1
|
Zhou J, Huebner G, Liu KY, Ucci M. Heart rate variability, electrodermal activity and cognition in adults: Association with short-term indoor PM2.5 exposure in a real-world intervention study. ENVIRONMENTAL RESEARCH 2024; 263:120245. [PMID: 39490569 DOI: 10.1016/j.envres.2024.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Long-term effects of ambient fine particulate matter (PM2.5) exposure on mortality and morbidity are well established. The study aims to evaluate how short-term indoor PM2.5 exposure affects physiological responses and understand potential mechanisms mediating the cognitive outcomes in working-age adults. METHODS This real-world randomized single-blind crossover intervention study was conducted in an urban office setting, with desk-based air purifiers used as the intervention. Participants (N=40) were exposed to average PM2.5 levels of 18.0 μg/m3 in control and 3.7 μg/m3 in intervention conditions. Cognitive tests, heart rate variability (HRV), and electrodermal activity (EDA) measures were conducted after 5 hours of exposure. Self-reported mental effort, exhaustion, and task difficulty were collected after the cognitive tests. RESULTS Participants in the intervention condition had significantly higher HRV during cognitive testing, particularly in the standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), and high-frequency power (HF) indices. Mediation analysis revealed that elevated PM2.5 exposure reduced HRV indices, which mediated the effect on two executive function-related cognitive skills out of 16 assessed skills. No significant differences were found in EDA, self-reported task difficulty, or exhaustion, but self-reported mental effort was higher in the control condition. CONCLUSIONS Lower indoor PM2.5 level was associated with reduced mental effort and higher HRV during cognitive testing. Furthermore, the association between indoor PM2.5 exposure and executive function might be mediated through cardiovagal responses. These findings provide insights on the mechanisms through which fine particle exposure adversely affects the autonomic nervous system and how this in turn affects cognition. The potential cardiovascular and cognitive health benefits of PM2.5 reduction warrants further research.
Collapse
Affiliation(s)
- Jiaxu Zhou
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK.
| | - Gesche Huebner
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London (UCL), 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Marcella Ucci
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| |
Collapse
|
2
|
Salonen H, Salthammer T, Castagnoli E, Täubel M, Morawska L. Cleaning products: Their chemistry, effects on indoor air quality, and implications for human health. ENVIRONMENT INTERNATIONAL 2024; 190:108836. [PMID: 38917624 DOI: 10.1016/j.envint.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The use of cleaning and disinfecting products both at work and at home increased during the COVID-19 pandemic. Those products often include surfactants, acids/bases, carcinogens such as chloroform, and endocrine-disrupting chemicals, such as cyclosiloxanes, phthalates, and synthetic fragrances, which may cause harmful health effects among professional cleaners as well as among people exposed at home or in their workplaces. The aim of this study was to synthesize the effects of the commonly used chemical, surface cleaning and disinfecting products on indoor air quality, focusing on chemical and particulate matter pollutants, exposure, and human health in residential and public buildings. We also provide a summary of recommendations to avoid harmful exposure and suggest future research directions. PubMed, Google Scholar, Scopus, and Web of Science (WoS) were used to search the literature. Analysis of the literature revealed that the use of cleaning products and disinfectants increase occupants' exposure to a variety of harmful chemical air contaminants and to particulate matter. Occupational exposure to cleaning and disinfectant products has been linked to an increased risk of asthma and rhinitis. Residential exposure to cleaning products has been shown to have an adverse effect on respiratory health, particularly on asthma onset, and on the occurrence of asthma(-like) symptoms among children and adults. Efforts to reduce occupants' exposure to cleaning chemicals will require lowering the content of hazardous substances in cleaning products and improving ventilation during and after cleaning. Experimentally examined, best cleaning practices as well as careful selection of cleaning products can minimize the burden of harmful air pollutant exposure indoors. In addition, indirect ways to reduce exposure include increasing people's awareness of the harmfulness of cleaning chemicals and of safe cleaning practices, as well as clear labelling of cleaning and disinfecting products.
Collapse
Affiliation(s)
- Heidi Salonen
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland; Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Tunga Salthammer
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia; Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, 38108 Braunschweig, Germany.
| | - Emmanuelle Castagnoli
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Martin Täubel
- Finnish Institute for Health and Welfare, Department Health Security, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland
| | - Lidia Morawska
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Gao H, Li J, Ma Q, Zhang Q, Li M, Hu X. Causal Associations of Environmental Pollution and Cardiovascular Disease: A Two-Sample Mendelian Randomization Study. Glob Heart 2024; 19:52. [PMID: 38911616 PMCID: PMC11192098 DOI: 10.5334/gh.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Background There is growing evidence that concentrations of environmental pollutants are previously associated with cardiovascular disease; however, it is unclear whether this association reflects a causal relationship. Methods We utilized a two-sample Mendelian randomization (MR) approach to investigate how environmental pollution affects the likelihood of developing cardiovascular disease. We primarily employed the inverse variance weighted (IVW) method. Additionally, to ensure the robustness of our findings, we conducted several sensitivity analyses using alternative methodologies. These included maximum likelihood, MR-Egger regression, weighted median method and weighted model methods. Results Inverse variance weighted estimates suggested that an SD increase in PM2.5 exposure increased the risk of heart failure (OR = 1.40, 95% CI 1.02-1.93, p = 0.0386). We found that an SD increase in PM10 exposure increased the risk of hypertension (OR = 1.45, 95% CI 1.02-2.05, p = 0.03598) and atrial fibrillation (OR = 1.41, 95% CI 1.03-1.94, p = 0.03461). Exposure to chemical or other fumes in a workplace was found to increase the risk of hypertension (OR = 3.08, 95% CI 1.40-6.78, p = 0.005218), coronary artery disease (OR = 1.81, 95% CI 1.00-3.26, p = 0.04861), coronary heart disease (OR = 3.15, 95% CI 1.21-8.16, p = 0.0183) and myocardial infarction (OR = 3.03, 95% CI 1.13-8.17, p = 0.02802). Conclusion This study reveals the causal relationship between air pollutants and cardiovascular diseases, providing new insights into the protection of cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Gao
- Department of Cardiovascular Medicine, The First People’s Hospital of Shangqiu, Shangqiu 476000, China
- Graduate School, Dalian Medical University, Dalian, 116044, China
| | - Jiahai Li
- Department of Cardiovascular Medicine, The First People’s Hospital of Qinzhou, Qinzhou 535000, China
| | - Qiaoli Ma
- Department of Cardiovascular Medicine, Central Hospital of Zibo, Zibo 255000, China
| | - Qinghui Zhang
- Department of Hypertension, Henan Provincial People’s Hospital, Zhengzhou 450000, China
| | - Man Li
- Department of Cardiovascular Medicine, The First People’s Hospital of Shangqiu, Shangqiu 476000, China
| | - Xiaoliang Hu
- Department of Cardiovascular Medicine, The First People’s Hospital of Shangqiu, Shangqiu 476000, China
| |
Collapse
|
4
|
Somsunun K, Prapamontol T, Kuanpan T, Santijitpakdee T, Kohsuwan K, Jeytawan N, Thongjan N. Health Risk Assessment of Heavy Metals in Indoor Household Dust in Urban and Rural Areas of Chiang Mai and Lamphun Provinces, Thailand. TOXICS 2023; 11:1018. [PMID: 38133419 PMCID: PMC10747779 DOI: 10.3390/toxics11121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Indoor exposure to heavy metals poses human health risks worldwide, but study reports from Thailand are still limited, particularly in rural and urban areas. We measured the heavy metals in a hundred indoor household dust samples collected from urban and rural areas in Chiang Mai and Lamphun provinces and found a significantly higher concentration of As in rural areas and Cd in urban areas with industrial activities. The source identification of the heavy metals showed significant enrichment from traffic emissions, paint, smoking, and mixed sources with natural soil. From health risk assessment models, children were more vulnerable to noncarcinogenic risks (HI = 1.45), primarily via ingestion (HQ = 1.39). Lifetime cancer risks (LCRs) due to heavy metal exposure were found in adults (LCR = 5.31 × 10-4) and children (LCR = 9.05 × 10-4). The cancer risks from As were higher in rural areas via ingestion, while Cr and Ni were higher in urban areas via inhalation and ingestion, respectively. This study estimated that approximately 5 out of 10,000 adults and 9 out of 10,000 children among the population may develop cancer in their lifetime from exposure to indoor heavy metals in this region.
Collapse
Affiliation(s)
- Kawinwut Somsunun
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Todsabhorn Kuanpan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Teetawat Santijitpakdee
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Kanyapak Kohsuwan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Natwasan Jeytawan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Nathaporn Thongjan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| |
Collapse
|
5
|
Alahmadi NA, Alzahrani R, Bshnaq AG, Alkhathlan MA, Alyasi AA, Alahmadi AM, Khan MA, Zaidi SF. General Public Knowledge, Attitude, and Practice Regarding the Impact of Air Pollution and Cardiopulmonary Diseases in Jeddah, Saudi Arabia. Cureus 2023; 15:e48976. [PMID: 38024050 PMCID: PMC10657150 DOI: 10.7759/cureus.48976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Air pollution is a critical public health issue associated with various respiratory and cardiovascular diseases. The lungs and heart are the organs most affected by air pollution, and damage to these organs is strongly associated with inhaled particulate matter produced by burning fossil fuels. Household and ambient air pollution have been closely linked to lower respiratory infections, with ambient air pollution alone estimated to be responsible for millions of deaths globally each year. Therefore, this study aimed to assess the general public knowledge attitude and practice regarding air pollution and cardiopulmonary morbidity in Jeddah, Saudi Arabia. Methods The study was conducted in Saudi Arabia using a self-administered questionnaire distributed through popular social media apps. A snowball sampling technique was used, including only Saudi citizens aged 18 or older. The questionnaire consisted of 30 questions derived from a comprehensive literature review on the subject matter. Questions were validated through face validity, pilot testing, and Cronbach's alpha reliability measurement. The questionnaire included questions on demographic data, knowledge of air pollution, the relationship between air pollution and cardiopulmonary diseases, and attitudes and practices toward lowering exposure to air pollution. Results The study included 649 participants, with a mean age of 32.11 ± 13.47 years, and over half were females (54.7%). Most participants were aware of outdoor and indoor air pollution, but only a tiny percentage recognized cooking as a primary indoor source of pollution. However, the majority believed that indoor pollution could contribute to outdoor pollution. Participants associated air pollution with cardiopulmonary diseases, mainly secondhand tobacco smoke and outdoor air pollution caused by factories and industrial facilities. Knowledge and practice levels varied, with older individuals, females, and those in non-health-related occupations having higher levels of knowledge. Positive attitudes, particularly believing that moving to a less polluted area improves health, were associated with better knowledge. Females exhibited better air pollution-related practices, and there was a positive correlation between knowledge and practice scores. Conclusion The study highlighted the need for targeted public health campaigns to improve awareness and promote healthier practices, particularly among young adults, to mitigate the potential health impacts of air pollution, especially cardiopulmonary health.
Collapse
Affiliation(s)
- Nawaf A Alahmadi
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Research and Development, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Rakan Alzahrani
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Abdullatif G Bshnaq
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Research and Development, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Mohammed A Alkhathlan
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Research and Development, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Abdulrahman A Alyasi
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Research and Development, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Abeer M Alahmadi
- Family Medicine, Program of Postgraduate Studies in Family Medicine, Public Health Administration, Ministery of Health, Jeddah, SAU
| | - Muhammad A Khan
- Medical Education, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Syed Faisal Zaidi
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Faculty of Eastern Medicine, Hamdard University, Islamabad, PAK
| |
Collapse
|
6
|
Yang S, Muthalagu A, Serrano VG, Licina D. Human personal air pollution clouds in a naturally ventilated office during the COVID-19 pandemic. BUILDING AND ENVIRONMENT 2023; 236:110280. [PMID: 37064616 PMCID: PMC10080864 DOI: 10.1016/j.buildenv.2023.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 μg/m3), CO2 (630 ppm), and PM10 (14 μg/m3) were below the recommended limits, except for formaldehyde (58 μg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 μg/m3, 32-120 ppm, and 4-9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akila Muthalagu
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Systems Group, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Park YM, Chavez D, Sousan S, Figueroa-Bernal N, Alvarez JR, Rocha-Peralta J. Personal exposure monitoring using GPS-enabled portable air pollution sensors: A strategy to promote citizen awareness and behavioral changes regarding indoor and outdoor air pollution. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:347-357. [PMID: 36513791 PMCID: PMC10238623 DOI: 10.1038/s41370-022-00515-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Little is known about how individuals are exposed to air pollution in various daily activity spaces due to a lack of data collected in the full range of spatial contexts in which they spend their time. The limited understanding makes it difficult for people to act in informed ways to reduce their exposure both indoors and outdoors. OBJECTIVE This study aimed to (1) assess whether personalized air quality data collected using GPS-enabled portable monitors (GeoAir2), coupled with travel-activity diaries, promote people's awareness and behavioral changes regarding indoor and outdoor air pollution and (2) demonstrate the effect of places and activities on personal exposure by analyzing individual exposure profiles. METHODS 44 participants carried GeoAir2 to collect geo-referenced air pollution data and completed travel-activity diaries for three days. These data were then combined for spatial data analysis and visualization. Participants also completed pre- and post-session surveys about awareness and behaviors regarding air pollution. Paired-sample t-tests were performed to evaluate changes in knowledge, attitudes/perceptions, and behavioral intentions/practices, respectively. Lastly, follow-up interviews were conducted with a subset of participants. RESULTS Most participants experienced PM2.5 peaks indoors, especially when cooking at home, and had the lowest exposure in transit. Participants reported becoming more aware of air quality in their surroundings and more concerned about its health effects (t = 3.92, p = 0.000) and took more action or were more motivated to alter their behaviors to mitigate their exposure (t = 3.40, p = 0.000) after the intervention than before. However, there was no significant improvement in knowledge (t = 0.897; p = 0.187). SIGNIFICANCE Personal exposure monitoring, combined with travel-activity diaries, leads to positive changes in attitudes, perceptions, and behaviors related to air pollution. This study highlights the importance of citizen engagement in air monitoring for effective risk communication and air pollution management.
Collapse
Affiliation(s)
- Yoo Min Park
- Department of Geography, Planning, and Environment, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC, 27858, USA.
| | - Denise Chavez
- Department of Geography, Planning, and Environment, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC, 27858, USA
| | - Sinan Sousan
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
- North Carolina Agromedicine Institute, Greenville, NC, 27834, USA
| | - Natalia Figueroa-Bernal
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
- Association of Mexicans in North Carolina, Greenville, NC, 27834, USA
| | | | | |
Collapse
|
8
|
Gul HK, Gullu G, Babaei P, Nikravan A, Kurt-Karakus PB, Salihoglu G. Assessment of house dust trace elements and human exposure in Ankara, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7718-7735. [PMID: 36044148 PMCID: PMC9428879 DOI: 10.1007/s11356-022-22700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
One of the impacts of the COVID-19 pandemic is leading people remain at homes longer than ever. Considering the elongation of the time people spend indoors, the potential health risks caused by contaminants including heavy metals in indoor environments have become even more critical. The purpose of this study was to evaluate the levels and sources of heavy metals in indoor dust, to assess the exposure to heavy metals via indoor dust, and to estimate the associated health risk. The highest median value was measured for Zn (263 μg g-1), while the lowest median concentration value was observed for Cd (0.348 μg g-1). The levels of elements measured in the current study were found to be within the ranges reported in the other parts of the world, mostly close to the lower end of the range. House characteristics such as proximity to the main street, presence of pets, number of occupants, and age of the building were the house characteristics influencing the observed higher concentrations of certain heavy metals in houses. Enrichment factor values range between 1.79 (Cr) and 20.4 (Zn) with an average EF value of 8.80 ± 6.80 representing that the targeted elements are enriched (EF>2) in indoor dust in Ankara. Positive matrix factorization results showed that the heavy metals in the house dust in the study area are mainly contributed from sources namely outdoor dust, carpets/furniture, solders, wall paint/coal combustion, and cigarette smoke. Carcinogenic and non-carcinogenic risk values from heavy metals did not exceed the safe limits recommended by EPA. The highest carcinogenic risk level was caused by Cr. The risk through ingestion was higher than inhalation, and the risk levels were higher for children than for adults.
Collapse
Affiliation(s)
- Hatice Kubra Gul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Gulen Gullu
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Parisa Babaei
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Afsoun Nikravan
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Perihan Binnur Kurt-Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| | - Guray Salihoglu
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
9
|
Recchioni A, Makanvand M, Poonit N, Wallace GR, Bartington S, Bloss W, Rauz S. The impact of the first United Kingdom COVID-19 lockdown on environmental air pollution, digital display device use and ocular surface disease symptomatology amongst shielding patients. Sci Rep 2022; 12:20820. [PMID: 36460705 PMCID: PMC9716517 DOI: 10.1038/s41598-022-24650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Worldwide lockdown reduced air pollution during the first phase of the COVID-19 pandemic. The relationship between exposure to ambient air pollution, digital display device use and dry eye symptoms amongst patients with severe ocular surface disease (OSD) were considered. Symptoms and air pollutant concentrations for three different time periods (pre, during and post COVID-19 lockdown) were analysed in 35 OSD patients who achieved an immunosuppression risk-stratification score > 3 fulfilling the UK Government criteria for 12-week shielding. OSDI symptoms questionnaire, residential postcode air pollution data obtained from the Defra Automated Urban and Rural monitoring network for concentrations of nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM) with diameters below 10 µm and 2.5 µm, and English Indices of Deprivation were analysed. Significant reductions in NO2 and NOx concentrations were observed between pre- and during-lockdown periods, followed by a reversal in the post-lockdown period. Changes were linked to the Living Environment outdoor decile. A 12% increase (p = 0.381) in symptomatology during-lockdown was observed that reversed post-lockdown by 19% (p = 0.144). OSDI scores were significantly correlated with hours spent on digital devices (r2 = 0.243) but not with air pollutant concentrations. Lockdown measures reduced ambient air pollutants whilst OSD symptomatology persisted. Environmental factors such as increased time indoors and use of bluescreen digital devices may have partly played a role.
Collapse
Affiliation(s)
- Alberto Recchioni
- grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK ,grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Dudley Road, Birmingham, UK ,grid.7273.10000 0004 0376 4727Optometry and Vision Sciences Group, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Maryam Makanvand
- grid.6572.60000 0004 1936 7486School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Natraj Poonit
- grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Dudley Road, Birmingham, UK
| | - Graham R. Wallace
- grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Suzanne Bartington
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - William Bloss
- grid.6572.60000 0004 1936 7486School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK ,grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Dudley Road, Birmingham, UK
| |
Collapse
|
10
|
Kumar R, Adhikari S, Driver EM, Smith T, Bhatnagar A, Lorkiewicz PK, Xie Z, Hoetker JD, Halden RU. Towards a novel application of wastewater-based epidemiology in population-wide assessment of exposure to volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157008. [PMID: 35772546 DOI: 10.1016/j.scitotenv.2022.157008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the feasibility of detecting 35 urinary biomarkers of volatile organic compounds (VOCs) exposure in community wastewater. 24-h composited municipal wastewater samples were collected from two communities (n = 8) in the southeastern US. Using isotope-dilution liquid chromatography-tandem mass spectrometry, results showed 16 metabolites were detected in wastewater samples, including indicators of exposure to acrolein, acrylonitrile, 1,3-butadiene, crotonaldehyde, n,n-dimethylformamide (DMF), ethylbenzene, nicotine, propylene oxide, styrene, tetrachloroethylene, toluene, and xylene. Additional metabolites qualitatively identified exposure to acrylamide and trichloroethylene. Community 1 (closer proximity to manufacturing facilities) had a greater number of detects (n = 36) and higher VOC loadings, 22,000 mg day-1 per 1000 people, as compared to Community 2 (n = 28), 7100 mg day-1 per 1000 people. Normalizing to nicotine consumption biomarkers to account for differences in smoking behaviors, Community 1 continued to have higher levels of propylene oxide, crotonaldehyde, DMF, and acrylonitrile exposures, VOCs generally sourced from manufacturing activities and vehicle emissions. This is the first study to utilize wastewater to detect urinary biomarkers of VOCs exposure. These preliminary results suggest the WBE approach as a potentially powerful tool to assess community health exposures to indoor and outdoor air pollutants.
Collapse
Affiliation(s)
- Rahul Kumar
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Ted Smith
- Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Pawel K Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - J David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; One Water One Health, Non-profit Project of Arizona State University Foundation, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. ENVIRONMENTAL RESEARCH 2022; 213:113579. [PMID: 35714688 PMCID: PMC9192357 DOI: 10.1016/j.envres.2022.113579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Airborne transmission arises through the inhalation of aerosol droplets exhaled by an infected person and is now thought to be the primary transmission route of COVID-19. Thus, maintaining adequate indoor air quality levels is vital in mitigating the spread of the airborne virus. The cause-and-effect flow of various agents involved in airborne transmission of viruses has been investigated through a systematic literature review. It has been identified that the airborne virus can stay infectious in the air for hours, and pollutants such as particulate matter (PM10, PM2.5), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs) and other air pollutants can enhance the incidence, spread and mortality rates of viral disease. Also, environmental quality parameters such as humidity and temperature have shown considerable influence in virus transmission in indoor spaces. The measures adopted in different research studies that can curb airborne transmission of viruses for an improved Indoor Air Quality (IAQ) have been collated for their effectiveness and limitations. A diverse set of building strategies, components, and operation techniques from the recent literature pertaining to the ongoing spread of COVID-19 disease has been systematically presented to understand the current state of techniques and building systems that can minimize the viral spread in built spaces This comprehensive review will help architects, builders, realtors, and other organizations improve or design a resilient building system to deal with COVID-19 or any such pandemic in the future.
Collapse
Affiliation(s)
- Ajith N Nair
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Prashant Anand
- Department of Architecture and Regional Planning, IIT, Kharagpur, India.
| | - Abraham George
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Nilabhra Mondal
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| |
Collapse
|
12
|
Urrutia-Pereira M, Chong-Neto HJ, Annesi Maesano I, Ansotegui IJ, Caraballo L, Cecchi L, Galán C, López JF, Aguttes MM, Peden D, Pomés A, Zakzuk J, Rosário Filho NA, D'Amato G. Environmental contributions to the interactions of COVID-19 and asthma: A secondary publication and update. World Allergy Organ J 2022; 15:100686. [PMID: 35966894 PMCID: PMC9359502 DOI: 10.1016/j.waojou.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, China and quickly spread around the world. Current evidence is contradictory on the association of asthma with COVID-19 and associated severe outcomes. Type 2 inflammation may reduce the risk for severe COVID-19. Whether asthma diagnosis may be a risk factor for severe COVID-19, especially for those with severe disease or non-allergic phenotypes, deserves further attention and clarification. In addition, COVID-19 does not appear to provoke asthma exacerbations, and asthma therapeutics should be continued for patients with exposure to COVID-19. Changes in the intensity of pollinization, an earlier start and extension of the pollinating season, and the increase in production and allergenicity of pollen are known direct effects that air pollution has on physical, chemical, and biological properties of the pollen grains. They are influenced and triggered by meteorological variables that could partially explain the effect on COVID-19. SARS-CoV-2 is capable of persisting in the environment and can be transported by bioaerosols which can further influence its transmission rate and seasonality. The COVID-19 pandemic has changed the behavior of adults and children globally. A general trend during the pandemic has been human isolation indoors due to school lockdowns and loss of job or implementation of virtual work at home. A consequence of this behavior change would presumably be changes in indoor allergen exposures and reduction of inhaled outdoor allergens. Therefore, lockdowns during the pandemic might have improved some specific allergies, while worsening others, depending on the housing conditions.
Collapse
Affiliation(s)
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabella Annesi Maesano
- French NIH (INSERM), and EPAR Department, IPLESP, INSERM and Sorbonne University, Paris, France
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| |
Collapse
|
13
|
Ilacqua V, Scharko N, Zambrana J, Malashock D. Survey of residential indoor particulate matter measurements 1990-2019. INDOOR AIR 2022; 32:e13057. [PMID: 35904386 PMCID: PMC10499005 DOI: 10.1111/ina.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
We surveyed literature on measurements of indoor particulate matter in all size fractions, in residential environments free of solid fuel combustion (other than wood for recreation or space heating). Data from worldwide studies from 1990 to 2019 were assembled into the most comprehensive collection to date. Out of 2752 publications retrieved, 538 articles from 433 research projects met inclusion criteria and reported unique data, from which more than 2000 unique sets of indoor PM measurements were collected. Distributions of mean concentrations were compiled, weighted by study size. Long-term trends, the impact of non-smoking, air cleaners, and the influence of outdoor PM were also evaluated. Similar patterns of indoor PM distributions for North America and Europe could reflect similarities in the indoor environments of these regions. Greater observed variability for all regions of Asia may reflect greater heterogeneity in indoor conditions, but also low numbers of studies for some regions. Indoor PM concentrations of all size fractions were mostly stable over the survey period, with the exception of observed declines in PM2.5 in European and North American studies, and in PM10 in North America. While outdoor concentrations were correlated with indoor concentrations across studies, indoor concentrations had higher variability, illustrating a limitation of using outdoor measurements to approximate indoor PM exposures.
Collapse
Affiliation(s)
- Vito Ilacqua
- Indoor Environments Division, United States Environmental Protection Agency, Washington, District of Columbia, USA
| | - Nicole Scharko
- American Association for the Advancement of Science (AAAS) - Science, Technology, and Policy Fellow, Washington, District of Columbia, USA
| | - Jordan Zambrana
- Indoor Environments Division, United States Environmental Protection Agency, Washington, District of Columbia, USA
| | - Daniel Malashock
- Indoor Environments Division, United States Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Ammons S, Aja H, Ghazarian AA, Lai GY, Ellison GL. Perception of worry of harm from air pollution: results from the Health Information National Trends Survey (HINTS). BMC Public Health 2022; 22:1254. [PMID: 35752789 PMCID: PMC9233822 DOI: 10.1186/s12889-022-13450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Air pollution exposure has been associated with a multitude of diseases and poses a significant concern to public health. For targeted environmental risk communication and interventions to be effective, it is important to correctly identify characteristics associated with worry of harm from air pollution. Methods Using responses from 3,630 participants of the Health Information National Trends Survey 4 Cycle 2, we assessed worry of harm from exposure to indoor (IAP) and outdoor (OAP) air pollution separately. Multinomial logistic regression models were used to calculate odds ratios and 95% confidence intervals. Results Hispanics were more likely to worry about harm from IAP and OAP compared to non-Hispanic whites. Participants who lived in metropolitan counties were more likely to worry about harm from IAP and OAP compared to those who lived in rural counties. Finally, those who believed their chance of getting cancer was high were more likely to worry about harm from IAP and OAP compared to those who thought their likelihood of getting cancer was low. Conclusions Worry of harm from IAP and OAP varied across sociodemographic and cancer-related characteristics. Public health professionals should consider these characteristics when developing targeted environmental risk communication and interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13450-z.
Collapse
Affiliation(s)
- Samantha Ammons
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Hayley Aja
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA.,Extramural Research Branch, Extramural Research and Partnerships Division, Office of Science Advisor, Policy, and Engagement, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Armen A Ghazarian
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Gabriel Y Lai
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
| | - Gary L Ellison
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA.
| |
Collapse
|
15
|
Neighborhood Characteristics and Racial Disparities in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Seropositivity in Pregnancy. Obstet Gynecol 2022; 139:1018-1026. [PMID: 35675599 DOI: 10.1097/aog.0000000000004791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To quantify the extent to which neighborhood characteristics contribute to racial and ethnic disparities in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity in pregnancy. METHODS This cohort study included pregnant patients who presented for childbirth at two hospitals in Philadelphia, Pennsylvania from April 13 to December 31, 2020. Seropositivity for SARS-CoV-2 was determined by measuring immunoglobulin G and immunoglobulin M antibodies by enzyme-linked immunosorbent assay in discarded maternal serum samples obtained for clinical purposes. Race and ethnicity were self-reported and abstracted from medical records. Patients' residential addresses were geocoded to obtain three Census tract variables: community deprivation, racial segregation (Index of Concentration at the Extremes), and crowding. Multivariable mixed effects logistic regression models and causal mediation analyses were used to quantify the extent to which neighborhood variables may explain racial and ethnic disparities in seropositivity. RESULTS Among 5,991 pregnant patients, 562 (9.4%) were seropositive for SARS-CoV-2. Higher seropositivity rates were observed among Hispanic (19.3%, 104/538) and Black (14.0%, 373/2,658) patients, compared with Asian (3.2%, 13/406) patients, White (2.7%, 57/2,133) patients, and patients of another race or ethnicity (5.9%, 15/256) (P<.001). In adjusted models, per SD increase, deprivation (adjusted odds ratio [aOR] 1.16, 95% CI 1.02-1.32) and crowding (aOR 1.15, 95% CI 1.05-1.26) were associated with seropositivity, but segregation was not (aOR 0.90, 95% CI 0.78-1.04). Mediation analyses revealed that crowded housing may explain 6.7% (95% CI 2.0-14.7%) of the Hispanic-White disparity and that neighborhood deprivation may explain 10.2% (95% CI 0.5-21.1%) of the Black-White disparity. CONCLUSION Neighborhood deprivation and crowding were associated with SARS-CoV-2 seropositivity in pregnancy in the prevaccination era and may partially explain high rates of SARS-CoV-2 seropositivity among Black and Hispanic patients. Investing in structural neighborhood improvements may reduce inequities in viral transmission.
Collapse
|
16
|
Chan AY, Kim H, Bell ML. Higher incidence of novel coronavirus (COVID-19) cases in areas with combined sewer systems, heavy precipitation, and high percentages of impervious surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153227. [PMID: 35051454 PMCID: PMC8763406 DOI: 10.1016/j.scitotenv.2022.153227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Combined sewer systems (CSS) are water management systems that collect and transport stormwater and sewer water in the same pipes. During large storm events, stormwater runoff may exceed the capacity of the system and lead to combined sewer overflows (CSOs), where untreated sewer and stormwater are released into the environment. Though current literature reveals inconclusive evidence regarding the infectivity of SARS-CoV-2 in wastewater, detection of infectious SARS-CoV-2 in urine and feces of COVID-19 patients led to concerns that areas contaminated by CSOs may be a reservoir of SARS-CoV-2 and may result in illness after the ingestion and/or inhalation of contaminated splashes, droplets, or aerosols. We investigated the association between COVID-19 incidence and CSSs and whether this association differed by precipitation and percent impervious surfaces as a proxy for possible CSOs. We fitted a quasi-Poisson regression model to estimate the change in percentage of incidence rate of COVID-19 cases in counties with a CSS compared to those without, adjusting for potential confounders (i.e., state, population density, date of first documented COVID-19 case, social vulnerability, and percent vaccinated) and including interaction variables between CSS, precipitation, and impervious surfaces. Our findings suggest that heavy precipitation in combination with high percentages of imperviousness is associated with higher incidences of COVID-19 cases in counties with a CSS compared to in counties without (p-value = 2.5e-9). For example, CSS-counties with precipitation of 10 in/month may observe a higher incidence in COVID-19 cases compared to non-CSS counties if their impervious surfaces exceed 33.5% [95%CI: 23.0%, 60.0%]. We theorize that more COVID-19 cases may be seen in counties with a CSS, heavy precipitation, and high percentages of impervious surfaces because of the possible increase in frequency and severity of CSOs. The results suggest links between climate change, urbanization, and COVID-19.
Collapse
Affiliation(s)
- Alisha Yee Chan
- Yale University, School of Engineering and Applied Science, Department of Chemical and Environmental Engineering, New Haven, CT, USA.
| | - Honghyok Kim
- Yale University, School of the Environment, New Haven, CT, USA
| | - Michelle L Bell
- Yale University, School of the Environment, New Haven, CT, USA
| |
Collapse
|
17
|
Isley CF, Fry KL, Liu X, Filippelli GM, Entwistle JA, Martin AP, Kah M, Meza-Figueroa D, Shukle JT, Jabeen K, Famuyiwa AO, Wu L, Sharifi-Soltani N, Doyi INY, Argyraki A, Ho KF, Dong C, Gunkel-Grillon P, Aelion CM, Taylor MP. International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1053-1068. [PMID: 34942073 DOI: 10.1021/acs.est.1c04494] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
People spend increasing amounts of time at home, yet the indoor home environment remains understudied in terms of potential exposure to toxic trace metals. We evaluated trace metal (and metalloid) concentrations (As, Cu, Cr, Mn, Ni, Pb, and Zn) and health risks in indoor dust from homes from 35 countries, along with a suite of potentially contributory residential characteristics. The objective was to determine trace metal source inputs and home environment conditions associated with increasing exposure risk across a range of international communities. For all countries, enrichments compared to global crustal values were Zn > Pb > Cu > As > Cr > Ni; with the greatest health risk from Cr, followed by As > Pb > Mn > Cu > Ni > Zn. Three main indoor dust sources were identified, with a Pb-Zn-As factor related to legacy Pb sources, a Zn-Cu factor reflecting building materials, and a Mn factor indicative of natural soil sources. Increasing home age was associated with greater Pb and As concentrations (5.0 and 0.48 mg/kg per year of home age, respectively), as were peeling paint and garden access. Therefore, these factors form important considerations for the development of evidence-based management strategies to reduce potential risks posed by indoor house dust. Recent findings indicate neurocognitive effects from low concentrations of metal exposures; hence, an understanding of the home exposome is vital.
Collapse
Affiliation(s)
- Cynthia Faye Isley
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kara L Fry
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiaochi Liu
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gabriel Michael Filippelli
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Jane A Entwistle
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | | | - Melanie Kah
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - John T Shukle
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Khadija Jabeen
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | - Abimbola O Famuyiwa
- Department of Science Laboratory Technology, Moshood Abiola Polytechnic, Abeokuta, Ogun State P.M.B 2210, Nigeria
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Neda Sharifi-Soltani
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Israel N Y Doyi
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment National & Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| | - Kin Fai Ho
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Peggy Gunkel-Grillon
- Institute of Exact and Applied Sciences (ISEA), University of New Caledonia, BPR4, 98851 Nouméa cedex, New Caledonia, France
| | - C Marjorie Aelion
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Patrick Taylor
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Environment Protection Authority, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| |
Collapse
|
18
|
Abdeldayem OM, Dabbish AM, Habashy MM, Mostafa MK, Elhefnawy M, Amin L, Al-Sakkari EG, Ragab A, Rene ER. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149834. [PMID: 34525746 PMCID: PMC8379898 DOI: 10.1016/j.scitotenv.2021.149834] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands finding new detection methods for future viral outbreaks. The environment's transmission pathways include and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complementary clinical testing method. Another investigated outbreak surveillance technique that has not been yet implemented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks. This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current updates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-makers. The framework exploits available data from reliable sources to discover meaningful insights and knowledge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk maps and vulnerable areas, and estimate the number of infected citizens.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Areeg M Dabbish
- Biotechnology Graduate Program, Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohamed K Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mohamed Elhefnawy
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Lobna Amin
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Built Environment, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Ahmed Ragab
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
19
|
Madaniyazi L, Jung CR, Fook Sheng Ng C, Seposo X, Hashizume M, Nakayama SF. Early life exposure to indoor air pollutants and the risk of neurodevelopmental delays: The Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2022; 158:107004. [PMID: 34991264 DOI: 10.1016/j.envint.2021.107004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Air pollution has been associated with childhood neurodevelopment. However, the role of indoor air pollution, especially volatile organic compounds (VOCs), on childhood neurodevelopment has been poorly explored to date. We investigated the association between indoor air pollutants and childhood neurodevelopment in 5,017 randomly selected children from the Japan Environment and Children's Study. When the participants reached 1.5 and 3 years of age, they were followed up with home visits and neurodevelopmental tests using the Ages and Stages Questionnaire (ASQ). At both ages, we collected indoor air samples for 1 week and measured 13 indoor air pollutants: particulate matter with an aerodynamic diameter of ≤2.5 μm, ozone, nitrogen dioxide, sulfur dioxide, and nine VOCs. The associations between air pollutants and ASQ scores were estimated using linear mixed effects models and weighted quantile sum regressions (WQS) at each age separately. Stratified analysis by sex was conducted. Exposure to m,p-xylene at the age of 3 was associated with lower communication, fine motor, and overall ASQ scores (coefficients: -0.18 [99% confidence intervals (CI): -0.35, -0.02], -0.23 [99 %CI: -0.43, -0.03], and - 0.72 [99 %CI: -1.41, -0.04] per 1 µg/m3 increase, respectively). Exposure to o-xylene at the age of 3 was associated with lower communication, gross motor, fine motor, and overall ASQ scores (coefficients: -0.48 [99 %CI: -0.90, -0.07], -0.45 [99 %CI: -0.78, -0.13], -0.65 [99 %CI: -1.14, -0.16], and -2.15 [99 %CI: -3.83, -0.47] per 1 µg/m3 increase, respectively). The WQS index was associated with lower gross motor ASQ scores at the age of 3 (coefficient: -0.27 [95 %CI: -0.51, -0.03] for one-unit WQS index increases), which was attributed to benzene (33.96%), toluene (26.02%), o-xylene (13.62%), and ethylbenzene (9.83%). Stratified analysis showed similar results. Although further investigations are required, our results suggest an association of neurodevelopmental delays with indoor low-level exposure to m,p-xylene and o-xylene in early life.
Collapse
Affiliation(s)
- Lina Madaniyazi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chau-Ren Jung
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan; Department of Public Health, China Medical University, Taiwan
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xerxes Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Masahiro Hashizume
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| |
Collapse
|
20
|
Adam MG, Tran PTM, Balasubramanian R. Air quality changes in cities during the COVID-19 lockdown: A critical review. ATMOSPHERIC RESEARCH 2021; 264:105823. [PMID: 34456403 PMCID: PMC8384485 DOI: 10.1016/j.atmosres.2021.105823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 05/04/2023]
Abstract
In response to the rapid spread of coronavirus disease-2019 (COVID-19) within and across countries and the need to protect public health, governments worldwide introduced unprecedented measures such as restricted road and air travel and reduced human mobility in 2020. The curtailment of personal travel and economic activity provided a unique opportunity for researchers to assess the interplay between anthropogenic emissions of primary air pollutants, their physical transport, chemical transformation, ultimate fate and potential health impacts. In general, reductions in the atmospheric levels of outdoor air pollutants such as particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) were observed in many countries during the lockdowns. However, the levels of ozone (O3), a secondary air pollutant linked to asthma and respiratory ailments, and secondary PM were frequently reported to remain unchanged or even increase. An increase in O3 can enhance the formation of secondary PM2.5, especially secondary organic aerosols, through the atmospheric oxidation of VOCs. Given that the gaseous precursors of O3 (VOCs and NOx) are also involved in the formation of secondary PM2.5, an integrated control strategy should focus on reducing the emission of the common precursors for the co-mitigation of PM2.5 and O3 with an emphasis on their complex photochemical interactions. Compared to outdoor air quality, comprehensive investigations of indoor air quality (IAQ) are relatively sparse. People spend more than 80% of their time indoors with exposure to air pollutants of both outdoor and indoor origins. Consequently, an integrated assessment of exposure to air pollutants in both outdoor and indoor microenvironments is needed for effective urban air quality management and for mitigation of health risk. To provide further insights into air quality, we do a critical review of scientific articles, published from January 2020 to December 2020 across the globe. Finally, we discuss policy implications of our review in the context of global air quality improvement.
Collapse
Affiliation(s)
- Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
- Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
21
|
Abramovitz M, Zelnick JR. Structural Racism, Managerialism, and the Future of the Human Services: Rewriting the Rules. SOCIAL WORK 2021; 67:swab051. [PMCID: PMC8690071 DOI: 10.1093/sw/swab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 06/18/2023]
Abstract
Over the past several decades, the introduction of the business model, managerialism, into the human services has led to dramatic changes in conditions of work and service delivery. This metric-driven approach increased the emphasis on measured performance outcomes and undercut the mission-driven nature of human services organizations. In 2020, the COVID-19 pandemic and widespread protests against racial injustice exposed routinely ignored structural racism long embedded in our social institutions. This reckoning led social workers to re-examine professional practices, organizational structures, and public policies through a critical, antiracist lens. Applying a racial justice lens to their study of the impact of managerialism in the human services workplace, authors identified troubling evidence of systemic racism in leadership hierarchies, worker control/surveillance on the job, quality of the physical work environment, exposure to workplace violence, exclusion by microinequities, and agency commitment to social justice. Worker resistance, ethical dilemmas, and well-being also varied by race. To become an antiracist profession, social work must seek long-term change in the human services workplace. The following analysis of the combined negative impact of managerialism and structural racism on human services organizations names the problem and presses us to rewrite the rules so we become a racial justice profession.
Collapse
|
22
|
Exposure to PM2.5 and PM10 and COVID-19 Infection Rates and Mortality: a one-year observational study in Poland. Biomed J 2021; 44:S25-S36. [PMID: 34801766 PMCID: PMC8603332 DOI: 10.1016/j.bj.2021.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 01/26/2023] Open
Abstract
Background Atmospheric contamination, especially particulate matter (PM), can be associated viral infections connected with respiratory failure. Literature data indicates that intensity of SARS-CoV-2 infections worldwide can be associated with PM pollution levels. Objectives The aim of the study was to examine the relationship between atmospheric contamination, measured as PM2.5 and PM10 levels, and the number of COVID-19 cases and related deaths in Poland in a one-year observation study. Methods Number and geographical distribution of COVID-19 incidents and related deaths, as well as PM2.5 and PM10 exposure levels in Poland were obtained from publicly accessible databases. Average monthly values of these parameters for individual provinces were calculated. Multiple regression analysis was performed for the period between March 2020 and February 2021, taking into account average monthly exposure to PM2.5 and PM10, monthly COVID-19 incidence and mortality rates per 100,000 inhabitants and the population density across Polish provinces. Results Only December 2020 the number of new infections was significantly related to the three analyzed factors: PM2.5, population density and the number of laboratory COVID-19 tests (R2 = 0.882). For COVID-19 mortality, a model with all three significant factors: PM10, population density and number of tests was obtained as significant only in November 2020 (R2 = 0.468). Conclusion The distribution of COVID-19 incidents across Poland was independent from annual levels of particulate matter concentration in provinces. Exposure to PM2.5 and PM10 was associated with COVID-19 incidence and mortality in different provinces only in certain months. Other cofactors such as population density and the number of performed COVID-19 tests also corresponded with both COVID-19-related infections and deaths only in certain months. Particulate matter should not be treated as the sole determinant of the spread and severity of the COVID-19 pandemic but its importance in the incidence of infectious diseases should not be forgotten.
Collapse
|
23
|
Omebeyinje MH, Adeluyi A, Mitra C, Chakraborty P, Gandee GM, Patel N, Verghese B, Farrance CE, Hull M, Basu P, Lee K, Adhikari A, Adivar B, Horney JA, Chanda A. Increased prevalence of indoor Aspergillus and Penicillium species is associated with indoor flooding and coastal proximity: a case study of 28 moldy buildings. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1681-1687. [PMID: 34596193 DOI: 10.1039/d1em00202c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Indoor flooding is a leading contributor to indoor dampness and the associated mold infestations in the coastal United States. Whether the prevalent mold genera that infest the coastal flood-prone buildings are different from those not flood-prone is unknown. In the current case study of 28 mold-infested buildings across the U.S. east coast, we surprisingly noted a trend of higher prevalence of indoor Aspergillus and Penicillium genera (denoted here as Asp-Pen) in buildings with previous flooding history. Hence, we sought to determine the possibility of a potential statistically significant association between indoor Asp-Pen prevalence and three building-related variables: (i) indoor flooding history, (ii) geographical location, and (iii) the building's use (residential versus non-residential). Culturable spores and hyphal fragments in indoor air were collected using the settle-plate method, and corresponding genera were confirmed using phylogenetic analysis of their ITS sequence (the fungal barcode). Analysis of variance (ANOVA) using Generalized linear model procedure (GLM) showed that Asp-Pen prevalence is significantly associated with indoor flooding as well as coastal proximity. To address the small sample size, a multivariate decision tree analysis was conducted, which ranked indoor flooding history as the strongest determinant of Asp-Pen prevalence, followed by geographical location and the building's use.
Collapse
Affiliation(s)
- Mayomi H Omebeyinje
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Adewale Adeluyi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chandrani Mitra
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | | | | | | | - Bindhu Verghese
- Microbial Solutions, Charles River Laboratories, Newark, DE, USA
| | | | - Matthew Hull
- NanoSafe, Inc., Blacksburg, VA, USA
- Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA
| | - Paramita Basu
- Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Kwonmoo Lee
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Atin Adhikari
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA, USA
| | - Burcu Adivar
- Broadwell College of Business and Economics, Fayetteville State University, NC, USA.
| | | | - Anindya Chanda
- Broadwell College of Business and Economics, Fayetteville State University, NC, USA.
- Mycologics LLC, Alexandria, VA, USA.
| |
Collapse
|
24
|
D. Atoufi H, Lampert DJ, Sillanpää M. COVID-19, a double-edged sword for the environment: a review on the impacts of COVID-19 on the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61969-61978. [PMID: 34558046 PMCID: PMC8460194 DOI: 10.1007/s11356-021-16551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/11/2021] [Indexed: 04/16/2023]
Abstract
This review paper discusses the most relevant impacts of the COVID-19 pandemic on the environment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in December 2019. The disease has infected 70 million people and caused the death of 1.58 million people since the US Food and Drug Administration issued an Emergency Use Authorization to develop a vaccine to prevent COVID-19 on December 11, 2020. COVID-19 is a global crisis that has impacted everything directly connected with human beings, including the environment. This review discusses the impacts of COVID-19 on the environment during the pandemic and post-COVID-19 era. During the first months of the COVID pandemic, global coal, oil, gas, and electricity demands declined by 8%, 5%, 2%, and 20%, respectively, relative to 2019. Stay-at-home orders in countries increased the concentrations of particles in indoor environments while decreasing the concentrations of PM2.5 and NOX in outdoor environments. Remotely working in response to the COVID-19 pandemic increased the carbon, water, and land footprints of Internet usage. Microplastics are released into our environment from the mishandling and mismanagement of personal protective equipment that endanger our water, soils, and sediments. Since the COVID-19 vaccine cannot be stored for a long time and spoils rapidly, more awareness of the massive waste of unused doses is needed. So COVID-19 is a double-edged sword for the environment.
Collapse
Affiliation(s)
- Hossein D. Atoufi
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - David J. Lampert
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Tran PTM, Adam MG, Balasubramanian R. Assessment and mitigation of toddlers' personal exposure to black carbon before and during the COVID-19 pandemic: A case study in Singapore. ENVIRONMENTAL RESEARCH 2021; 202:111711. [PMID: 34280416 PMCID: PMC9749899 DOI: 10.1016/j.envres.2021.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 μg m-3 and 35.5 μg day-1) compared to that in 2019 (2.3 ± 0.4 μg m-3 and 28.5 μg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
26
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
27
|
Nguyen M, Holmes EC, Angenent LT. The short-term effect of residential home energy retrofits on indoor air quality and microbial exposure: A case-control study. PLoS One 2021; 16:e0230700. [PMID: 34543270 PMCID: PMC8452058 DOI: 10.1371/journal.pone.0230700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Weatherization of residential homes is a widespread procedure to retrofit older homes to improve the energy efficiency by reducing building leakage. Several studies have evaluated the effect of weatherization on indoor pollutants, such as formaldehyde, radon, and indoor particulates, but few studies have evaluated the effect of weatherization on indoor microbial exposure. Here, we monitored indoor pollutants and bacterial communities during reductions in building leakage for weatherized single-family residential homes in New York State and compared the data to non-weatherized homes. Nine weatherized and eleven non-weatherized single-family homes in Tompkins County, New York were sampled twice: before and after the weatherization procedures for case homes, and at least 3 months apart for control homes that were not weatherized. We found that weatherization efforts led to a significant increase in radon levels, a shift in indoor microbial community, and a warmer and less humid indoor environment. In addition, we found that changes in indoor airborne bacterial load after weatherization were more sensitive to shifts in season, whereas indoor radon levels were more sensitive to ventilation rates.
Collapse
Affiliation(s)
- Mytien Nguyen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eric C. Holmes
- Department of GeoSciences, University of Tübingen, Tübingen, Germany
| | - Largus T. Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
- Department of GeoSciences, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
28
|
Chanklom P, Kreetachat T, Chotigawin R, Suwannahong K. Photocatalytic Oxidation of PLA/TiO 2-Composite Films for Indoor Air Purification. ACS OMEGA 2021; 6:10629-10636. [PMID: 34056216 PMCID: PMC8153744 DOI: 10.1021/acsomega.0c06194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 05/21/2023]
Abstract
Non-decomposable plastic has been replaced with polylactic acid, which is a biodegradable aliphatic polyester stationary phase, in composite films embedded with a TiO2 photocatalyst for mitigation of indoor air pollution. PLA has superior properties relative to those of other biopolymers, such as a relatively high melting point, crystallinity, and rigidity. This study aimed to incorporate TiO2-anatase into PLA for use as a photocatalyst using the blown film method. Photocatalytic oxidation, an advanced oxidative process, has been recognized as an economical technique providing convenience and efficiency with indoor air treatment. Therefore, the use of new environmentally friendly biodegradable polymers provides an alternative way to address the severe environmental concerns caused by non-decomposable plastics. UV-vis spectrophotometry and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) were used to observe the dispersibility and mixing capacity of the TiO2-anatase PLA matrix. TiO2 dosages were 5, 10, and 15% (wt/wt), and they were incorporated with a twin-screw extruder. SEM-EDX images demonstrated the homogeneity of TiO2 distribution in the PLA matrix. The energy band gaps of TiO2 in the PLA/TiO2-composite films were between 3.14 and 3.22 eV. The relationship between the photocatalytic oxidation rate and the TiO2 dosage in the PLA/TiO2-composite films was determined. A prototype reactor model is geared toward the development of air purifiers for indoor air conditioning. Rate constants for benzene degradation were obtained using first-order kinetics to find rate constants matching experimental findings. In the PLA/TiO2-composite film, the TiO2-anatase photocatalyst was able to degrade 5 ppm benzene. This work contributes to the use of ecoefficient photocatalytic oxidation.
Collapse
Affiliation(s)
- Pattamaphon Chanklom
- Department of Occupational
Medicine, Chonburi Hospital, Chonburi 20000, Thailand
| | - Torpong Kreetachat
- School of Energy and Environment, Phayao University, Phayao 56000, Thailand
| | - Rotruedee Chotigawin
- Department of Environmental Health, Faculty of Public
Health, Burapha University, Chonburi 20131, Thailand
| | - Kowit Suwannahong
- Department of Environmental Health, Faculty of Public
Health, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
29
|
Influence of Meteorological Conditions and Aerosol Properties on the COVID-19 Contamination of the Population in Coastal and Continental Areas in France: Study of Offshore and Onshore Winds. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human behaviors probably represent the most important causes of the SARS-Cov-2 virus propagation. However, the role of virus transport by aerosols—and therefore the influence of atmospheric conditions (temperature, humidity, type and concentration of aerosols)—on the spread of the epidemic remains an open and still debated question. This work aims to study whether or not the meteorological conditions related to the different aerosol properties in continental and coastal urbanized areas might influence the atmospheric transport of the SARS-Cov-2 virus. Our analysis focuses on the lockdown period to reduce the differences in the social behavior and highlight those of the weather conditions. As an example, we investigated the contamination cases during March 2020 in two specific French areas located in both continental and coastal areas with regard to the meteorological conditions and the corresponding aerosol properties, the optical depth (AOD) and the Angstrom exponent provided by the AERONET network. The results show that the analysis of aerosol ground-based data can be of interest to assess a virus survey. We found that moderate to strong onshore winds occurring in coastal regions and inducing humid environment and large sea-spray production episodes coincides with smaller COVID-19 contamination rates. We assume that the coagulation of SARS-Cov-2 viral particles with hygroscopic salty sea-spray aerosols might tend to inhibit its viral infectivity via possible reaction with NaCl, especially in high relative humidity environments typical of maritime sites.
Collapse
|
30
|
Maipas S, Panayiotides IG, Tsiodras S, Kavantzas N. COVID-19 Pandemic and Environmental Health: Effects and the Immediate Need for a Concise Risk Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:1178630221996352. [PMID: 33642862 PMCID: PMC7894687 DOI: 10.1177/1178630221996352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/12/2023]
Abstract
COVID-19 pandemic, as another disease emerging in the interface between animals and humans, has revealed the importance of interdisciplinary collaborations such as the One Health initiative. Environmental Health, whose role in the One Health concept is well established, has been associated with COVID-19 pandemic via various direct and indirect pathways. Modern lifestyle, climate change, environmental degradation, exposure to chemicals such as endocrine disruptors, and exposure to psychological stress factors impact human health negatively. As a result, many people are in the disadvantageous position to face the pandemic with an already impaired immune system due to their exposure to environmental health hazards. Moreover, the ongoing pandemic has been associated with outdoor and indoor air pollution, water and noise pollution, food security, and plastic pollution issues. Also, the inadequate infrastructure, the lack of proper waste and wastewater management, and the unequal social vulnerability reveal more linkages between Environmental Health and COVID-19 pandemic. The significant emerging ecological risk and its subsequent health implications require immediate risk analysis and risk communication strategies.
Collapse
Affiliation(s)
- Sotirios Maipas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Ioannis G Panayiotides
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| |
Collapse
|
31
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
32
|
Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19. ENVIRONMENTS 2021. [DOI: 10.3390/environments8010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic made it critical to limit the spread of the disease by enforcing human isolation, restricting travel and reducing social activities. Dramatic improvements to air quality, especially NO2, have often characterised places under COVID-19 restrictions. Air pollution measurements in Sydney in April 2019 and during the lockdown period in April 2020 show reduced daily averaged NO2 concentrations: 8.52 ± 1.92 and 7.85 ± 2.92 ppb, though not significantly so (p1~0.15) and PM2.5 8.91 ± 4.94 and 7.95 ± 2.64 µg m−3, again a non-significant difference (p1~0.18). Satellite imagery suggests changes that parallel those at ground level, but the column densities averaged over space and time, in false-colour, are more dramatic. Changed human mobility could be traced in increasing times spent at home, assessed from Google Mobility Reports and mirrored in decreased traffic flow on a major road, suggesting compliance with the restrictions. Electricity demand for the State of New South Wales was low under lockdown in early April 2020, but it recovered rapidly. Analysis of the uses of search terms: bushfires, air quality, haze and air pollution using Google Trends showed strong links between bushfires and pollution-related terms. The smoke from bushfires in late 2019 may well have added to the general impression of improved air quality during lockdown, despite only modest changes in the ground level measurements. This gives hints that successful regulation of air quality requires maintaining a delicate balance between our social perceptions and the physical reality.
Collapse
|
33
|
Detection of Smoking in Indoor Environment Using Machine Learning. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Revealed by the effect of indoor pollutants on the human body, indoor air quality management is increasing. In particular, indoor smoking is one of the common sources of indoor air pollution, and its harmfulness has been well studied. Accordingly, the regulation of indoor smoking is emerging all over the world. Technical approaches are also being carried out to regulate indoor smoking, but research is focused on detection hardware. This study includes analytical and machine learning approach of cigarette detection by detecting typical gases (total volatile organic compounds, CO2 etc.) being collected from IoT sensors. In detail, data set for machine learning was built using IoT sensors, including training data set securely collected from the rotary smoking machine and test data set gained from actual indoor environment with spontaneous smokers. The prediction accuracy was evaluated with accuracy, precision, and recall. As a result, the non-linear support vector machine (SVM) model showed the best performance with 93% in accuracy and 88% in the F1 score. The supervised learning k-nearest neighbors (KNN) and multilayer perceptron (MLP) models also showed relatively fine results, but shows effectivity simplifying prediction with binary classification to improve accuracy and speed.
Collapse
|
34
|
CFD Visualization in a Virtual Reality Environment Using Building Information Modeling Tools. BUILDINGS 2020. [DOI: 10.3390/buildings10120229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Scientific visualization has been an essential process in the engineering field, enabling the tracking of large-scale simulation data and providing intuitive and comprehendible graphs and models that display useful data. For computational fluid dynamics (CFD) data, the need for scientific visualization is even more important given the complicated spatial data structure and large quantities of data points characteristic of CFD data. To better take advantage of CFD results for buildings, the potential use of virtual reality (VR) techniques cannot be overlooked in the development of building projects. However, the workflow required to bring CFD simulation results to VR has not been streamlined. Building information modeling (BIM) as a lifecycle tool for buildings includes as much information as possible for further applications. To this end, this study brings CFD visualization to VR using BIM tools and reports the evaluation and analysis of the results.
Collapse
|
35
|
Clougherty JE. Exposure science in an infectious disease pandemic: who do we want to be? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:903-904. [PMID: 33028933 PMCID: PMC7539271 DOI: 10.1038/s41370-020-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Jane E Clougherty
- Drexel University Dornsife School of Public Health, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Domínguez-Amarillo S, Fernández-Agüera J, Cesteros-García S, González-Lezcano RA. Bad Air Can Also Kill: Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7183. [PMID: 33008116 PMCID: PMC7578999 DOI: 10.3390/ijerph17197183] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
During the first outbreak of the SARS-CoV-2 pandemic the population, focusing primarily on the risk of infection, was generally inattentive to the quality of indoor air. Spain, and the city of Madrid in particular, were among the world's coronavirus hotspots. The country's entire population was subject to a 24/7 lockdown for 45 days. This paper describes a comparative longitudinal survey of air quality in four types of housing in the city of Madrid before and during lockdown. The paper analysed indoor temperatures and variations in CO2, 2.5 μm particulate matter (PM2.5) and total volatile organic compound (TVOC) concentrations before and during lockdown. The mean daily outdoor PM2.5 concentration declined from 11.04 µg/m3 before to 7.10 µg/m3 during lockdown. Before lockdown the NO2 concentration values scored as 'very good' 46% of the time, compared to 90.9% during that period. Although the city's outdoor air quality improved, during lockdown the population's exposure to indoor pollutants was generally more acute and prolonged. Due primarily to concern over domestic energy savings, the lack of suitable ventilation and more intensive use of cleaning products and disinfectants during the covid-19 crisis, indoor pollutant levels were typically higher than compatible with healthy environments. Mean daily PM2.5 concentration rose by approximately 12% and mean TVOC concentration by 37% to 559%. The paper also puts forward a series of recommendations to improve indoor domestic environments in future pandemics and spells out urgent action to be taken around indoor air quality (IAQ) in the event of total or partial quarantining to protect residents from respiratory ailments and concomitantly enhanced susceptibility to SARS-CoV-2, as identified by international medical research.
Collapse
Affiliation(s)
- Samuel Domínguez-Amarillo
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41014 Sevilla, Spain;
| | - Jesica Fernández-Agüera
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41014 Sevilla, Spain;
| | - Sonia Cesteros-García
- Escuela Politécnica Superior, Universidad San Pablo-CEU, Montepríncipe Campus, Boadilla del Monte, 28668 Madrid, Spain; (S.C.-G.); (R.A.G.-L.)
| | - Roberto Alonso González-Lezcano
- Escuela Politécnica Superior, Universidad San Pablo-CEU, Montepríncipe Campus, Boadilla del Monte, 28668 Madrid, Spain; (S.C.-G.); (R.A.G.-L.)
| |
Collapse
|