1
|
Zelasko S, Swaney MH, Sandstrom S, Davenport TC, Seroogy CM, Gern JE, Kalan LR, Currie CR. Upper respiratory microbial communities of healthy populations are shaped by niche and age. MICROBIOME 2024; 12:206. [PMID: 39425237 PMCID: PMC11490146 DOI: 10.1186/s40168-024-01940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and intermicrobial interactions across healthy 24-month-old infant (n = 229) and adult (n = 100) populations. RESULTS We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. CONCLUSIONS In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functions related to colonization resistance, with important implications for host health across the lifespan. Video Abstract.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy C Davenport
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Shen F, Wang M, Ma J, Sun Y, Zheng Y, Mu Q, Li X, Wu Y, Zhu T. Height-Resolved Analysis of Indoor Airborne Microbiome: Comparison with Floor Dust-Borne Microbiome and the Significance of Shoe Sole Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17364-17375. [PMID: 39291786 DOI: 10.1021/acs.est.4c06218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Exposure to the indoor airborne microbiome is closely related to the air that individuals breathe. However, the floor dust-borne microbiome is commonly used as a proxy for indoor airborne microbiome, and the spatial distribution of indoor airborne microbiome is less well understood. This study aimed to characterize indoor airborne microorganisms at varying heights and compare them with those in floor dust. An assembly of three horizontally and three vertically positioned Petri dishes coated with mineral oil was applied for passive air sampling continuously at three heights without interruption. The airborne microbiomes at the three different heights showed slight stratification and differed significantly from those found in the floor dust. Based on the apportionment results from the fast expectation-maximization algorithm (FEAST), shoe sole dust contributed approximately 4% to indoor airborne bacteria and 14% to airborne fungi, a contribution that is comparable to that from the floor dust-borne microbiome. The results indicated that floor dust may not be a reliable proxy for indoor airborne microbiome. Moreover, the study highlights the need for height-resolved studies of indoor airborne microbiomes among humans in different activity modes and life states. Additionally, shoe sole-dust-associated microorganisms could potentially be a source to "re-wild" the indoor microbiota.
Collapse
Affiliation(s)
- Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Mengzhen Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jiahui Ma
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quan Mu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Xinghua Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Zelasko S, Swaney MH, Sandstrom S, Davenport TC, Seroogy CM, Gern JE, Kalan LR, Currie CR. Upper respiratory microbial communities of healthy populations are shaped by niche and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589416. [PMID: 38645133 PMCID: PMC11030450 DOI: 10.1101/2024.04.14.589416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and functioning across healthy 24-month-old infant (n=229) and adult (n=100) populations. Results We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. Conclusions In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functioning, with important implications for host health across the lifespan.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy C. Davenport
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
de Rooij MMT, Erbrink HJ, Smit LAM, Wouters IM, Hoek G, Heederik DJJ. Short-term residential exposure to endotoxin emitted from livestock farms in relation to lung function in non-farming residents. ENVIRONMENTAL RESEARCH 2024; 243:117821. [PMID: 38072102 DOI: 10.1016/j.envres.2023.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Fakunle AG, Jafta N, Bossers A, Wouters IM, Kersen WV, Naidoo RN, Smit LAM. Childhood lower respiratory tract infections linked to residential airborne bacterial and fungal microbiota. ENVIRONMENTAL RESEARCH 2023; 231:116063. [PMID: 37156352 DOI: 10.1016/j.envres.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Residential microbial composition likely contributes to the development of lower respiratory tract infections (LRTI) among children, but the association is poorly understood. We aimed to study the relationship between the indoor airborne dust bacterial and fungal microbiota and childhood LRTI in Ibadan, Nigeria. Ninety-eight children under the age of five years hospitalized with LRTI were recruited and matched by age (±3 months), sex, and geographical location to 99 community-based controls without LRTI. Participants' homes were visited and sampled over a 14-day period for airborne house dust using electrostatic dustfall collectors (EDC). In airborne dust samples, the composition of bacterial and fungal communities was characterized by a meta-barcoding approach using amplicons targeting simultaneously the bacterial 16S rRNA gene and the internal-transcribed-spacer (ITS) region-1 of fungi in association with the SILVA and UNITE database respectively. A 100-unit change in house dust bacterial, but not fungal, richness (OR 1.06; 95%CI 1.03-1.10) and a 1-unit change in Shannon diversity (OR 1.92; 95%CI 1.28-3.01) were both independently associated with childhood LRTI after adjusting for other indoor environmental risk factors. Beta-diversity analysis showed that bacterial (PERMANOVA p < 0.001, R2 = 0.036) and fungal (PERMANOVA p < 0.001, R2 = 0.028) community composition differed significantly between homes of cases and controls. Pair-wise differential abundance analysis using both DESEq2 and MaAsLin2 consistently identified the bacterial phyla Deinococcota (Benjamini-Hochberg (BH) adjusted p-value <0.001) and Bacteriodota (BH-adjusted p-value = 0.004) to be negatively associated with LRTI. Within the fungal microbiota, phylum Ascomycota abundance (BH adjusted p-value <0.001) was observed to be directly associated with LRTI, while Basidiomycota abundance (BH adjusted p-value <0.001) was negatively associated with LRTI. Our study suggests that early-life exposure to certain airborne bacterial and fungal communities is associated with LRTI among children under the age of five years.
Collapse
Affiliation(s)
- Adekunle G Fakunle
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa; Department of Public Health, Osun State University, Osogbo, Nigeria.
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa
| | - Alex Bossers
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Netherlands
| | - Warner van Kersen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Netherlands
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Netherlands
| |
Collapse
|
6
|
Costa T, Veiga MI, Osório NS, Neves NM, Aguilar H, Fraga AG. Development of polyurethane antimicrobial coatings by composition with phenolic-, ionic- and copper-based agents. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023; 24:6942-6957. [DOI: 10.1016/j.jmrt.2023.04.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Fakunle AG, Jafta N, Smit LAM, Naidoo RN. Indoor bacterial and fungal aerosols as predictors of lower respiratory tract infections among under-five children in Ibadan, Nigeria. BMC Pulm Med 2022; 22:471. [PMID: 36494686 PMCID: PMC9733100 DOI: 10.1186/s12890-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. METHODS One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child's health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≤ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. RESULTS Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44-4.97), TBC (aOR = 2.51, 95% CI 1.36-4.65), TFC (aOR = 2.75, 95% CI 1.54-4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08-3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55-5.79) were independently associated with LRTI risk among under-five children. CONCLUSIONS This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols.
Collapse
Affiliation(s)
- Adekunle Gregory Fakunle
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
- Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa
| | - Lidwien A M Smit
- Institute for Risk Assessment (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
| |
Collapse
|
8
|
Zhang Y, Shen F, Yang Y, Niu M, Chen D, Chen L, Wang S, Zheng Y, Sun Y, Zhou F, Qian H, Wu Y, Zhu T. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6282-6293. [PMID: 35512288 PMCID: PMC9113006 DOI: 10.1021/acs.est.2c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/04/2023]
Abstract
Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.
Collapse
Affiliation(s)
- Yin Zhang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Yi Yang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Mutong Niu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Da Chen
- School
of Environment and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Longfei Chen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Shengqi Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Sun
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Feng Zhou
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hua Qian
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Wu
- School of
Environmental Science and Engineering, Shandong
University, Jinan 250100, China
| | - Tianle Zhu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|
10
|
Fenga C. [Editorial] Gut microbiota modulation: A tailored approach for the prevention of chronic diseases. Biomed Rep 2022; 16:23. [PMID: 35251610 PMCID: PMC8889539 DOI: 10.3892/br.2022.1506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| |
Collapse
|
11
|
Fakunle AG, Jafta N, Naidoo RN, Smit LAM. Association of indoor microbial aerosols with respiratory symptoms among under-five children: a systematic review and meta-analysis. Environ Health 2021; 20:77. [PMID: 34210330 PMCID: PMC8252236 DOI: 10.1186/s12940-021-00759-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Despite the recognition of the importance of indoor microbial exposures on children's health, the role of different microbial agents in development and aggravation of respiratory symptoms and diseases is only poorly understood. This study aimed to assess whether exposure to microbial aerosols within the indoor environment are associated with respiratory symptoms among children under-5 years of age. METHODS A systematic literature search was conducted on PubMed, Web of Science, GreenFILE, ScienceDirect, EMBASE and Cochrane library through February 2020. Studies that investigated the exposure-response relationship between components of the indoor microbial communities and respiratory symptoms among under-five children were eligible for inclusion. A random-effect meta-analysis was applied to estimate pooled relative risk (RR) and 95% confidence interval (CI) for study specific high versus low microbial exposures. The potential effect of individual studies on the overall estimate was evaluated using leave-one-out analysis, while heterogeneity was evaluated by I2 statistics using RevMan 5.3. RESULTS Fifteen studies were eligible for inclusion in a meta-analysis. The pooled risk estimate suggested that increased microbial exposure was associated with an increased risk of respiratory symptoms [pooled relative risk (RR): 1.24 (1.09, 1.41), P = 0.001]. The association was strongest with exposure to a combination of Aspergillus, Penicillium, Cladosporium and Alternaria species [pooled RR: 1.73 (1.30, 2.31), P = 0.0002]. Stratified analysis revealed an increased risk of wheeze [pooled RR: 1.20 (1.05, 1.37), P = 0.007 and allergic rhinitis [RR: 1.18 (0.94, 1.98), P = 0.16] from any microbial exposure. CONCLUSIONS Microbial exposures are, in general, associated with risk of respiratory symptoms. Future studies are needed to study the indoor microbiome more comprehensively, and to investigate the mechanism of these associations.
Collapse
Affiliation(s)
- Adekunle Gregory Fakunle
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Department of Medicine, University of Ibadan, Ibadan, 200284 Nigeria
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Environmental Epidemiology Division (IRAS-EEPI), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Ghazarian AA, Simonds NI, Lai GY, Mechanic LE. Opportunities for Gene and Environment Research in Cancer: An Updated Review of NCI's Extramural Grant Portfolio. Cancer Epidemiol Biomarkers Prev 2020; 30:576-583. [PMID: 33323360 DOI: 10.1158/1055-9965.epi-20-1264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The study of gene-environment (GxE) interactions is a research priority for the NCI. Previously, our group analyzed NCI's extramural grant portfolio from fiscal years (FY) 2007 to 2009 to determine the state of the science in GxE research. This study builds upon our previous effort and examines changes in the landscape of GxE cancer research funded by NCI. METHODS The NCI grant portfolio was examined from FY 2010 to 2018 using the iSearch application. A time-trend analysis was conducted to explore changes over the study interval. RESULTS A total of 107 grants met the search criteria and were abstracted. The most common cancer types studied were breast (19.6%) and colorectal (18.7%). Most grants focused on GxE using specific candidate genes (69.2%) compared with agnostic approaches using genome-wide (26.2%) or whole-exome/whole-genome next-generation sequencing (NGS) approaches (19.6%); some grants used more than one approach to assess genetic variation. More funded grants incorporated NGS technologies in FY 2016-2018 compared with prior FYs. Environmental exposures most commonly examined were energy balance (46.7%) and drugs/treatment (40.2%). Over the time interval, we observed a decrease in energy balance applications with a concurrent increase in drug/treatment applications. CONCLUSIONS Research in GxE interactions has continued to concentrate on common cancers, while there have been some shifts in focus of genetic and environmental exposures. Opportunities exist to study less common cancers, apply new technologies, and increase racial/ethnic diversity. IMPACT This analysis of NCI's extramural grant portfolio updates previous efforts and provides a review of NCI grant support for GxE research.
Collapse
Affiliation(s)
- Armen A Ghazarian
- Environmental Epidemiology Branch, Epidemiology and Genomics Research Program (EGRP), Division of Cancer Control and Population Sciences (DCCPS), NCI, Bethesda, Maryland
| | | | - Gabriel Y Lai
- Environmental Epidemiology Branch, Epidemiology and Genomics Research Program (EGRP), Division of Cancer Control and Population Sciences (DCCPS), NCI, Bethesda, Maryland
| | - Leah E Mechanic
- Genomic Epidemiology Branch, EGRP, DCCPS, NCI, Bethesda, Maryland.
| |
Collapse
|
13
|
Fantke P, von Goetz N, Schlüter U, Bessems J, Connolly A, Dudzina T, Ahrens A, Bridges J, Coggins MA, Conrad A, Hänninen O, Heinemeyer G, Kephalopoulos S, McLachlan M, Meijster T, Poulsen V, Rother D, Vermeire T, Viegas S, Vlaanderen J, Jeddi MZ, Bruinen de Bruin Y. Building a European exposure science strategy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:917-924. [PMID: 31792311 PMCID: PMC7704392 DOI: 10.1038/s41370-019-0193-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 11/02/2019] [Indexed: 05/22/2023]
Abstract
Exposure information is a critical element in various regulatory and non-regulatory frameworks in Europe and elsewhere. Exposure science supports to ensure safe environments, reduce human health risks, and foster a sustainable future. However, increasing diversity in regulations and the lack of a professional identity as exposure scientists currently hamper developing the field and uptake into European policy. In response, we discuss trends, and identify three key needs for advancing and harmonizing exposure science and its application in Europe. We provide overarching building blocks and define six long-term activities to address the identified key needs, and to iteratively improve guidelines, tools, data, and education. More specifically, we propose creating European networks to maximize synergies with adjacent fields and identify funding opportunities, building common exposure assessment approaches across regulations, providing tiered education and training programmes, developing an aligned and integrated exposure assessment framework, offering best practices guidance, and launching an exposure information exchange platform. Dedicated working groups will further specify these activities in a consistent action plan. Together, these elements form the foundation for establishing goals and an action roadmap for successfully developing and implementing a 'European Exposure Science Strategy' 2020-2030, which is aligned with advances in science and technology.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark.
| | | | - Urs Schlüter
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - Jos Bessems
- Flemish Institute for Technological Research, Mol, Belgium
| | - Alison Connolly
- School of Physics and the Ryan Institute, National University of Ireland, Galway, Ireland
| | | | | | - Jim Bridges
- Research for Sustainability, University of Surrey, Guildford, UK
| | - Marie A Coggins
- School of Physics and the Ryan Institute, National University of Ireland, Galway, Ireland
| | - André Conrad
- German Environment Agency, Dessau-Roßlau, Germany
| | | | | | - Stylianos Kephalopoulos
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | | | | | | | - Dag Rother
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - Theo Vermeire
- National Institute for Public Health and the Environment, Utrecht, Netherlands
| | - Susana Viegas
- H&TRC Health & Technology Research Center, ESTeSL Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CISP Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jelle Vlaanderen
- Institutes for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Maryam Zare Jeddi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Yuri Bruinen de Bruin
- European Commission, Joint Research Centre, Directorate E-Space, Security and Migration, Ispra, Italy.
| |
Collapse
|
14
|
A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbes are widespread and have been much more studied in recent years. In this review, we describe detailed information on airborne microbes that commonly originate from soil and water through liquid–air and soil–air interface. The common bacteria and fungi in the atmosphere are the phyla of Firmicutes, Proteobacteria, Bacteroides, Actinobacteria, Cyanobacteria and Ascomycota, Basidiomycota, Chytridiomycota, Rozellomycota that include most pathogens leading to several health problems. In addition, the stability of microbial community structure in bioaerosols could be affected by many factors and some special weather conditions like dust events even can transport foreign pathogens to other regions, affecting human health. Such environments are common for a particular place and affect the nature and interaction of airborne microbes with them. For instance, meteorological factors, haze and foggy days greatly influence the concentration and abundance of airborne microbes. However, as microorganisms in the atmosphere are attached on particulate matters (PM), the high concentration of chemical pollutants in PM tends to restrain the growth of microbes, especially gathering atmospheric pollutants in heavy haze days. Moreover, moderate haze concentration and/or common chemical components could provide suitable microenvironments and nutrition for airborne microorganism survival. In summary, the study reviews much information and characteristics of airborne microbes for further study.
Collapse
|
15
|
Continental-Scale Microbiome Study Reveals Different Environmental Characteristics Determining Microbial Richness, Composition, and Quantity in Hotel Rooms. mSystems 2020; 5:5/3/e00119-20. [PMID: 32430405 PMCID: PMC7253364 DOI: 10.1128/msystems.00119-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This is the first microbiome study to characterize the microbiome data and associated environmental characteristics in hotel environments. In this study, we found concordant variation between fungal compositional variation and absolute quantity and discordant variation between community variation/quantity and richness. Our study can be used to promote hotel hygiene standards and provide resource information for future microbiome and exposure studies associated with health effects in hotel rooms. Culture-independent microbiome surveys have been conducted in homes, hospitals, schools, kindergartens and vehicles for public transport, revealing diverse microbial distributions in built environments. However, microbiome composition and the associated environmental characteristics have not been characterized in hotel environments. We presented here the first continental-scale microbiome study of hotel rooms (n = 68) spanning Asia and Europe. Bacterial and fungal communities were described by amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS) region and quantitative PCR. Similar numbers of bacterial (4,344) and fungal (4,555) operational taxonomic units were identified in the same sequencing depth, but most fungal taxa showed a restricted distribution compared to bacterial taxa. Aerobic, ubiquitous bacteria dominated the hotel microbiome with compositional similarity to previous samples from building and human nasopharynx environments. The abundance of Aspergillus was negatively correlated with latitude and accounted for ∼80% of the total fungal load in seven low-latitude hotels. We calculated the association between hotel microbiome and 16 indoor and outdoor environmental characteristics. Fungal composition and absolute quantity showed concordant associations with the same environmental characteristics, including latitude, quality of the interior, proximity to the sea, and visible mold, while fungal richness was negatively associated with heavy traffic (95% confidence interval [CI] = −127.05 to −0.25) and wall-to-wall carpet (95% CI = −47.60 to −3.82). Bacterial compositional variation was associated with latitude, quality of the interior, and floor type, while bacterial richness was negatively associated with recent redecoration (95% CI −179.00 to −44.55) and mechanical ventilation (95% CI = −136.71 to −5.12). IMPORTANCE This is the first microbiome study to characterize the microbiome data and associated environmental characteristics in hotel environments. In this study, we found concordant variation between fungal compositional variation and absolute quantity and discordant variation between community variation/quantity and richness. Our study can be used to promote hotel hygiene standards and provide resource information for future microbiome and exposure studies associated with health effects in hotel rooms.
Collapse
|
16
|
Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:219-235. [PMID: 31308484 PMCID: PMC7100162 DOI: 10.1038/s41370-019-0157-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 05/06/2023]
Abstract
In the constructed habitat in which we spend up to 90% of our time, architectural design influences occupants' behavioral patterns, interactions with objects, surfaces, rituals, the outside environment, and each other. Within this built environment, human behavior and building design contribute to the accrual and dispersal of microorganisms; it is a collection of fomites that transfer microorganisms; reservoirs that collect biomass; structures that induce human or air movement patterns; and space types that encourage proximity or isolation between humans whose personal microbial clouds disperse cells into buildings. There have been recent calls to incorporate building microbiology into occupant health and exposure research and standards, yet the built environment is largely viewed as a repository for microorganisms which are to be eliminated, instead of a habitat which is inexorably linked to the microbial influences of building inhabitants. Health sectors have re-evaluated the role of microorganisms in health, incorporating microorganisms into prevention and treatment protocols, yet no paradigm shift has occurred with respect to microbiology of the built environment, despite calls to do so. Technological and logistical constraints often preclude our ability to link health outcomes to indoor microbiology, yet sufficient study exists to inform the theory and implementation of the next era of research and intervention in the built environment. This review presents built environment characteristics in relation to human health and disease, explores some of the current experimental strategies and interventions which explore health in the built environment, and discusses an emerging model for fostering indoor microbiology rather than fearing it.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Savanna Lloyd
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Georgia MacCrone
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
17
|
Ben Maamar S, Hu J, Hartmann EM. Implications of indoor microbial ecology and evolution on antibiotic resistance. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:1-15. [PMID: 31591493 PMCID: PMC8075925 DOI: 10.1038/s41370-019-0171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 05/19/2023]
Abstract
The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.
Collapse
Affiliation(s)
- Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
de Rooij MMT, Smit LAM, Erbrink HJ, Hagenaars TJ, Hoek G, Ogink NWM, Winkel A, Heederik DJJ, Wouters IM. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. ENVIRONMENT INTERNATIONAL 2019; 132:105009. [PMID: 31387023 DOI: 10.1016/j.envint.2019.105009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Living in livestock-dense areas has been associated with health effects, suggesting airborne exposures to livestock farm emissions to be relevant for public health. Livestock farm emissions involve complex mixtures of various gases and particles. Endotoxin, a pro-inflammatory agent of microbial origin, is a constituent of livestock farm emitted particulate matter (PM) that is potentially related to the observed health effects. Quantification of livestock associated endotoxin exposure at residential addresses in relation to health outcomes has not been performed earlier. OBJECTIVES We aimed to assess exposure-response relations for a range of respiratory endpoints and atopic sensitization in relation to livestock farm associated PM10 and endotoxin levels. METHODS Self-reported respiratory symptoms of 12,117 persons participating in a population-based cross-sectional study were analyzed. For 2494 persons, data on lung function (spirometry) and serologically assessed atopic sensitization was additionally available. Annual-average PM10 and endotoxin concentrations at home addresses were predicted by dispersion modelling and land-use regression (LUR) modelling. Exposure-response relations were analyzed with generalized additive models. RESULTS Health outcomes were generally more strongly associated with exposure to livestock farm emitted endotoxin compared to PM10. An inverse association was observed for dispersion modelled exposure with atopic sensitization (endotoxin: p = .004, PM10: p = .07) and asthma (endotoxin: p = .029, PM10: p = .022). Prevalence of respiratory symptoms decreased with increasing endotoxin concentration at the lower range, while at the higher range prevalence increased with increasing concentration (p < .05). Associations between lung function parameters with exposure to PM10 and endotoxin were not statistically significant (p > .05). CONCLUSIONS Exposure to livestock farm emitted particulate matter is associated with respiratory health effects and atopic sensitization in non-farming residents. Results indicate endotoxin to be a potentially plausible etiologic agent, suggesting non-infectious aspects of microbial emissions from livestock farms to be important with respect to public health.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | | | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Nico W M Ogink
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Albert Winkel
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
19
|
Sun C, Zhang J, Huang C, Liu W, Zhang Y, Li B, Zhao Z, Deng Q, Zhang X, Qian H, Zou Z, Yang X, Sun Y, Sundell J. High prevalence of eczema among preschool children related to home renovation in China: A multi-city-based cross-sectional study. INDOOR AIR 2019; 29:748-760. [PMID: 31295372 DOI: 10.1111/ina.12586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/09/2023]
Abstract
We surveyed 40 010 three- to six-year-old children in seven Chinese cities (Beijing, Taiyuan, Urumqi, Shanghai, Nanjing, Changsha, and Chongqing) during 2010-2012 so as to investigate possible links between home renovation and childhood eczema. Their parents responded to questions on home renovation and childhood eczema. Multivariate and two-level (city-child) logistic regression analyses yielding odds ratios with 95% confidence intervals were performed. Sensitivity analyses stratifying data for region, climate, and income level were also performed. The prevalences of childhood eczema in children with different floor and wall covering materials were significantly different and were significantly higher with home renovation during early lifetime. Exposure to synthetic materials significantly increased the risk of childhood eczema by 20%-25%. The risks (AOR, 95% CI) of current eczema among children in families with solid wood flooring and oil paint wall covering were 1.25 (1.04-1.49) and 1.35 (1.14-1.60), respectively. Home renovation during pregnancy was related to children's lifetime and current eczema.
Collapse
Affiliation(s)
- Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- School of Architecture, Tsinghua University, Beijing, China
| | - Yinping Zhang
- School of Architecture, Tsinghua University, Beijing, China
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Key Lab of Health Technology Assessment, National Health and Family Planning Commission of the People's Republic of China, Fudan University, Shanghai, China
| | - Qihong Deng
- School of Public Health, Central South University, Changsha, China
| | - Xin Zhang
- Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xu Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Wambaugh JF, Bare JC, Carignan CC, Dionisio KL, Dodson RE, Jolliet O, Liu X, Meyer DE, Newton SR, Phillips KA, Price PS, Ring CL, Shin HM, Sobus JR, Tal T, Ulrich EM, Vallero DA, Wetmore BA, Isaacs KK. New Approach Methodologies for Exposure Science. CURRENT OPINION IN TOXICOLOGY 2019; 15:76-92. [PMID: 39748807 PMCID: PMC11694839 DOI: 10.1016/j.cotox.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical risk assessment relies on knowledge of hazard, the dose-response relationship, and exposure to characterize potential risks to public health and the environment. A chemical with minimal toxicity might pose a risk if exposures are extensive, repeated, and/or occurring during critical windows across the human life span. Exposure assessment involves understanding human activity, and this activity is confounded by interindividual variability that is both biological and behavioral. Exposures further vary between the general population and susceptible or occupationally exposed populations. Recent computational exposure efforts have tackled these problems through the creation of new tools and predictive models. These tools include machine learning to draw inferences from existing data and computer-enhanced screening analyses to generate new data. Mathematical models provide frameworks describing chemical exposure processes. These models can be statistically evaluated to establish rigorous confidence in their predictions. The computational exposure tools reviewed here are oriented toward 'high-throughput' application, that is, they are suitable for dealing with the thousands of chemicals in commerce with limited sources of chemical exposure information. These new tools and models are moving chemical exposure and risk assessment forward in the 21st century.
Collapse
Affiliation(s)
- John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jane C. Bare
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Courtney C. Carignan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoyu Liu
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David E. Meyer
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Paul S. Price
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX 76019, USA
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Tamara Tal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel A. Vallero
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
21
|
Mendell MJ, Adams RI. The challenge for microbial measurements in buildings. INDOOR AIR 2019; 29:523-526. [PMID: 31190428 DOI: 10.1111/ina.12550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Mark J Mendell
- IAQS/EHLB, California Department of Public Health, Richmond, California
| | - Rachel I Adams
- Plant & Microbial Biology, University of California, Berkeley, California
| |
Collapse
|