1
|
Krishnan A, Raghu S, Eswaramoorthy R, Perumal G. Biodegradable glutamic acid loaded polycaprolactone nanofibrous scaffold for controlled dentin mineralization. J Drug Deliv Sci Technol 2025; 104:106546. [DOI: 10.1016/j.jddst.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Xue Q, Wu Z, Zhao Y, Wei X, Hu M. Progress in the pathogenic mechanism, histological characteristics of hereditary dentine disorders and clinical management strategies. Front Cell Dev Biol 2024; 12:1474966. [PMID: 39717845 PMCID: PMC11663852 DOI: 10.3389/fcell.2024.1474966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Hereditary dentine disorders are autosomal dominant diseases that affect the development and structure of dentine, leading to various dental abnormalities and influencing the individual's oral health. It is generally classified as dentinogenesis imperfecta (DGI) and dentine dysplasia (DD). Specifically, DGI is characterized by the abnormal formation of dentine, resulting in teeth that are discolored, translucent, and prone to fracture or wear down easily. DD is characterized by abnormal dentine development, manifested as teeth with short roots and abnormal pulp chambers, leading to frequent tooth loss. Up to now, the pathogenesis of hereditary dentine disorders has been poorly clarified and the clinical intervention is limited. Treatment for hereditary dentine disorders focuses on managing the symptoms and preventing further dental problems. Genetic counseling and testing may also be recommended as these conditions can be passed on to future generations. In this review, we summarize the clinical features, pathogenic genes, histomorphological characteristics and therapy of hereditary dentine disorders. Due to the limited understanding of the disease at present, we hope this review could improve the recognition of the disease by clinicians, stimulate more scholars to further study the deeply detailed mechanisms of the disease and explore potential therapeutic strategies, thus achieving effective, systematic management of the disease and improving the life quality of patients.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Wei
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Min Hu
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Bai Y, Wu P, Zhang Q, Lin F, Hu L, Zhang Z, Huang W, Xiao Y, Zuo Q. Decorin in the spatial control of collagen mineralization. MATERIALS HORIZONS 2024; 11:3396-3407. [PMID: 38690683 DOI: 10.1039/d3mh02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Understanding the molecular mechanism by which the periodontal ligament (PDL) is maintained uncalcified between two mineralized tissues (cementum and bone) may facilitate the functional repair and regeneration of the periodontium complex, disrupted in the context of periodontal diseases. However, research that explores the control of type I collagen (COL I) mineralization fails to clarify the detailed mechanism of regulating spatial collagen mineralization, especially in the periodontium complex. In the present study, decorin (DCN), which is characterized as abundant in the PDL region and rare in mineralized tissues, was hypothesized to be a key regulator in the spatial control of collagen mineralization. The circular dichroism results confirmed that DCN regulated the secondary structure of COL I, and the surface plasmon resonance results indicated that COL I possessed a higher affinity for DCN than for other mineralization promoters, such as DMP-1, OPN, BSP and DSPP. These features of DCN may contribute to blocking intrafibrillar mineralization in COL I fibrils during the polymer-induced liquid-precursor mineralization process when the fibrils are cross-linked with DCN. This effect was more remarkable when the fibrils were phosphorylated by sodium trimetaphosphate, as shown by the observation of a tube-like morphology via TEM and mineral sheath via SEM. This study enhances the understanding of the role of DCN in mineralization regulation among periodontal tissues. This provides insights for the development of biomaterials for the regeneration of interfaces between soft and hard tissues.
Collapse
Affiliation(s)
- Yuming Bai
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Peng Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Qiufang Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Feng Lin
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Ling Hu
- Department of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen, PR China
| | - Zhisheng Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Wenxia Huang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Qiliang Zuo
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| |
Collapse
|
4
|
Ortega MA, Rios L, Fraile-Martinez O, Liviu Boaru D, De Leon-Oliva D, Barrena-Blázquez S, Pereda-Cerquella C, Garrido-Gil MJ, Manteca L, Buján J, García-Honduvilla N, García-Montero C, Rios-Parra A. Bioceramic versus traditional biomaterials for endodontic sealers according to the ideal properties. Histol Histopathol 2024; 39:279-292. [PMID: 37747049 DOI: 10.14670/hh-18-664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Odontology, as a scientific discipline, continuously collaborates with biomaterials engineering to enhance treatment characteristics and patients' satisfaction. Endodontics, a specialized field of dentistry, focuses on the study, diagnosis, prevention, and treatment of dental disorders affecting the dental pulp, root, and surrounding tissues. A critical aspect of endodontic treatment involves the careful selection of an appropriate endodontic sealer for clinical use, as it significantly influences treatment outcomes. Traditional sealers, such as zinc oxide-eugenol, fatty acid, salicylate, epoxy resin, silicone, and methacrylate resin systems, have been extensively used for decades. However, advancements in endodontics have given rise to bioceramic-based sealers, offering improved properties and addressing new challenges in endodontic therapy. In this review, a classification of these materials and their ideal properties are presented to provide evidence-based guidance to clinicians. Physicochemical properties, including sealing ability, stability over time and space, as well as biological properties such as biocompatibility and antibacterial characteristics, along with cost-effectiveness, are essential factors influencing clinicians' decisions based on individual patient evaluations.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| | - Laura Rios
- Universidad San Pablo CEU, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Claude Pereda-Cerquella
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | | | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| |
Collapse
|
5
|
Xiao B, Adjei-Sowah E, Benoit DSW. Integrating osteoimmunology and nanoparticle-based drug delivery systems for enhanced fracture healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102727. [PMID: 38056586 PMCID: PMC10872334 DOI: 10.1016/j.nano.2023.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA; Materials Science Program, University of Rochester, Rochester, NY 14623, USA; Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
6
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
8
|
Xie B, Yuan H, Zou X, Lu M, Zhang Y, Xu D, Peng X, Wang D, Zhao M, Wen X. p75NTR promotes tooth rhythmic mineralization via upregulation of BMAL1/CLOCK. Front Cell Dev Biol 2023; 11:1283878. [PMID: 38020910 PMCID: PMC10662321 DOI: 10.3389/fcell.2023.1283878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The circadian clock plays a critical role in dentomaxillofacial development. Tooth biomineralization is characterized by the circadian clock; however, the mechanisms underlying the coordination of circadian rhythms with tooth development and biomineralization remain unclear. The p75 neurotrophin receptor (p75NTR) is a clock factor that regulates the oscillatory components of the circadian rhythm. This study aims to investigate the impact of p75NTR on the rhythmic mineralization of teeth and elucidate its underlying molecular mechanisms. We generated p75NTR knockout mice to examine the effects of p75NTR deficiency on tooth mineralization. Ectomesenchymal stem cells (EMSCs), derived from mouse tooth germs, were used for in vitro experiments. Results showed a reduction in tooth mineral density and daily mineralization rate in p75NTR knockout mice. Deletion of p75NTR decreased the expression of DMP1, DSPP, RUNX2, and ALP in tooth germ. Odontogenic differentiation and mineralization of EMSCs were activated by p75NTR. Histological results demonstrated predominant detection of p75NTR protein in odontoblasts and stratum intermedium cells during rapid formation phases of dental hard tissue. The mRNA expression of p75NTR exhibited circadian variations in tooth germs and EMSCs, consistent with the expression patterns of the core clock genes Bmal1 and Clock. The upregulation of BMAL1/CLOCK expression by p75NTR positively regulated the mineralization ability of EMSCs, whereas BMAL1 and CLOCK exerted a negative feedback regulation on p75NTR by inhibiting its promoter activity. Our findings suggest that p75NTR is necessary to maintain normal tooth biomineralization. Odontogenic differentiation and mineralization of EMSCs is regulated by the p75NTR-BMAL1/CLOCK signaling axis. These findings offer valuable insights into the associations between circadian rhythms, tooth development, and biomineralization.
Collapse
Affiliation(s)
- Bo Xie
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hongyan Yuan
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xuqiang Zou
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yixin Zhang
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Xu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xuelian Peng
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Di Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiujie Wen
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Du Q, Cao L, Yan N, Kang S, Lin M, Cao P, Jia R, Wang C, Qi H, Yu Y, Zou J, Yang J. Identification of DSPP novel variants and phenotype analysis in dentinogenesis dysplasia Shields type II patients. Clin Oral Investig 2023:10.1007/s00784-023-05009-y. [PMID: 37017752 DOI: 10.1007/s00784-023-05009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES To investigate the genetic causes and teeth characteristics of dentin dysplasia Shields type II(DD-II) in three Chinese families. MATERIALS AND METHODS Data from three Chinese families affected with DD-II were collected. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) were conducted to screen for variations, and Sanger sequencing was used to verify mutation sites. The physical and chemical characteristics of the affected teeth including tooth structure, hardness, mineral content, and ultrastructure were investigated. RESULTS A novel frameshift deletion mutation c.1871_1874del(p.Ser624fs) in DSPP was found in families A and B, while no pathogenic mutation was found in family C. The affected teeth's pulp cavities were obliterated, and the root canals were smaller than normal teeth and irregularly distributed comprising a network. The patients' teeth also had reduced dentin hardness and highly irregular dentinal tubules. The Mg content of the teeth was significantly lower than that of the controls, but the Na content was obviously higher than that of the controls. CONCLUSIONS A novel frameshift deletion mutation, c.1871_1874del (p.Ser624fs), in the DPP region of the DSPP gene causes DD-II. The DD-II teeth demonstrated compromised mechanical properties and changed ultrastructure, suggesting an impaired function of DPP. Our findings expand the mutational spectrum of the DSPP gene and strengthen the understanding of clinical phenotypes related to the frameshift deletion in the DPP region of the DSPP gene. CLINICAL RELEVANCE A DSPP mutation can alter the characteristics of the affected teeth, including tooth structure, hardness, mineral content, and ultrastructure.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Li Cao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Centre for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No.32, Section 2, The First Ring Road West, Chengdu, 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610072, China
| | - Nana Yan
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Sujun Kang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Mu Lin
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Ran Jia
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Chenyang Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hanyu Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yue Yu
- State Key Laboratory of Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China.
| | - Jiyun Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Centre for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No.32, Section 2, The First Ring Road West, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
10
|
Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. NPJ Regen Med 2023; 8:11. [PMID: 36841873 PMCID: PMC9968336 DOI: 10.1038/s41536-023-00286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Maxillofacial hard tissue defects caused by trauma or infection often affect craniofacial function. Taking the natural hard tissue structure as a template, constructing an engineered tissue repair module is an important scheme to realize the functional regeneration and repair of maxillofacial hard tissue. Here, inspired by the biomineralization process, we constructed a composite mineral matrix hydrogel PAA-CMC-TDM containing amorphous calcium phosphates (ACPs), polyacrylic acid (PAA), carboxymethyl chitosan (CMC) and dentin matrix (TDM). The dynamic network composed of Ca2+·COO- coordination and ACPs made the hydrogel loaded with TDM, and exhibited self-repairing ability and injectability. The mechanical properties of PAA-CMC-TDM can be regulated, but the functional activity of TDM remains unaffected. Cytological studies and animal models of hard tissue defects show that the hydrogel can promote the odontogenesis or osteogenic differentiation of mesenchymal stem cells, adapt to irregular hard tissue defects, and promote in situ regeneration of defective tooth and bone tissues. In summary, this paper shows that the injectable TDM hydrogel based on biomimetic mineralization theory can induce hard tissue formation and promote dentin/bone regeneration.
Collapse
|
11
|
Dentin Sialoprotein/Phosphophoryn (DSP/PP) as Bio-Inductive Materials for Direct Pulp Capping. Polymers (Basel) 2022; 14:polym14173656. [PMID: 36080731 PMCID: PMC9460548 DOI: 10.3390/polym14173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional direct pulp capping, such as calcium hydroxide (Ca(OH)2) or silicate products, usually induces an inflammatory reaction to provoke pulp regeneration. Phosphophoryn (PP) and dentin sialoprotein (DSP), the two most abundant non-collagenous proteins in the dentin matrix, are responsible for dentin mineralization, pulp cell migration, and differentiation. Here we examined the PP and combined DSP/PP as bio-inductive pulp capping materials by in vitro and in vivo tests. Firstly, the effects of the PP dose on pulp cell migration and matrix protein expression were examined by an agarose bead test. Secondly, the role of recombinant DSP (recDSP) and recDSP/PP on stimulating DSP-PP transcript expression was examined by RT-PCR. DSPP mRNA was also knocked down by RNA interference (RNAi) to examine their functions on dentin matrix mineralization. Finally, we used ferret animal models to test PP and recDSP/PP acting as capping agents on in vivo pulp responses and reparative dentin formation. The result showed that intermediate-dose PP was the most effective to enhance cell migration and differentiation. RecDSP/PP strongly enhanced the DSP-PP transcript expression, while inhibition of DSPP mRNA expression by siRNAs partially or completely affected dental pulp cell mineralization. The in vivo results showed that intermediate-dose PP and recDSP/PP proteins induced less pulp inflammation and promoted reparative dentin formation. Contrarily, conventional calcium hydroxide induced severe pulp inflammation. With these findings, DSP and PP could serve as capping agents for pulp capping therapy.
Collapse
|
12
|
Li T, Yongfeng L, Ruiqi L, Mingyue Z, Xiaofeng H. Development and structural characteristics of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus. Tissue Cell 2022; 77:101847. [PMID: 35679688 DOI: 10.1016/j.tice.2022.101847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
|
13
|
Zhu X, Niu C, Chen J, Yuan K, Jin Q, Hou L, Huang Z. The Role of ZBTB16 in Odontogenic Differentiation of Dental Pulp Stem Cells. Arch Oral Biol 2022; 135:105366. [DOI: 10.1016/j.archoralbio.2022.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
14
|
Mukhtar U, Goyal A, Luthra-Guptasarma M, Gauba K, Kapur A, Thakur AK. Label-free quantitative proteomics reveals molecular correlates of altered biomechanical properties in molar incisor hypomineralization (MIH): an in vitro study. Eur Arch Paediatr Dent 2022; 23:179-191. [PMID: 35013981 DOI: 10.1007/s40368-021-00687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Molar-incisor hypomineralization (MIH) is a qualitative developmental defect of enamel that affects first permanent molars with or without affecting permanent incisors. We aimed to carry out a quantitative proteomics-based study to compare and evaluate proteins in sound and MIH-affected enamel. MATERIALS AND METHODS Ten blocks each of the MIH-affected enamel and sound enamel were processed and prepared for LC-MS/MS analysis. Label-free quantitation was carried out to evaluate the differentially expressed proteins in the two groups of samples. RESULTS A significant increase in the number of proteins in MIH-affected enamel (50.3 ± 29.6) was observed compared to the sound enamel (21.4 ± 3.2). While proteins like collagens, α1-anti-trypsin, kallikrein-4 (KLK4), matrix metalloprotease-20 (MMP-20), alpha-2-macroglobulin, and alpha-2-HS-glycoprotein were upregulated in sound enamel, there was over-expression of albumin, calcium-binding proteins, anti-thrombin III, and dentin sialophosphoprotein (DSPP), along with proteins implicated in stress response and inflammatory processes in MIH. CONCLUSION We propose that altered biomechanical properties of the enamel in MIH samples arise due to (i) down-regulation of proteins contributing to collagen biosynthesis and fibril formation; (ii) an overall imbalance in required levels of proteases (KLK4 and MMP-20) and anti-proteases (anti-thrombin-III which inhibits KLK-4), essential for optimal mineralization; (iii) very low levels of alpha-2-macroglobulin with important consequences in enamel mineralization and amelogenesis; and (iv) increased albumin in MIH, preventing proper growth of hydroxyapatite crystals. Increased inflammatory component was also seen in MIH; however, whether inflammation is a cause or consequence of the poor mineralization process needs to be assessed.
Collapse
Affiliation(s)
- U Mukhtar
- Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A Goyal
- Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - M Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - K Gauba
- Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A Kapur
- Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A K Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Du Q, Cao L, Liu Y, Pang C, Wu S, Zheng L, Jiang W, Na X, Yu J, Wang S, Zhu X, Yang J. Phenotype and molecular characterizations of a family with dentinogenesis imperfecta shields type II with a novel DSPP mutation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1672. [PMID: 34988181 PMCID: PMC8667123 DOI: 10.21037/atm-21-5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Background Dentinogenesis imperfecta (DGI), Shields type-II is an autosomal dominant genetic disease which severely affects the function of the patients’ teeth. The dentin sialophosphoprotein (DSPP) gene is considered to be the pathogenic gene of DGI-II. In this study, a DGI-II family with a novel DSPP mutation were collected, functional characteristics of DGI cells and clinical features were analyzed to better understand the genotype-phenotype relationship of this disease. Methods Clinical data were collected, whole exome sequencing (WES) was conducted, and Sanger sequencing was used to verify the mutation sites. Physical characteristics of the patient’s teeth were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The localization of green fluorescent protein (GFP)-fused wild-type (WT) dentin sialoprotein (DSP) and its variant were evaluated via an immunocytochemistry (ICC) assay. The behaviors of human dental pulp stem cells (hDPSCs) were investigated by flow cytometry, osteogenic differentiation, and quantitative real-time polymerase chain reaction (qRT-PCR). Results A novel heterozygous mutation c.53T > G (p. Val18Gly) in DSPP was found in this family. The SEM results showed that the participants’ teeth had reduced and irregular dentinal tubes. The EDS results showed that the Ca/P ratio of the patients’ teeth was significantly higher than that of the control group. The ICC assay showed that the mutant DSP was entrapped in the endoplasmic reticulum (ER), while the WT DSP located mainly in the Golgi apparatus. In comparison with normal cells, the patient’s cells exhibited significantly decreased mineralization ability and lower expression levels of DSPP and RUNX2. Conclusions The c.53T > G (p. Val18Gly) DSPP variant was shown to present with rare hypoplastic enamel defects. Functional analysis revealed that this novel variant disturbs dentinal characteristics and pulp cell behavior.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Cao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Wu
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxue Na
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Yu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Wang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Adiwirya MK, Widayati R, Soedarsono N, Anggani H. Concentration of dentin sialoprotein at the initial stage of orthodontic treatment using self-ligating and conventional preadjusted brackets: A pilot study. J Orthod Sci 2022; 11:32. [PMID: 36188204 PMCID: PMC9515556 DOI: 10.4103/jos.jos_172_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES: This study evaluated differences in concentration of dentin sialoprotein (DSP) in gingival crevicular fluid (GCF) relating to orthodontically induced inflammatory root resorption (OIIRR) at the initial stage of orthodontic treatment using self-ligating and conventional preadjusted brackets. MATERIALS AND METHODS: Eighteen patients were assigned to three groups of equal size. Two experimental groups received non-extraction orthodontic treatment using passive self-ligating or conventional preadjusted bracket. The control group included patients without orthodontic treatment. GCF was collected from five proximal sites of maxillary anterior teeth at subsequent intervals: immediately prior to orthodontic treatment (T0), and at three and 12 weeks after initiation of treatment (T1 and T2). DSP concentration was evaluated by enzyme-linked immunoabsorbent assay and the differences in DSP levels were analyzed between and within groups. RESULTS: There were no significant differences in DSP levels within both experimental groups and the control group during T0-T1-T2 (P ≥ 0.05). A significant difference of DSP concentration was found between the conventional preadjusted bracket and the control group at T2 (P = 0.038). However, it was thought to be clinically insignificant. CONCLUSION: The study showed no significant difference in DSP concentration at the initial stage of orthodontic treatment with either self-ligating or conventional preadjusted bracket.
Collapse
|
17
|
Jing Z, Chen Z, Jiang Y. Effects of DSPP Gene Mutations on Periodontal Tissues. Glob Med Genet 2021; 8:90-94. [PMID: 34430959 PMCID: PMC8378919 DOI: 10.1055/s-0041-1726416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dentin sialophosphoprotein ( DSPP ) gene mutations cause autosomal dominantly inherited diseases. DSPP gene mutations lead to abnormal expression of DSPP, resulting in a series of histological, morphological, and clinical abnormalities. A large number of previous studies demonstrated that DSPP is a dentinal-specific protein, and DSPP gene mutations lead to dentin dysplasia and dentinogenesis imperfecta. Recent studies have found that DSPP is also expressed in bone, periodontal tissues, and salivary glands. DSPP is involved in the formation of the periodontium as well as tooth structures. DSPP deficient mice present furcation involvement, cementum, and alveolar bone defect. We speculate that similar periodontal damage may occur in patients with DSPP mutations. This article reviewed the effects of DSPP gene mutations on periodontal status. However, almost all of the research is about animal study, there is no evidence that DSPP mutations cause periodontium defects in patients yet. We need to conduct systematic clinical studies on DSPP mutation families in the future to elucidate the effect of DSPP gene on human periodontium.
Collapse
Affiliation(s)
- Zhaojun Jing
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Zhibin Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
18
|
Preparation of Absorption-Resistant Hard Tissue Using Dental Pulp-Derived Cells and Honeycomb Tricalcium Phosphate. MATERIALS 2021; 14:ma14123409. [PMID: 34202970 PMCID: PMC8234467 DOI: 10.3390/ma14123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
In recent years, there has been increasing interest in the treatment of bone defects using undifferentiated mesenchymal stem cells (MSCs) in vivo. Recently, dental pulp has been proposed as a promising source of pluripotent mesenchymal stem cells (MSCs), which can be used in various clinical applications. Dentin is the hard tissue that makes up teeth, and has the same composition and strength as bone. However, unlike bone, dentin is usually not remodeled under physiological conditions. Here, we generated odontoblast-like cells from mouse dental pulp stem cells and combined them with honeycomb tricalcium phosphate (TCP) with a 300 μm hole to create bone-like tissue under the skin of mice. The bone-like hard tissue produced in this study was different from bone tissue, i.e., was not resorbed by osteoclasts and was less easily absorbed than the bone tissue. It has been suggested that hard tissue-forming cells induced from dental pulp do not have the ability to induce osteoclast differentiation. Therefore, the newly created bone-like hard tissue has high potential for absorption-resistant hard tissue repair and regeneration procedures.
Collapse
|
19
|
Mona M, Abbasi Z, Kobeissy F, Chahbandar A, Pileggi R. A Bioinformatics Systems Biology Analysis of the Current Oral Proteomic Biomarkers and Implications for Diagnosis and Treatment of External Root Resorption. Int J Mol Sci 2021; 22:ijms22063181. [PMID: 33804739 PMCID: PMC8003910 DOI: 10.3390/ijms22063181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
External root resorption (ERR) is a silent destructive phenomenon detrimental to dental health. ERR may have multiple etiologies such as infection, inflammation, traumatic injuries, pressure, mechanical stimulations, neoplastic conditions, systemic disorders, or idiopathic causes. Often, if undiagnosed and untreated, ERR can lead to the loss of the tooth or multiple teeth. Traditionally, clinicians have relied on radiographs and cone beam computed tomography (CBCT) images for the diagnosis of ERR; however, these techniques are not often precise or definitive and may require exposure of patients to more ionizing radiation than necessary. To overcome these shortcomings, there is an immense need to develop non-invasive approaches such as biomarker screening methods for rapid and precise diagnosis for ERR. In this review, we performed a literature survey for potential salivary or gingival crevicular fluid (GCF) proteomic biomarkers associated with ERR and analyzed the potential pathways leading to ERR. To the best of our knowledge, this is the first proteomics biomarker survey that connects ERR to body biofluids which represents a novel approach to diagnose and even monitor treatment progress for ERR.
Collapse
Affiliation(s)
- Mahmoud Mona
- Department of Endodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (Z.A.); (A.C.); (R.P.)
- Correspondence:
| | - Zunnaira Abbasi
- Department of Endodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (Z.A.); (A.C.); (R.P.)
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Abdulrahman Chahbandar
- Department of Endodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (Z.A.); (A.C.); (R.P.)
| | - Roberta Pileggi
- Department of Endodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (Z.A.); (A.C.); (R.P.)
| |
Collapse
|
20
|
Ye J, Wang Y, Zhu Q, Shi H, Xiang D, Wu C, Song L, Ma N, Liu Q, Zhang W. Primary observation of the role of posttranslational modification of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. Arch Oral Biol 2021; 125:105086. [PMID: 33639479 DOI: 10.1016/j.archoralbio.2021.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to observe the posttranslational role of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. METHODS To explore the function of full-length DSPP, four groups of mice were employed: (1) wild type (WT) mice; (2)Dspp knockout (Dspp KO) mice; (3) mice expressing the normal DSPP transgene in the Dspp KO background (Dspp KO/normal Tg); (4) mice expressing the uncleavable full-length DSPP in the Dspp KO background (Dspp KO/D452A Tg). Firstly, Plain X-ray Radiography and Micro-computed Tomography were used to observe the condylar morphology changes of Dspp KO/D452A Tg mice in comparison with the other three groups. Then, Hematoxylin & eosin and toluidine blue staining were applied to uncover the histological changes of mandibular condylar cartilage (MCC) of Dspp KO/D452A Tg mice. To explore the function of the NH2-terminal fragments (i.e. DSP/DSP-PG), three groups of mice were employed: (1) WT mice; (2) Dspp KO mice; (3) mice expressing the NH2-terminal fragments of DSPP in the Dspp-null background (Dspp KO/DSP Tg). The former strategies were utilized to examine the differences of condylar morphology and histological structures changes within three groups of mice. RESULTS Transgenic full-length DSPP partially maintained mandibular condylar morphology and MCC thickness of Dspp KO mice. Transgenic DSP failed to do so, but led to smaller mandibular condyle and disordered cartilage structure. CONCLUSIONS Our observations provide insight into the role of posttranslational modification of DSPP in the postnatal development of healthy MCC and maintenance of condylar morphology.
Collapse
Affiliation(s)
- Jiapeng Ye
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Chunyue Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lina Song
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital, Jilin University, Changchun, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
21
|
Altankhishig B, Polan MAA, Qiu Y, Hasan MR, Saito T. Dentin Phosphophoryn-Derived Peptide Promotes Odontoblast Differentiation In Vitro and Dentin Regeneration In Vivo. MATERIALS 2021; 14:ma14040874. [PMID: 33673176 PMCID: PMC7918442 DOI: 10.3390/ma14040874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The purpose of the present study was to investigate the effect of a peptide (i.e., SESDNNSSSRGDASYNSDES) derived from dentin phosphophoryn (DPP) with arginine-glycine-aspartic acid (RGD) motifs on odontoblast differentiation in vitro and to compare it with calcium hydroxide—a material used conventionally for vital pulp therapy—in terms of reparative dentin formation and pulp inflammation in vivo. Alkaline phosphatase activity assay and alizarin red S staining were performed to evaluate odontoblast-differentiation in cell culturing experiments. To observe the reparative dentin formation and pulp inflammation animal experiment was performed and examined by histological methods. The difference between the experimental group and the control group was analyzed statistically using a one-way ANOVA test. The results revealed that the DPP-derived RGD-containing peptide triggered odontoblast differentiation and mineralization in vitro. In rats undergoing direct pulp capping, the DPP-derived RGD-containing peptide was found to induce intensively formed reparative dentin with high compactness at week 4. On histological and morphometrical examinations, a smaller degree of pulpitis was observed in the specimens treated with the peptide than in those treated with calcium hydroxide. This study suggests that the DPP-derived RGD-containing peptide is a biocompatible, biodegradable and bioactive material for dentin regeneration.
Collapse
Affiliation(s)
- Bayarchimeg Altankhishig
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
| | - Mohammad Ali Akbor Polan
- Department of Children Preventive and Community Dentistry, Dhaka Dental College, Dhaka 1206, Bangladesh;
| | - Youjing Qiu
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
| | - Md Riasat Hasan
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
- Correspondence: (M.R.H.); (T.S.)
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
- Correspondence: (M.R.H.); (T.S.)
| |
Collapse
|
22
|
Yin J, Xu J, Cheng R, Shao M, Qin Y, Yang H, Hu T. Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair. Int J Oral Sci 2021; 13:1. [PMID: 33414369 PMCID: PMC7791050 DOI: 10.1038/s41368-020-00105-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Dental pulp can initiate its damage repair after an injury of the pulp–dentin complex by rearrangement of odontoblasts and formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were arranged along the pulp–dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuandong Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Călin C, Sajin M, Moldovan VT, Coman C, Stratul SI, Didilescu AC. Immunohistochemical expression of non-collagenous extracellular matrix molecules involved in tertiary dentinogenesis following direct pulp capping: a systematic review. Ann Anat 2021; 235:151674. [PMID: 33400977 DOI: 10.1016/j.aanat.2020.151674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extracellular matrix molecules (ECMM) expression during tertiary dentinogenesis provides useful information for regenerative applications and efficacy of pulp capping materials. AIM To identify and review the expression and roles of non-collagenous ECMM after successful direct pulp capping (DPC), following mechanical pulp exposures, via immunohistochemistry (IHC). The study addressed the question of where will successful DPC impact the IHC expression of these molecules. DATA SOURCES In vivo animal and human original clinical studies reporting on ECMM in relation to different follow-up periods were screened and evaluated via descriptive analysis. The electronic literature search was carried out in three databases (MEDLINE/PubMed, Web of Science, Scopus), followed by manual screening of relevant journals and cross-referencing, up to December 2018. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS Randomized and non-randomized controlled trials, conducted in humans and animals, were selected. Histological evidence for tertiary dentine formation was a prerequisite for IHC evaluation. STUDY APPRAISAL AND SYNTHESIS METHODS The methodological quality of the included articles was independently assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) and the Cochrane risk of bias tool (RoB 1), respectively. RESULTS From a total of 1534 identified studies, 18 were included. Thirteen papers evaluated animal subjects and five studies were carried out on humans. In animals and humans, fibronectin and tenascin expressions were detected in pulp and odontoblast-like cells (OLC); dentine sialoprotein was expressed in both soft and newly-formed mineralized tissue. In animals, bone sialoprotein was early expressed, in association with OLC and predentin; the immunoreactivity for dentine sialophosphoprotein and dentine matrix protein-1 was associated with the OLC and dentine bridge; osteopontin was expressed in OLC, predentine and reparative dentine. A considerable heterogeneity was found in the methodologies of the included studies, as well as interspecies variability of results in terms of time. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Within the limited scientific evidence, all non-collagenous ECMM expressions during tertiary dentinogenesis are active and related to soft and hard tissues. There is a shortage of human studies, and future research directions should focus more on them. PROSPERO Protocol: CRD42019121304.
Collapse
Affiliation(s)
- C Călin
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - M Sajin
- Chair of Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - V T Moldovan
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - C Coman
- Preclinical Testing Unit, Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - S I Stratul
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - A C Didilescu
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania.
| |
Collapse
|
24
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
25
|
Retinoic Acid Signal Negatively Regulates Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. Stem Cells Int 2020; 2020:5891783. [PMID: 32676119 PMCID: PMC7336240 DOI: 10.1155/2020/5891783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) signal is involved in tooth development and osteogenic differentiation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) are one of the useful MSCs in tissue regeneration. However, the function of RA in osteo/odontogenic differentiation of DPSCs remains unclear. Here, we investigated the expression pattern of RA in miniature pig tooth germ and intervened in the RA signal during osteo/odontogenic differentiation of human DPSCs. Deciduous canine (DC) germs of miniature pigs were observed morphologically, and the expression patterns of RA were studied by in situ hybridization (ISH). Human DPSCs were isolated and cultured in osteogenic induction medium with or without RA or BMS 493, an inverse agonist of the pan-retinoic acid receptors (pan-RARs). Alkaline phosphatase (ALP) activity assays, alizarin red staining, quantitative calcium analysis, CCK8 assay, osteogenesis-related gene expression, and in vivo transplantation were conducted to determine the osteo/odontogenic differentiation potential and proliferation potential of DPSCs. We found that the expression of RARβ and CRABP2 decreased during crown calcification of DCs of miniature pigs. Activation of RA signal in vitro inhibited ALP activities and mineralization of human DPSCs and decreased the mRNA expression of ALP, osteocalcin, osteopontin, and a transcription factor, osterix. With BMS 493 treatment, the results were opposite. Interference in RA signal decreased the proliferation of DPSCs. In vivo transplantation experiments suggested that osteo/odontogenic differentiation potential of DPSCs was enhanced by inversing RA signal. Our results demonstrated that downregulation of RA signal promoted osteo/odontogenic differentiation of DPSCs and indicated a potential target pathway to improve tissue regeneration.
Collapse
|
26
|
Exosomes Derived from Stem Cells from the Apical Papilla Promote Dentine-Pulp Complex Regeneration by Inducing Specific Dentinogenesis. Stem Cells Int 2020; 2020:5816723. [PMID: 32565828 PMCID: PMC7273441 DOI: 10.1155/2020/5816723] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Regenerative endodontic procedures (REPs) are a new option for the treatment of dental pulp or periapical diseases in permanent teeth with open apices. Histologically, the new tissues formed in the root canal after REPs are mainly cementum- or bone-like mineralised tissues, but not the real dentine-pulp complex. Therefore, how to promote dentine-pulp complex regeneration and improve the clinical effects of REPs has become a prominent research topic. Stem cells from apical papilla (SCAP) are derived from the dental papilla that can differentiate into primary odontoblasts and dental pulp cells that produce root dentine and dental pulp. Exosomes are the key regulator for the paracrine activity of stem cells and can influence the function of recipient cells. In this study, SCAP-derived exosomes (SCAP-Exo) were introduced into the root fragment containing bone marrow mesenchymal stem cells (BMMSCs) and transplanted subcutaneously into immunodeficient mice. We observed that dental pulp-like tissues were present and the newly formed dentine was deposited onto the existing dentine in the root canal. Afterwards, the effects of SCAP-Exo on the dentinogenesis of BMMSCs were elucidated in vitro. We found that the gene and protein expression of dentine sialophosphoprotein and mineralised nodule formation in BMMSCs treated with SCAP-Exo were significantly increased. In summary, SCAP-Exo were endocytosed by BMMSCs and obviously improved their specific dentinogenesis. The use of exosomes derived from dental stem cells could comprise a potential therapeutic approach for dentine-pulp complex regeneration in REPs.
Collapse
|
27
|
Guo X, Mu H, Yan S, Wei J. Exploring the molecular disorder and dysfunction mechanism of human dental pulp cells under hypoxia by comprehensive multivariate analysis. Gene 2020; 735:144332. [PMID: 31972310 DOI: 10.1016/j.gene.2020.144332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp cells (DPCs) are multipotent cells, which can differentiate into various tissues and have the potential to treat many diseases. However, little is known about the molecular disorder mechanism. To explore the mechanism of molecular disorders and dysfunction of DPCs under hypoxia, we investigated the molecular effects of two hypoxic time lengths on DPCs. Differential analysis, protein interaction network (PPI), enrichment analysis and coupling analysis were further synthesized to identify human dental pulp cell dysfunction modules under hypoxic conditions. Based on the module aggregation of 579 genes, 13 dental pulp cell dysfunction modules were obtained. Importantly, we found that up to 12 modules were significantly involved in positive regulation of neurogenesis, positive regulation of nervous system development. Based on the predictive analysis of regulators, we identified a series of ncRNAs (including CRNDE, MALAT1, microRNA-140-5p, microRNA-300 and microRNA-30a-5p) and transcription factors (including E2F1). Based on the comprehensive functional module analysis, we identified the dysfunction module of human dental pulp cells (HDPCs) under hypoxia. The results suggest that nerve regulation plays an important role in regulating the dysfunction module of DPCs. These prominent pivotal regulators in the module were used as an important part of the molecular disorders of DPCs, may be an important part of the subnetwork of the manipulation module and affect the molecular dysregulation mechanism of DPCs. This study provides new directions and potential targets for further research.
Collapse
Affiliation(s)
- Xiangjun Guo
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Hong Mu
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Shixia Yan
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Jianming Wei
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| |
Collapse
|
28
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
29
|
Rasi Ghaemi S, Delalat B, Cavallaro A, Mierczynska‐Vasilev A, Vasilev K, Voelcker NH. Differentiation of Rat Mesenchymal Stem Cells toward Osteogenic Lineage on Extracellular Matrix Protein Gradients. Adv Healthc Mater 2019; 8:e1900595. [PMID: 31328896 DOI: 10.1002/adhm.201900595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Indexed: 12/15/2022]
Abstract
This report addresses the issue of optimizing extracellular matrix protein density required to support osteogenic lineage differentiation of mesenchymal stem cells (MSCs) by culturing MSCs on surface-bound density gradients of immobilized collagen type I (COL1) and osteopontin (OPN). A chemical surface gradient is prepared by tailoring the surface chemical composition from high hydroxyl groups to aldehyde groups using a diffusion-controlled plasma polymerization technique. Osteogenesis on the gradient surface is determined by immunofluorescence staining against Runx2 as an early marker and by staining of calcium phosphate deposits as a late stage differentiation marker. The Runx2 intensity and calcified area increase with increasing COL1 density up to a critical value corresponding to 124.2 ng cm-2 , above which cell attachment and differentiation do not rise further, while this critical value for OPN is 19.0 ng cm-2 . This gradient approach may facilitate the screening of an optimal biomolecule surface density on tissue-engineered scaffolds, implants, or tissue culture ware to obtain the desired cell response, and may generate opportunities for more cost-effective regenerative medicine.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
| | - Bahman Delalat
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
- ManufacturingCommonwealth Scientific and Industrial Research Organization (CSIRO) Clayton Melbourne 3168 Victoria Australia
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University Parkville Melbourne 3052 Victoria Australia
- Department of Mechanical and Aerospace EngineeringMonash University Clayton Melbourne 3168 Victoria Australia
| | - Alex Cavallaro
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
| | - Agnieszka Mierczynska‐Vasilev
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
- School of EngineeringUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
- The Australian Wine Research InstituteWaite Precinct Hartley Grove cnr Paratoo Road, Urrbrae Adelaide 5064 South Australia Australia
| | - Krasimir Vasilev
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
- School of EngineeringUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
| | - Nicolas H. Voelcker
- Future Industries InstituteUniversity of South Australia Mawson Lakes Adelaide 5095 South Australia Australia
- ManufacturingCommonwealth Scientific and Industrial Research Organization (CSIRO) Clayton Melbourne 3168 Victoria Australia
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University Parkville Melbourne 3052 Victoria Australia
- Victorian Node of the Australian National Fabrication FacilityMelbourne Center for Nanofabrication Clayton Melbourne 3168 Victoria Australia
| |
Collapse
|