1
|
Wang L, Xu Y, Zhang X, Ding J, Jin J, Zong J, Li F, Qian W, Li W. The Predictive Value of SII Combined with UHR for Contrast-Induced Acute Kidney Injury in Patients with Acute Myocardial Infarction After Percutaneous Coronary Intervention. J Inflamm Res 2024; 17:7005-7016. [PMID: 39372595 PMCID: PMC11456302 DOI: 10.2147/jir.s482977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Contrast-induced acute kidney injury (CI-AKI) refers to the acute renal dysfunction caused by the injection of contrast agents. CI-AKI is currently a common complication after percutaneous coronary intervention (PCI). Objective To investigate the predictive value of the combined systemic inflammatory index (SII) and urate/high-density lipoprotein cholesterol ratio (UHR) for CI-AKI after PCI in patients with AMI. Methods A total of 1222 patients with AMI who underwent PCI were randomly divided into a training group and a validation group in an 8:2 ratio. According to the definition of CI-AKI diagnostic criteria, the training group was divided into CI-AKI group and non-CI-AKI group. Collect patient's blood and biochemical data, then calculate SII and UHR. The risk factors for CI-AKI were identified using LASSO and multivariate logistic regression analyses. A predictive column was created by using R language.Evaluate the predictive value of SII, UHR and their combination for CI-AKI after PCI using the area under the ROC curve (AUC). Results Diabetes, Cystatin C, Diuretics, UHR, and LnSII were independent risk factors for CI-AKI in AMI patients after PCI. The ROC curve showed that the AUC of UHR and SII combined for predicting CI-AKI in AMI patients after PCI was 0.761 (95% CI: 0.709-0.812), with a sensitivity of 65.20% and a specificity of 76.70%, which was better than the prediction by either factor alone. Conclusion High SII and high UHR are risk factors for AMI, and their combination can improve the accuracy of predicting CI-AKI in AMI patients after PCI.The prognosis of CI-AKI in AMI patients is worse than in the general population.
Collapse
Affiliation(s)
- Linsheng Wang
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Yang Xu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xudong Zhang
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jiahui Ding
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jingkun Jin
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jing Zong
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Fangfang Li
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Weidong Qian
- Department of Cardiology, Wujin Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou, Jiangsu, People’s Republic of China
| | - Wenhua Li
- Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
South AM, Rigdon J, Voruganti S, Stafford JM, Dabelea D, Marcovina S, Mottl AK, Pihoker C, Urbina EM, Jensen ET. Uric Acid Is Not Associated With Cardiovascular Health in Youth With Type 1 Diabetes: SEARCH for Diabetes in Youth Study. J Clin Endocrinol Metab 2024; 109:e726-e734. [PMID: 37690117 PMCID: PMC10795892 DOI: 10.1210/clinem/dgad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT Uric acid's role in cardiovascular health in youth with type 1 diabetes is unknown. OBJECTIVE Investigate whether higher uric acid is associated with increased blood pressure (BP) and arterial stiffness over time in adolescents and young adults with type 1 diabetes and if overweight/obesity modifies this relationship. METHODS Longitudinal analysis of data from adolescents and young adults with type 1 diabetes from 2 visits (mean follow up 4.6 years) in the SEARCH for Diabetes in Youth multicenter prospective cohort study from 2007 to 2018. Our exposure was uric acid at the first visit and our outcome measures were the change in BP, pulse wave velocity (PWV), and augmentation index between visits. We used multivariable linear mixed-effects models and assessed for effect modification by overweight/obesity. RESULTS Of 1744 participants, mean age was 17.6 years, 49.4% were female, 75.9% non-Hispanic White, and 45.4% had a follow-up visit. Mean uric acid was 3.7 mg/dL (SD 1.0). Uric acid was not associated with increased BP, PWV-trunk, or augmentation index over time. Uric acid was marginally associated with PWV-upper extremity (β = .02 m/s/year, 95% CI 0.002 to 0.04). The magnitude of this association did not differ by overweight/obesity status. CONCLUSION Among adolescents and young adults with type 1 diabetes, uric acid was not consistently associated with increased BP or arterial stiffness over time. These results support findings from clinical trials in older adults with diabetes showing that lowering uric acid levels does not improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Andrew M South
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Section of Nephrology, Department of Pediatrics, Brenner Children's, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Center on Diabetes, Obesity and Metabolism, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Joseph Rigdon
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Saroja Voruganti
- Department of Nutrition, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Jeanette M Stafford
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santica Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA 98109, USA
| | - Amy K Mottl
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cate Pihoker
- Department of Pediatrics, University of Washington School of Medicine and Division of Endocrinology, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Elaine M Urbina
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Elizabeth T Jensen
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Department of Medicine, Section of Gastroenterology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| |
Collapse
|
3
|
Schiff AF, Deines D, Jensen ET, O'Connell N, Perry CJ, Shaltout HA, Washburn LK, South AM. Duration of Simultaneous Exposure to High-Risk and Lower-Risk Nephrotoxic Antimicrobials in the Neonatal Intensive Care Unit (NICU) and Future Adolescent Kidney Health. J Pediatr 2024; 264:113730. [PMID: 37722552 PMCID: PMC10873056 DOI: 10.1016/j.jpeds.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE To determine whether greater duration of simultaneous exposure to antimicrobials with high nephrotoxicity risk combined with lower-risk antimicrobials (simultaneous exposure) in the neonatal intensive care unit (NICU) is associated with worse later kidney health in adolescents born preterm with very low birth weight (VLBW). STUDY DESIGN Prospective cohort study of participants born preterm with VLBW (<1500 g) as singletons between January 1, 1992, and June 30, 1996. We defined simultaneous exposure as a high-risk antimicrobial, such as vancomycin, administered with a lower-risk antimicrobial on the same date in the NICU. Outcomes were serum creatinine, estimated glomerular filtration rate (eGFR), and first-morning urine albumin-creatinine ratio (ACR) at age 14 years. We fit multivariable linear regression models with days of simultaneous exposure and days of nonsimultaneous exposure as main effects, adjusting for gestational age, birth weight, and birth weight z-score. RESULTS Of the 147 out of 177 participants who had exposure data, 97% received simultaneous antimicrobials for mean duration 7.2 days (SD 5.6). No participant had eGFR <90 ml/min/1.73 m2. The mean ACR was 15.2 mg/g (SD 38.7) and 7% had albuminuria (ACR >30 mg/g). Each day of simultaneous exposure was associated only with a 1.04-mg/g higher ACR (95% CI 1.01 to 1.06). CONCLUSIONS Despite frequent simultaneous exposure to high-risk combined with lower-risk nephrotoxic antimicrobials in the NICU, there were no clinically relevant associations with worse kidney health identified in adolescence. Although future studies are needed, these findings may provide reassurance in a population thought to be at increased risk of chronic kidney disease.
Collapse
Affiliation(s)
- Andrew F Schiff
- Department of Pediatrics, Section of Neonatology, Wake Forest University School of Medicine, Winston Salem, NC
| | - Danielle Deines
- University of Otago School of Medicine, Dunedin, New Zealand
| | - Elizabeth T Jensen
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston Salem, NC
| | - Nathaniel O'Connell
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC
| | - Courtney J Perry
- Department of Physician Assistant Studies, Wake Forest University School of Medicine, Winston Salem, NC
| | - Hossam A Shaltout
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC; Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Lisa K Washburn
- Department of Pediatrics, Section of Neonatology, Wake Forest University School of Medicine, Winston Salem, NC
| | - Andrew M South
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston Salem, NC; Department of Pediatrics, Section of Nephrology, Wake Forest University School of Medicine, Winston Salem, NC.
| |
Collapse
|
4
|
Abstract
The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
5
|
Luo JJ, Chen XH, Liang PY, Zhao Z, Wu T, Li ZH, Wan SH, Luo J, Pang JX, Zhang JJ, Tian YX. Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking. Comput Biol Med 2023; 155:106637. [PMID: 36791549 DOI: 10.1016/j.compbiomed.2023.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Hyperuricemia is a more popular metabolic disease caused by a disorder of purine metabolism. Our previous study firstly screened out a natural product Isobavachin as anti-hyperuricemia targeted hURAT1 from a Chinese medicine Haitongpi (Cortex Erythrinae). In view of Isobavachin's diverse pharmacological activities, similar to the Tranilast (as another hURAT1 inhibitor), our study focused on its potential targets and molecular mechanisms of Isobavachin anti-hyperuricemia based on network pharmacology and molecular docking. METHODS First of all, the putative target genes of compounds were screen out based on the public databases with different methods, such as SwissTargetPerdiction, PharmMapper and TargetNet,etc. Then the compound-pathways were obtained by the compounds' targets gene from David database for Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. The cross pathways of compound-pathways and the diseases pathways of hyperuricemia from Comparative Toxicogenomics Database were be considered as the compound-disease pathways. Next, based on the compound-disease pathways and the PPI network, the core targets were identified based on the retrieved disease-genes. Finally, the compound-target-pathway-disease network was constructed by Cytoscape and the mechanism of isobavachin anti-hyperuricemia was discussed based on the network analysis. RESULTS Our study demonstrated that there were five pathways involved in Isobavachin against hyperuricemia, including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system and Renin secretion. Among the proteins involved in these pathways, HPRT1, REN and ABCG2 were identified as the core targets associated with hyperuricemia, which regulated the five pathways mentioned above. It is quite different from that of Tranilast, which involved in the same pathways except Bile secretion instead of purine metabolism. CONCLUSION This study revealed Isobavachin could regulate the pathways including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system, Renin secretion by core targets HPRT1, REN and ABCG2, in the treatment of hyperuricemia effect. Among them, the Bile secretion regulated by ABCG2 probably would be a novel pathway. Our work provided a theoretical basis for the pharmacological study of Isobavachin in lowering uric acid and further basic research.
Collapse
Affiliation(s)
- Jia-Jun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Peng-Ying Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhong-Huang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shan-He Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian-Xin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jia-Jie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yuan-Xin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
6
|
Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022; 18:5827-5848. [PMID: 36263178 PMCID: PMC9576507 DOI: 10.7150/ijbs.77561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
The rapid dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health emergency. The host immune response to SARS-CoV-2 plays a key role in COVID-19 pathogenesis. SARS-CoV-2 can induce aberrant and excessive immune responses, leading to cytokine storm syndrome, autoimmunity, lymphopenia, neutrophilia and dysfunction of monocytes and macrophages. Pyroptosis, a proinflammatory form of programmed cell death, acts as a host defense mechanism against infections. Pyroptosis deprives the replicative niche of SARS-CoV-2 by inducing the lysis of infected cells and exposing the virus to extracellular immune attack. Notably, SARS-CoV-2 has evolved sophisticated mechanisms to hijack this cell death mode for its own survival, propagation and shedding. SARS-CoV-2-encoded viral products act to modulate various key components in the pyroptosis pathways, including inflammasomes, caspases and gasdermins. SARS-CoV-2-induced pyroptosis contriubtes to the development of COVID-19-associated immunopathologies through leakage of intracellular contents, disruption of immune system homeostasis or exacerbation of inflammation. Therefore, pyroptosis has emerged as an important mechanism involved in COVID-19 immunopathogenesis. However, the entangled links between pyroptosis and SARS-CoV-2 pathogenesis lack systematic clarification. In this review, we briefly summarize the characteristics of SARS-CoV-2 and COVID-19-related immunopathologies. Moreover, we present an overview of the interplay between SARS-CoV-2 infection and pyroptosis and highlight recent research advances in the understanding of the mechanisms responsible for the implication of the pyroptosis pathways in COVID-19 pathogenesis, which will provide informative inspirations and new directions for further investigation and clinical practice. Finally, we discuss the potential value of pyroptosis as a therapeutic target in COVID-19. An in-depth discussion of the underlying mechanisms of COVID-19 pathogenesis will be conducive to the identification of potential therapeutic targets and the exploration of effective treatment measures aimed at conquering SARS-CoV-2-induced COVID-19.
Collapse
Affiliation(s)
- Man Wang
- ✉ Corresponding author: Man Wang, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China. Tel.: +86-532-82991791; E-mail address:
| | | | | | | |
Collapse
|
7
|
Amini P, Amrovani M, Nassaj ZS, Ajorlou P, Pezeshgi A, Ghahrodizadehabyaneh B. Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia. Cardiovasc Toxicol 2022; 22:391-403. [PMID: 35347585 DOI: 10.1007/s12012-022-09734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is one of the complications, that threatens pregnant mothers during pregnancy. According to studies, it accounts for 3-7% of all pregnancies, and also is effective in preterm delivery. PE is the third leading cause of death in pregnant women. High blood pressure in PE can increase the risk of developing cardiovascular disease (CVD) in cited individuals, and is one of the leading causes of death in PE individuals. Atrial natriuretic peptide (ANP), Renin-Angiotensin system and nitric oxide (NO) are some of involved factors in regulating blood pressure. Therefore, by identifying the signaling pathways, that are used by these molecules to regulate and modulate blood pressure, appropriate treatment strategies can be provided to reduce blood pressure through target therapy in PE individuals; consequently, it can reduce CVD risk and mortality.
Collapse
Affiliation(s)
- Parya Amini
- Atherosclerosis Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aiyoub Pezeshgi
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | |
Collapse
|
8
|
Elshafei A, Khidr EG, El-Husseiny AA, Gomaa MH. RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci 2021; 28:6465-6470. [PMID: 34305426 PMCID: PMC8270731 DOI: 10.1016/j.sjbs.2021.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in coronavirus disease 2019 (COVID-19) patients has been claimed as associated with the risk of COVID-19 infection and its subsequent morbidities and mortalities. These claims were resulting from the possibility of upregulating the expression of angiotensin-converting enzyme 2 (ACE2), facilitation of SARS-CoV-2 entry, and increasing the susceptibility of infection in such treated cardiovascular patients. ACE2 and renin-angiotensin-aldosterone system (RAAS) products have a critical function in controlling the severity of lung injury, fibrosis, and failure following the initiation of the disease. This review is to clarify the mechanisms beyond the possible deleterious effects of angiotensin II (Ang II), and the potential protective role of angiotensin 1-7 (Ang 1-7) against pulmonary fibrosis, with a subsequent discussion of the latest updates on ACEIs/ARBs use and COVID-19 susceptibility in the light of these mechanisms and biochemical explanation.
Collapse
Key Words
- ACE1, angiotensin-converting enzyme 1
- ACE2
- ACE2, angiotensin-converting enzyme 2
- ACEIs
- ACEIs, angiotensin-converting enzyme inhibitors
- AEC-II, alveolar epithelial type II cells
- ARBs
- ARBs, angiotensin receptor blockers
- AT1R, angiotensin type 1 receptor
- AT2R, angiotensin type 2 receptor
- Ang 1-7, angiotensin 1-7
- Ang 1-9, angiotensin 1-9
- AngI, angiotensin I
- AngII, angiotensin II
- Angiotensin 1–7
- Angiotensin II
- COVID-19
- COVID-19, coronavirus disease 2019
- CVD, cardiovascular disease
- ERK, extracellular signal-regulated kinase
- ICU, intensive care unit
- MAPK, mitogen-activated protein kinase
- NLRP3, (NOD, LRR, and pyrin domain-containing protein 3)
- RAAS, renin-angiotensin-aldosterone system
- TGF-β, transforming growth factor-beta
- miR-21, microRNA-21
Collapse
Affiliation(s)
- Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maher H. Gomaa
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
9
|
Doğru S, Yaşar E, Yeşilkaya A. Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death. J Recept Signal Transduct Res 2021; 42:293-301. [PMID: 34057027 DOI: 10.1080/10799893.2021.1931320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperuricemia may be a risk factor for cardiovascular diseases such as hypertension and atherosclerosis, but the mechanisms underlying uric acid-induced pathological conditions remain unknown. In this study, we investigated the effect of short time and long-term administration of increasing uric acid concentrations on cell viability, proliferative and apoptotic pathways in vascular smooth muscle cells (VSMCs). Cell viability/proliferation was determined with WST-1 assay. Expression levels of mitogen-activated protein kinases (MAPKs) (phosphorylated (p)-p38 and p-p44/42 MAPK), extrinsic (caspase 3, caspase 8), and intrinsic (B-cell lymphoma-extra-large (Bcl-xL)) apoptotic pathway proteins were measured by Western blotting. In order to assess the proliferative effects of uric acid incubations on VSMCs, we monitored the proliferative/apoptosis signaling pathways for up to 24 h. Our results indicated that uric acid increases cell viability at time and dose-dependently in VSMCs. Immunoblotting results showed that uric acid treatment elevated the expression level of p-p38 MAPK but did markedly reduce the protein levels of p-p44/42, compared with all the uric acid doses-treated VSMCs, especially at 1 h. Uric acid stimulation increased caspase-3 protein levels and decreased Bcl-xL, but did not alter caspase-8 protein expression at the same dose and time. Furthermore, low uric acid incubations (0-7.5 mg/dL) did not affect any signaling pathways for long time points (6-24 h). In conclusion, our study demonstrates for the first time that VSMCs induced with uric acid can affect cell viability, proliferative, and apoptosis pathways at the widest time and dose range. These findings provide a better understanding of the uric acid effects related to vascular impairments.
Collapse
Affiliation(s)
- Segün Doğru
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| | - Ekrem Yaşar
- Department of Biophysics, Medical School of Akdeniz University, Antalya, Turkey
| | - Akın Yeşilkaya
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| |
Collapse
|
10
|
Uric Acid and Hypertension: Prognostic Role and Guide for Treatment. J Clin Med 2021; 10:jcm10030448. [PMID: 33498870 PMCID: PMC7865830 DOI: 10.3390/jcm10030448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
The relationship between serum uric acid (SUA) and hypertension has been a subject of increasing interest since the 1870 discovery by Frederick Akbar Mahomed. Several epidemiological studies have shown a strong association between high SUA levels and the presence or the development of hypertension. Genetic analyses have found that xanthine oxidoreductase (XOR) genetic polymorphisms are associated with hypertension. However, genetic studies on urate transporters and Mendelian randomization studies failed to demonstrate a causal relationship between SUA and hypertension. Results from clinical trials on the role of urate-lowering therapy in the management of patients with hypertension are not uniform. Our study sought to analyze the prognostic and therapeutic role of SUA in the hypertensive disease, from uric acid (UA) biology to clinical trials on urate-lowering therapies.
Collapse
|
11
|
EKİCİ S, DİNÇER S. Çocuklarda Obezite, Obezite İlişkili Hipertansiyon Ve Risk Faktörleri. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2020. [DOI: 10.17517/ksutfd.732576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|