1
|
Arner P, Viguerie N, Massier L, Rydén M, Astrup A, Blaak E, Langin D, Andersson DP. Sex differences in adipose insulin resistance are linked to obesity, lipolysis and insulin receptor substrate 1. Int J Obes (Lond) 2024; 48:934-940. [PMID: 38491191 PMCID: PMC11217000 DOI: 10.1038/s41366-024-01501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND/OBJECTIVE Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.
Collapse
Affiliation(s)
- Peter Arner
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden.
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
| | - Lucas Massier
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900, Hellerup, Denmark
| | - Ellen Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Science, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Daniel Peter Andersson
- Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Kerr AG, Andersson DP, Rydén M, Arner P. Insulin resistance in adipocytes: Novel insights into the pathophysiology of metabolic syndrome. Clin Nutr 2024; 43:468-475. [PMID: 38181524 DOI: 10.1016/j.clnu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Insulin resistance in all major target tissues is present in metabolic syndrome (MetS). The resistance in adipocytes is not well described and was presently examined. METHODS In this observational study on isolated abdominal white subcutaneous adipocytes from 419 adults, concentration-response effects of insulin on lipolysis inhibition (glycerol release) and lipogenesis stimulation (glucose conversion to total lipids) were determined. Insights into early and late insulin signaling events were obtained through the determination of insulin sensitivity (half maximum effective concentration) and responsiveness (maximum effect), respectively. In a subgroup of 132 subjects, we analyzed the subcutaneous adipose mRNA expression of genes in the canonical insulin signaling pathway using microarray. These results were validated using quantitative real-time polymerase chain reaction in 74 individuals. RESULTS While the insulin responsiveness was similar in subjects with or without Mets, the sensitivity to insulin-mediated inhibition of lipolysis and stimulation of lipogenesis was ∼tenfold lower in subjects with MetS (p < 0.0001). When age, sex, adipocyte volume, body mass index and body shape were considered, only the antilipolytic resistance was independently associated with MetS. The mRNA expression of several genes in the canonical insulin signaling pathway were altered in MetS (p < 0.0006 or better) where the mRNA levels of insulin receptor substrate 2 associated with the antilipolytic effect (Rho = 0.34; p = 0.0016). CONCLUSION The sensitivities of the antilipolytic and lipogenic effects of insulin are decreased in the MetS but only antilipolysis remains significant after multiple regression analysis. This resistance is localized at initial and receptor-near events in hormone signaling involving insulin receptor substrate 2.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Malaikah S, Willis SA, Henson J, Sargeant JA, Yates T, Thackray AE, Goltz FR, Roberts MJ, Bodicoat DH, Aithal GP, Stensel DJ, King JA. Associations of objectively measured physical activity, sedentary time and cardiorespiratory fitness with adipose tissue insulin resistance and ectopic fat. Int J Obes (Lond) 2023; 47:1000-1007. [PMID: 37491534 PMCID: PMC10511317 DOI: 10.1038/s41366-023-01350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND/OBJECTIVES Inadequate movement, excess adiposity, and insulin resistance augment cardiometabolic risk. This study examined the associations of objectively measured moderate-to-vigorous intensity physical activity (MVPA), sedentary time and cardiorespiratory fitness (CRF), with adipose tissue insulin resistance and ectopic fat. METHODS Data were combined from two previous experimental studies with community volunteers (n = 141, male = 60%, median (interquartile range) age = 37 (19) years, body mass index (BMI) = 26.1 (6.3) kg·m-2). Adipose tissue insulin resistance was assessed using the adipose tissue insulin resistance index (Adipo-IR); whilst magnetic resonance imaging (MRI) was used to measure liver, visceral (VAT) and subcutaneous abdominal adipose tissue (ScAT). Sedentary time and MVPA were measured via an ActiGraph GT3X+ accelerometer. Generalized linear models examined the association of CRF, MVPA, and sedentary time with Adipo-IR and fat depots. Interaction terms explored the moderating influence of age, sex, BMI and CRF. RESULTS After controlling for BMI and cardiometabolic variables, sedentary time was positively associated with Adipo-IR (β = 0.68 AU [95%CI = 0.27 to 1.10], P < 0.001). The association between sedentary time and Adipo-IR was moderated by age, CRF and BMI; such that it was stronger in individuals who were older, had lower CRF and had a higher BMI. Sedentary time was also positively associated with VAT (β = 0.05 L [95%CI = 0.01 to 0.08], P = 0.005) with the relationship being stronger in females than males. CRF was inversely associated with VAT (β = -0.02 L [95%CI = -0.04 to -0.01], P = 0.003) and ScAT (β = -0.10 L [95%CI = -0.13 to -0.06], P < 0.001); with sex and BMI moderating the strength of associations with VAT and ScAT, respectively. CONCLUSIONS Sedentary time is positively associated with adipose tissue insulin resistance which regulates lipogenesis and lipolysis. CRF is independently related to central fat storage which is a key risk factor for cardiometabolic disease.
Collapse
Affiliation(s)
- Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Joseph Henson
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Fernanda R Goltz
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Matthew J Roberts
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | | | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sport Science and Physical Education, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.
| |
Collapse
|
4
|
Tao M, Liu J, Chen X, Wang Q, He M, Chen W, Wang C, Zhang L. Correlation between serum uric acid and body fat distribution in patients with MAFLD. BMC Endocr Disord 2023; 23:204. [PMID: 37749567 PMCID: PMC10518962 DOI: 10.1186/s12902-023-01447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Metabolic dysfunction associated with fatty liver disease (MAFLD) is often correlated with obesity and hyperuricemia. The present study aimed to determine the association between serum uric acid (SUA) and central fat distribution in patients with MAFLD. METHODS A total of 485 patients were classified into the following groups: (1) controls without MAFLD and hyperuricemia (HUA), (2) MAFLD with normal SUA, and (3) MAFLD with HUA. DUALSCAN HDS-2000 was used to measure visceral fat (VAT) and subcutaneous fat (SAT). Dual-energy X-ray absorptiometry (DEXA) was used to measure body fat distribution. RESULTS MAFLD patients with HUA had remarkably higher BMI, fasting insulin, OGIRT AUC, ALT, AST, TG, VAT, SAT, Adipo-IR, trunk fat mass, android fat, and total body fat than MAFLD patients with normal SUA (all p < 0.05). The increase in VAT, SAT, CAP, Adipo-IR, upper limbs fat mass, trunk fat mass, and android fat, as well as the percentage of MAFLD, were significantly correlated with the increase in SUA. The percentage of MAFLD patients with HUA increased significantly with increasing VAT or SAT, as determined by the Cochran-Armitage trend test (all p < 0.05). Furthermore, VAT (OR = 1.01 CI: 1.00, 1.03; p < 0.05) and adipo-IR (OR = 1.09 CI: 1.00, 1.19; p < 0.05) were associated with circling SUA in MAFLD after adjusting for sex, age, TG, TC, HOMA-IR, and BMI. CONCLUSION Abdominal fat promotes the co-existence of HUA and MAFLD, while weight loss, especially, decreasing VAT, is of great importance to decrease SUA levels and manage MAFLD.
Collapse
Affiliation(s)
- Min Tao
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xingyu Chen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qing Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Miao He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Wenwen Chen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Cong Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Lili Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Engin B, Willis SA, Malaikah S, Sargeant JA, Biddle GJH, Razieh C, Argyridou S, Edwardson CL, Jelleyman C, Stensel DJ, Henson J, Rowlands AV, Davies MJ, Yates T, King JA. Sedentary Time Is Independently Related to Adipose Tissue Insulin Resistance in Adults With or at Risk of Type 2 Diabetes. Med Sci Sports Exerc 2023; 55:1548-1554. [PMID: 37093903 DOI: 10.1249/mss.0000000000003193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION This cross-sectional study examined associations of device-measured sedentary time and moderate-to-vigorous physical activity (MVPA) with adipose tissue insulin resistance in people with or at high risk of type 2 diabetes (T2DM). METHOD Data were combined from six previous experimental studies (within our group) involving patients with T2DM or primary risk factors (median (interquartile range) age, 66.2 (66.0-70.8) yr; body mass index (BMI), 31.1 (28.0-34.4) kg·m -2 ; 62% male; n = 179). Adipose tissue insulin resistance was calculated as the product of fasted circulating insulin and nonesterified fatty acids (ADIPO-IR), whereas sedentary time and MVPA were determined from wrist-worn accelerometery. Generalized linear models examined associations of sedentary time and MVPA with ADIPO-IR with interaction terms added to explore the moderating influence of ethnicity (White European vs South Asian), BMI, age, and sex. RESULTS In finally adjusted models, sedentary time was positively associated with ADIPO-IR, with every 30 min of sedentary time associated with a 1.80-unit (95% confidence interval, 0.51-3.06; P = 0.006) higher ADIPO-IR. This relationship strengthened as BMI increased ( β = 3.48 (95% confidence interval, 1.50-5.46), P = 0.005 in the upper BMI tertile (≥33.2 kg·m -2 )). MVPA was unrelated to ADIPO-IR. These results were consistent in sensitivity analyses that excluded participants taking statins and/or metformin ( n = 126) and when separated into the participants with T2DM ( n = 32) and those at high risk ( n = 147). CONCLUSIONS Sedentary time is positively related to adipose tissue insulin sensitivity in people with or at high risk of T2DM. This relationship strengthens as BMI increases and may help explain established relationships between greater sedentary time, ectopic lipid, and hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Charlotte Jelleyman
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland, NEW ZEALAND
| | | | | | | | | | | | | |
Collapse
|
6
|
Halloun R, Galderisi A, Caprio S, Weiss R. Adipose Tissue Insulin Resistance Is Not Associated With Changes in the Degree of Obesity in Children and Adolescents. J Clin Endocrinol Metab 2023; 108:1053-1060. [PMID: 36469736 PMCID: PMC10306082 DOI: 10.1210/clinem/dgac700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT The "carbohydrate-insulin model" claims that adipose tissue insulin sensitivity explains development of obesity via adipocyte energy storage and/or low postprandial metabolic fuel levels. OBJECTIVE We tested whether adipose tissue insulin sensitivity predicts changes in the degree of obesity over time. METHODS This secondary analysis of an observational study of youth with obesity included 213 youths at a pediatric weight management clinic. Adipose tissue insulin sensitivity/resistance and whole-body insulin sensitivity were evaluated using oral glucose tolerance test (OGTT)-derived surrogates in the face of changes in the degree of obesity over time. The main outcome measure was change in body mass index (BMI) z score. RESULTS Mean BMI z change was 0.05 ± 0.28 (range, -1.15 to 1.19), representing a broad distribution of changes in the degree of obesity over a follow-up period of 1.88 ± 1.27 years. Adipose tissue insulin resistance was not associated with changes in the degree of obesity in univariate or multivariate analyses (adjusted for baseline age, BMI z score, sex, ethnicity, and time of follow-up). Low postprandial free fatty acid concentrations or their suppression during the OGTT were not associated with changes in the degree of obesity in univariate or multivariate analyses. Whole-body insulin sensitivity was not associated with changes in the degree of obesity in univariate or multivariate analyses. CONCLUSION In this secondary analysis, in youth with obesity, adipose tissue insulin resistance is not protective from increases of the degree of obesity and skeletal muscle insulin resistance is not associated with increases of the degree of obesity.The analysis was performed using data derived from NCT00000112 and NCT00536250.
Collapse
Affiliation(s)
- Rana Halloun
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Alfonso Galderisi
- Department of Women and Child Health, University of Padova, Via Giustiniani, 3, 35128 Padova, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale University, Yale school of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center, Haifa 3109601, Israel
| |
Collapse
|
7
|
Andersson DP, Kerr AG, Dahlman I, Rydén M, Arner P. Relationship Between a Sedentary Lifestyle and Adipose Insulin Resistance. Diabetes 2023; 72:316-325. [PMID: 36445942 DOI: 10.2337/db22-0612] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Sedentary people have insulin resistance in their skeletal muscle, but whether this also occurs in fat cells was unknown. Insulin inhibition of hydrolysis of triglycerides (antilipolysis) and stimulation of triglyceride formation (lipogenesis) were investigated in subcutaneous fat cells from 204 sedentary and 336 physically active subjects. Insulin responsiveness (maximum hormone effect) and sensitivity (half-maximal effective concentration) were determined. In 69 women, hyperinsulinemia-induced circulating fatty acid levels were measured. In 128 women, adipose gene expression was analyzed. Responsiveness of insulin for antilipolysis (60% inhibition) and lipogenesis (twofold stimulation) were similar between sedentary and active subjects. Sensitivity for both measures decreased ˜10-fold in sedentary subjects (P < 0.01). However, upon multiple regression analysis, only the association between antilipolysis sensitivity and physical activity remained significant when adjusting for BMI, age, sex, waist-to-hip ratio, fat-cell size, and cardiometabolic disorders. Fatty acid levels decreased following hyperinsulinemia but remained higher in sedentary compared with active women (P = 0.01). mRNA expression of insulin receptor and its substrates 1 and 2 was decreased in sedentary subjects. In conclusion, while the maximum effect is preserved, sensitivity to insulin's antilipolytic effect in subcutaneous fat cells is selectively lower in sedentary subjects.
Collapse
Affiliation(s)
- Daniel P Andersson
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Alastair G Kerr
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet Södersjukhuset, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| |
Collapse
|
8
|
Ernesti I, Baratta F, Watanabe M, Risi R, Camajani E, Persichetti A, Tuccinardi D, Mariani S, Lubrano C, Genco A, Spera G, Gnessi L, Basciani S. Predictors of weight loss in patients with obesity treated with a Very Low-Calorie Ketogenic Diet. Front Nutr 2023; 10:1058364. [PMID: 36761216 PMCID: PMC9905243 DOI: 10.3389/fnut.2023.1058364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The Very Low-Calorie Ketogenic Diet (VLCKD) has emerged as a safe and effective intervention for the management of metabolic disease. Studies examining weight loss predictors are scarce and none has investigated such factors upon VLCKD treatment. Among the molecules involved in energy homeostasis and, more specifically, in metabolic changes induced by ketogenic diets, Fibroblast Growth Factor 21 (FGF21) is a hepatokine with physiology that is still unclear. Methods We evaluated the impact of a VLCKD on weight loss and metabolic parameters and assessed weight loss predictors, including FGF21. VLCKD is a severely restricted diet (<800 Kcal/die), characterized by a very low carbohydrate intake (<50 g/day), 1.2-1.5 g protein/kg of ideal body weight and 15-30 g of fat/day. We treated 34 patients with obesity with a VLCKD for 45 days. Anthropometric parameters, body composition, and blood and urine chemistry were measured before and after treatment. Results We found a significant improvement in body weight and composition and most metabolic parameters. Circulating FGF21 decreased significantly after the VLCKD [194.0 (137.6-284.6) to 167.8 (90.9-281.5) p < 0.001] and greater weight loss was predicted by lower baseline FGF21 (Beta = -0.410; p = 0.012), male sex (Beta = 0.472; p = 0.011), and central obesity (Beta = 0.481; p = 0.005). Discussion VLCKD is a safe and effective treatment for obesity and obesity related metabolic derangements. Men with central obesity and lower circulating FGF21 may benefit more than others in terms of weight loss obtained following this diet. Further studies investigating whether this is specific to this diet or to any caloric restriction are warranted.
Collapse
Affiliation(s)
- Ilaria Ernesti
- Surgical Endoscopy Unit, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy,*Correspondence: Ilaria Ernesti,
| | - Francesco Baratta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Renata Risi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Rome, Italy
| | - Agnese Persichetti
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Stefania Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo Genco
- Surgical Endoscopy Unit, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Spera
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Calderón-DuPont D, Torre-Villalvazo I, Díaz-Villaseñor A. Is insulin resistance tissue-dependent and substrate-specific? The role of white adipose tissue and skeletal muscle. Biochimie 2023; 204:48-68. [PMID: 36099940 DOI: 10.1016/j.biochi.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Insulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic). Therefore, the aims of the present review are 1) to describe the glucometabolic and lipometabolic activities of insulin in AT and SM in the maintenance of whole-body metabolic homeostasis, 2) to discuss the pathophysiology of substrate-specific IR in AT and SM, and 3) to highlight novel validated tests to assess tissue and substrate-specific IR that are easy to perform in clinical practice. In AT, glucometabolic IR reduces glucose availability for glycerol and fatty acid synthesis, thus decreasing the esterification and synthesis of signaling bioactive lipids. Lipometabolic IR in AT impairs the antilipolytic effect of insulin and lipogenesis, leading to an increase in circulating FFAs and generating lipotoxicity in peripheral tissues. In SM, glucometabolic IR reduces glucose uptake, whereas lipometabolic IR impairs mitochondrial lipid oxidation, increasing oxidative stress and inflammation, all of which lead to metabolic inflexibility. Understanding tissue-dependent and substrate-specific IR is of paramount importance for early detection before clinical manifestations and for the development of more specific treatments or direct interventions to prevent chronic life-threatening diseases.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional en Ciencias Médicas y Nutricíon Salvador Zubirán, Mexico City, 14000, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
10
|
Sun H, Chang X, Bian N, An Y, Liu J, Leng S, Wang G. Adipose Tissue Insulin Resistance Is Positively Associated With Serum Uric Acid Levels and Hyperuricemia in Northern Chinese Adults. Front Endocrinol (Lausanne) 2022; 13:835154. [PMID: 35757425 PMCID: PMC9226335 DOI: 10.3389/fendo.2022.835154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Adipose tissue plays a crucial role in serum uric acid (UA) metabolism, but the relative contribution of adipose tissue insulin resistance (IR) to serum UA levels and hyperuricemia have not explicitly been illustrated. Herein, we aimed to investigate the association between the adipose tissue insulin resistance index (Adipo-IR) and hyperuricemia in this cross-sectional study. The homeostasis model assessment of insulin resistance (HOMA-IR) index, another widely applied marker to determine systemic IR, was also explored. METHODS A total of 5821 adults were included in this study. The relationship between Adipo-IR or HOMA-IR and serum UA levels was assessed by multivariate linear regression. Binary logistic regression analyses were applied to determine the sex-specific association of the Adipo-IR tertiles and HOMA-IR tertiles with hyperuricemia. Participants were then divided into normal BMI (18.5 ≤ BMI < 24) and elevated BMI (BMI ≥ 24) groups for further analysis. RESULTS Both Adipo-IR and HOMA-IR were positively correlated with serum UA (P < 0.001). Compared with the lowest tertile, the risks of hyperuricemia increased across Adipo-IR tertiles (middle tertile: OR 1.52, 95%CI 1.24-1.88; highest tertile: OR 2.10, 95%CI 1.67-2.63) in men after full adjustment (P for trend < 0.001). In women, only the highest tertile (OR 2.09, 95%CI 1.52-2.87) was significantly associated with hyperuricemia. Those associations remained significant in participants with normal BMI status. As for HOMA-IR, only the highest tertile showed positive relationships with hyperuricemia in both genders after full adjustment (P for trend < 0.001). The association between HOMA-IR and hyperuricemia disappeared in men with normal BMI status. CONCLUSIONS Adipo-IR was strongly associated with serum UA and hyperuricemia regardless of BMI classification. In men with normal BMI, Adipo-IR, rather than HOMA-IR, was closely associated with hyperuricemia. Altogether, our finding highlights a critical role of adipose tissue IR on serum UA metabolism and hyperuricemia.
Collapse
Affiliation(s)
- Honglin Sun
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guang Wang, ; Song Leng,
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guang Wang, ; Song Leng,
| |
Collapse
|
11
|
A longitudinal study of the antilipolytic effect of insulin in women following bariatric surgery. Int J Obes (Lond) 2021; 45:2675-2678. [PMID: 34321614 PMCID: PMC8606310 DOI: 10.1038/s41366-021-00914-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Insulin resistance of glucose utilization is fully restored following BMI normalization after bariatric surgery. We investigated if this also pertains to insulin-induced effects on fatty acid handling. Forty-three women with obesity (OB) were investigated before and 2 years after Roux-en-Y gastric by-pass when BMI was <30 kg/m2 (PO) and compared with 26 never obese women (NO). The Adipo-IR index was used as measure of insulin antilipolytic sensitivity. Changes (delta) in circulating glycerol and fatty acid levels during hyperinsulinemic euglycemic clamp represented the insulin maximum antilipolytic effect. Overall fatty acid utilization was reflected by delta fatty acids minus 3 × delta glycerol. Adipo-IR was higher in OB than in NO and PO (p < 0.0001), the latter two groups having similar values. Insulin lowered glycerol levels by about 70% in all groups, but delta glycerol was 30% larger in PO than in NO (p = 0.04). Delta adds and adds utilization were similar in all groups. We conclude that women with obesity, whose BMI is normalized after bariatric surgery, have improved maximum in vivo antilipolytic effect of insulin above expected in absolute but not relative terms as regards glycerol changes, while the handling of circulating fatty acids is changed to the normal state.
Collapse
|
12
|
Lin H, Tas E, Børsheim E, Mercer KE. Circulating miRNA Signatures Associated with Insulin Resistance in Adolescents with Obesity. Diabetes Metab Syndr Obes 2020; 13:4929-4939. [PMID: 33328751 PMCID: PMC7735788 DOI: 10.2147/dmso.s273908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are implicated in metabolic changes accompanying progression of obesity, insulin resistance (IR), and metabolic disorders in children. Identifying circulating miRNAs that uniquely associate with these disorders may be useful in early identification and prevention of obesity-related complications. We aimed to identify circulating miRNA signatures that distinguish adolescents with obesity and IR from those with obesity unaccompanied by IR. METHODS Adolescents (aged 10-17 years) with obesity were recruited from a weight management clinic. Fasting serum samples were obtained from 33 participants. A total of 179 miRNAs were queried by a quantitative RT-PCR-based miRNA focus panel. Differentially expressed miRNAs were compared between groups using Student's t-test or one-way ANOVA analysis, and the association between IR evaluated by homeostatic model assessment model (HOMA-IR > 4) and body mass index (BMI) status was assessed using Pearson's correlation analysis. RESULTS We found an expression pattern consisting of 12 elevated miRNAs linked to IR in obese adolescents. miR-30d, -221, and -122 were significantly correlated with clinical and biochemical markers of obesity and IR, suggestive of IR in adolescents at risk. CONCLUSION Specific signatures of circulating miRNAs reflected metabolic phenotypes and predicted the presence of IR in adolescents with obesity, suggesting that miRNA indicators may identify obesity-associated complications in childhood. Further studies will be needed to understand cause versus effect and the mechanisms by which IR status links to changes in blood miRNA profiles.
Collapse
Affiliation(s)
- Haixia Lin
- Arkansas Children’s Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Emir Tas
- Arkansas Children’s Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Endocrinology and Diabetes, Arkansas Children’s Hospital, Little Rock, AR, USA
- Center for Childhood Obesity Prevention, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Childhood Obesity Prevention, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Kelly E Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Childhood Obesity Prevention, Little Rock, AR, USA
- Correspondence: Kelly E Mercer; Haixia Lin Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR72202, USATel +1-501-364-2706Fax +1-501-364-3161 Email ;
| |
Collapse
|