain. VMR methylation sites and their regulatory genetic variants were enriched (P < 0.05) for genomic regions that have known links with regulatory functions and complex traits. This study provided a genome-wide catalog of VMRs in placenta and highlighted that variation in placental DNA methylation at loci with regulatory and trait relevance is best elucidated by integrating genetic and prenatal environmental factors, and rarely by environmental factors alone.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| |
Collapse
|
24
|
Ghildayal N, Fore R, Lutz SM, Cardenas A, Perron P, Bouchard L, Hivert MF. Early-pregnancy maternal body mass index is associated with common DNA methylation markers in cord blood and placenta: a paired-tissue epigenome-wide association study. Epigenetics 2021; 17:808-818. [PMID: 34384032 DOI: 10.1080/15592294.2021.1959975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Women entering pregnancy with elevated body mass index (BMI) face greater risk of adverse outcomes during pregnancy, delivery, and for their offspring later in life, potentially via epigenetics. If epigenetic programming occurs early during in utero development, the differential marks should be detectable in multiple tissues despite the known unique epigenetic profile in each.We used early-pregnancy BMI as reflection of maternal metabolic milieu exposure in peri-conception and early-pregnancy period. We analysed DNA methylation in paired cord blood and placenta samples among 437 newborns from Gen3G, a pre-birth prospective cohort of primarily European descent. We measured DNA methylation in both tissues across the genome in >720,000 CpG sites using the Illumina MethylationEPIC array. At each site, we used linear mixed models (LMMs) with an unstructured variance-covariance matrix to test for an association between maternal early-pregnancy BMI and DNA methylation in both tissues (modelled as M-values). We adjusted for tissue-specific covariates, offspring sex, gestational age at delivery, and maternal smoking and age.Women had a mean (SD) BMI of 25.4 (5.7) kg/m2 measured at first trimester visit (mean=9.9 weeks). Early-pregnancy BMI was associated with differential DNA methylation levels in paired-tissue analyses at two sites: cg10593758 (β=0.0126, SE=0.0025; P=4.07e-7), annotated to CRHBP, and cg0762168 (β=-0.0094, SE=0.0018; P=2.78e-7), annotated to CCDC97.Application of LMMs in DNA methylation data from distinct fetal-origin tissues allowed us to identify CpG sites at which early-pregnancy BMI may have an epigenetic 'programming' effect on overall fetus development. One site (CRHBP) may play a role in hypothalamic-pituitary-adrenal axis regulation.
Collapse
Affiliation(s)
- Nidhi Ghildayal
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, United States of America
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, United States of America
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, United States of America.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health & Center for Computational Biology, University of California, Berkeley, CA, United States of America
| | - Patrice Perron
- Department of Medicine, Faculté De Médecine Et Des Sciences De La Santé, Université De Sherbrooke, Sherbrooke, Canada.,Centre De Recherche Du Centre Hospitalier Universitaire De Sherbrooke, Sherbrooke, Canada
| | - Luigi Bouchard
- Centre De Recherche Du Centre Hospitalier Universitaire De Sherbrooke, Sherbrooke, Canada.,Department of Biochemistry and Functional Genomics, Faculté De Médecine Et Des Sciences De La Santé, University De Sherbrooke, Sherbrooke, Canada.,Department of Medical Biology, CIUSSS Du Saguenay-Lac-Saint-Jean, Hôpital De Chicoutimi, Saguenay, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, United States of America.,Department of Medicine, Faculté De Médecine Et Des Sciences De La Santé, Université De Sherbrooke, Sherbrooke, Canada.,Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
25
|
Franzago M, Fraticelli F, Marchioni M, Di Nicola M, Di Sebastiano F, Liberati M, Stuppia L, Vitacolonna E. Fat mass and obesity-associated (FTO) gene epigenetic modifications in gestational diabetes: new insights and possible pathophysiological connections. Acta Diabetol 2021; 58:997-1007. [PMID: 33743080 PMCID: PMC8272710 DOI: 10.1007/s00592-020-01668-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) can lead to short- and long-term complications for the child. Epigenetic alterations could contribute to explaining the metabolic disturbances associated with foetal programming. Although the role of the FTO gene remains unclear, it affects metabolic phenotypes probably mediated by epigenetic mechanisms. The aim of this study was to assess whether placental DNA epigenetic modifications at FTO promoter-associated cysteine-phosphate-guanine (CpG) sites are correlated with GDM. A secondary aim was to evaluate the association between the placental FTO DNA methylation and the maternal metabolic traits in women with and without GDM. METHODS Socio-demographic characteristics, clinical parameters at the third trimester of pregnancy, Mediterranean diet adherence, and physical activity were assessed in 33 GDM women and 27 controls. Clinical information about the newborns was registered at birth. The FTO rs9939609 (T > A) was genotyped. RESULTS No association between FTO DNA methylation and GDM was found. DNA methylation on the maternal side at the CpG1 was associated with maternal smoking in GDM (p = 0.034), and DNA methylation at the CpG3 was correlated with smoking or former smoking in controls (p = 0.023). A higher level of TGs was correlated with higher foetal placental DNA methylation at the CpG2 (p = 0.036) in GDM. An inverse association between HDL-C and maternal placental DNA methylation at the CpG3 in controls (p = 0.045) was found. An association between FTO rs9939609 and neonatal birthweight (p = 0.033) was detected. CONCLUSIONS In the awareness that the obesity pathophysiology is complex, the study adds a piece to this intricate mosaic.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Michele Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Francesca Di Sebastiano
- Department of Obstetric and Gynaecology, SS. Annunziata Hospital, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
26
|
Ortega MA, Asúnsolo Á, Fraile-Martínez O, Sainz F, Saez MA, Bravo C, De León-Luis JA, Alvarez-Mon MA, Coca S, Álvarez-Mon M, Buján J, García-Honduvilla N. An increase in elastogenic components in the placental villi of women with chronic venous disease during pregnancy is associated with decreased EGFL7 expression level. Mol Med Rep 2021; 24:556. [PMID: 34080027 PMCID: PMC8188638 DOI: 10.3892/mmr.2021.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic venous disease (CVD) is the response to a series of hemodynamic changes in the venous system and the onset of this disease is often triggered by pregnancy. Placental tissue is particularly sensitive to the characteristic changes which occurs in venous hypertension. In this regard, changes in the extracellular matrix (ECM), that occur to adapt to this situation, are fundamental to controlling elastogenesis. Therefore, the aim of the present study was to analyze the changes that occur in the mRNA and protein expression level of proteins related to elastogenesis in the placental villi of women diagnosed with CVD, in the third trimester of pregnancy. An observational, analytical and prospective cohort study was conducted, in which the placenta from 62 women with CVD were compared with that in placenta from 52 women without a diagnosis of CVD. Gene and protein expression levels were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The results showed a significant decrease in the gene and protein expression level of EGFL7 in the placental villi of women with CVD. By contrast, significant increases in the gene and protein expression level of ECM-related proteins, such as tropoelastin, fibulin 4, fibrillin 1 and members of the lysyl oxidase family (LOX and LOXL-1) were also found in the placental villi of women with CVD. To the best of our knowledge, the results from the present study showed for the first time that CVD during pregnancy was associated with changes in the mRNA and protein expression level in essential components of the EGFL7-modulated elastogenesis process in placental villi.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research, 28034 Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Felipe Sainz
- University Center for The Defense of Madrid, 28047 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Coral Bravo
- University Center for The Defense of Madrid, 28047 Madrid, Spain
| | - Juan A De León-Luis
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, Central University Hospital of Defence‑University of Alcalá, 28047 Madrid, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| |
Collapse
|
27
|
Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ 2021; 12:38. [PMID: 34044884 PMCID: PMC8162041 DOI: 10.1186/s13293-021-00381-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. RESULTS At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). CONCLUSIONS Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
| | - Allison M. Matthews
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7 Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| |
Collapse
|
28
|
Słabuszewska-Jóźwiak A, Malinowska M, Kloska A, Jakóbkiewicz-Banecka J, Gujski M, Bojar I, Raczkiewicz D, Jakiel G. Global Changes of 5-mC/5h-mC Ratio and Methylation of Adiponectin and Leptin Gene in Placenta Depending on Mode of Delivery. Int J Mol Sci 2021; 22:3195. [PMID: 33801130 PMCID: PMC8004251 DOI: 10.3390/ijms22063195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
It was suggested that the epigenetic alterations of the placenta are associated with obesity, as well as the delivery mode. This study aimed to assess the effect of maternal outcome and delivery procedure on global placental DNA methylation status, as well as selected 5'-Cytosine-phosphate-Guanine-3' (CpG) sites in ADIPOQ and LEP genes. Global DNA methylation profile in the placenta was assessed using the 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) ratio evaluated with the ELISA, followed by target gene methylation patterns at selected gene regions which were determined using methylation-specific qPCR in 70 placentas from healthy, pregnant women with single pregnancy. We found no statistically significant differences in 5-mC/5-hmC ratio between intrapartum cesarean sections (CS) and vaginal deliveries (p = 0.214), as well as between elective cesarean sections and vaginal deliveries (p = 0.221). In intrapartum cesarean sections, the ADIPOQ demethylation index was significantly higher (the average: 1.75) compared to elective cesarean section (the average: 1.23, p = 0.010) and vaginal deliveries (the average: 1.23, p = 0.011). The LEP demethylation index did not significantly differ among elective CS, intrapartum CS, and vaginal delivery groups. The demethylation index of ADIPOQ correlated negatively with LEP in the placenta in the vaginal delivery group (r = -0.456, p = 0.017), but not with the global methylation. The methylation of a singular locus might be different depending on the mode of delivery and uterine contractions. Further studies should be conducted with locus-specific analysis of the whole genome to detect the methylation index of specific genes involved in metabolism.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Kleczewska 61/63, 01-826 Warsaw, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| |
Collapse
|
29
|
El-Bacha T. Nutrient Sensing by the Placenta: IGF-I/mTOR Responses to Preconception Maternal Nutrition Intervention and Implications to Offspring Birth Size and Lifelong Heath. J Nutr 2021; 151:471-472. [PMID: 33561208 DOI: 10.1093/jn/nxaa436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tatiana El-Bacha
- LeBIOme, Núcleo de Estudos com Bioativos, Mitocôndria e Metabolismo da Placenta, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|