1
|
Tasis A, Papaioannou NE, Grigoriou M, Paschalidis N, Loukogiannaki C, Filia A, Katsiki K, Lamprianidou E, Papadopoulos V, Rimpa CM, Chatzigeorgiou A, Kourtzelis I, Gerasimou P, Kyprianou I, Costeas P, Liakopoulos P, Liapis K, Kolovos P, Chavakis T, Alissafi T, Kotsianidis I, Mitroulis I. Single-Cell Analysis of Bone Marrow CD8+ T Cells in Myeloid Neoplasms Reveals Pathways Associated with Disease Progression and Response to Treatment with Azacitidine. CANCER RESEARCH COMMUNICATIONS 2024; 4:3067-3083. [PMID: 39485042 PMCID: PMC11616010 DOI: 10.1158/2767-9764.crc-24-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Immunophenotypic analysis identified a BM CD57+CXCR3+ subset of CD8+ T cells associated with response to AZA in patients with MDS and AML. Single-cell RNA sequencing analysis revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is associated with treatment failure, providing insights into new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos E. Papaioannou
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Grigoriou
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Kyriaki Katsiki
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Maria Rimpa
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Ioannis Kyprianou
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Themis Alissafi
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Biology, School of Medicine, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| |
Collapse
|
2
|
Abdipourbozorgbaghi M, Vancura A, Radpour R, Haefliger S. Circulating miRNA panels as a novel non-invasive diagnostic, prognostic, and potential predictive biomarkers in non-small cell lung cancer (NSCLC). Br J Cancer 2024; 131:1350-1362. [PMID: 39215192 PMCID: PMC11473829 DOI: 10.1038/s41416-024-02831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is characterised by its aggressiveness and poor prognosis. Early detection and accurate prediction of therapeutic responses remain critical for improving patient outcomes. In the present study, we investigated the potential of circulating microRNA (miRNA) as non-invasive biomarkers in patients with NSCLC. METHODS We quantified miRNA expression in plasma from 122 participants (78 NSCLC; 44 healthy controls). Bioinformatic tools were employed to identify miRNA panels for accurate NSCLC diagnosis. Validation was performed using an independent publicly available dataset of more than 4000 NSCLC patients. Next, we correlated miRNA expression with clinicopathological information to identify independent prognostic miRNAs and those predictive of anti-PD-1 treatment response. RESULTS We identified miRNA panels for lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) diagnosis. The LUAD panel consists of seven circulating miRNAs (miR-9-3p, miR-96-5p, miR-147b-3p, miR-196a-5p, miR-708-3p, miR-708-5p, miR-4652-5p), while the LUSC panel comprises nine miRNAs (miR-130b-3p, miR-269-3p, miR-301a-5p, miR-301b-5p, miR-744-3p, miR-760, miR-767-5p, miR-4652-5p, miR-6499-3p). Additionally, miR-135b-5p, miR-196a-5p, miR-31-5p (LUAD), and miR-205 (LUSC) serve as independent prognostic markers for survival. Furthermore, two miRNA clusters, namely miR-183/96/182 and miR-767/105, exhibit predictive potential in anti-PD-1-treated LUAD patients. CONCLUSIONS Circulating miRNA signatures demonstrate diagnostic and prognostic value for NSCLC and may guide treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Maryam Abdipourbozorgbaghi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Shi Y, Zhang W, Jia Q, Zhong X, Iyer P, Wu H, Yuan YC, Zhao Y, Zhang L, Wang L, Jia Z, Kuo YH, Sun Z. Cancer-associated SF3B1-K700E mutation controls immune responses by regulating T reg function via aberrant Anapc13 splicing. SCIENCE ADVANCES 2024; 10:eado4274. [PMID: 39303038 PMCID: PMC11414738 DOI: 10.1126/sciadv.ado4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Recurrent somatic mutations in spliceosome factor 3b subunit 1 (SF3B1) are identified in hematopoietic malignancies, with SF3B1-K700E being the most common one. Here, we show that regulatory T cell (Treg)-specific expression of SF3B1-K700E (Sf3b1K700Efl/+/Foxp3YFP-Cre) results in spontaneous autoimmune phenotypes. CD4+ T cells from Sf3b1K700Efl/+/Foxp3YFP-Cre mice display defective Treg differentiation and inhibitory function, which is demonstrated by failed prevention of adoptive transfer colitis by Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs. Mechanically, SF3B1-K700E induces an aberrant splicing event that results in reduced expression of a cell proliferation regulator Anapc13 due to the insertion of a 231-base pair DNA fragment to the 5' untranslated region. Forced expression of the Anapc13 gene restores the differentiation and ability of Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs to prevent adoptive transfer colitis. In addition, acute myeloid leukemia grows faster in aged, but not young, Sf3b1K700Efl/+/Foxp3YFP-Cre mice compared to Foxp3YFP-Cre mice. Our results highlight the impact of cancer-associated SF3B1 mutation on immune responses, which affect cancer development.
Collapse
Affiliation(s)
- Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Qiong Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Prajish Iyer
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics, Department of Computational Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yuqi Zhao
- Integrated Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lili Wang
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Li Z, Jin P, Xiang R, Li X, Shen J, He M, Liu X, Zhu H, Wu S, Dong F, Zhao H, Liu H, Jin Z, Li J. A CD8 + T cell related immune score predicts survival and refines the risk assessment in acute myeloid leukemia. Front Immunol 2024; 15:1408109. [PMID: 39346926 PMCID: PMC11428106 DOI: 10.3389/fimmu.2024.1408109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Although advancements in genomic and epigenetic research have deepened our understanding of acute myeloid leukemia (AML), only one-third of patients can achieve durable remission. Growing evidence suggests that the immune microenvironment in bone marrow influences prognosis and survival in AML. There is a specific association between CD8+ T cells and the prognosis of AML patients. To develop a CD8+ T cell-related immune risk score for AML, we first evaluated the accuracy of CIBERSORTx in predicting the abundance of CD8+ T cells in bulk RNA-seq and found it significantly correlated with observed single-cell RNA sequencing data and the proportions of CD8+ T cells derived from flow cytometry. Next, we constructed the CTCG15, a 15-gene prognostic signature, using univariate and LASSO regression on the differentially expressed genes between CD8+ THigh and CD8+ TLow groups. The CTCG15 was further validated across six datasets in different platforms. The CTCG15 has been shown to be independent of established prognostic markers, and can distill transcriptomic consequences of several genetic abnormalities closely related to prognosis in AML patients. Finally, integrating this model into the 2022 European LeukemiaNet contributed to a higher predictive power for prognosis prediction. Collectively, our study demonstrates that CD8+ T cell-related signature could improve the comprehensive risk stratification and prognosis prediction in AML.
Collapse
Affiliation(s)
- Zeyi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijin Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wuxi Branch of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
7
|
Dzhalilova D, Silina M, Tsvetkov I, Kosyreva A, Zolotova N, Gantsova E, Kirillov V, Fokichev N, Makarova O. Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance. Int J Mol Sci 2024; 25:7801. [PMID: 39063041 PMCID: PMC11276979 DOI: 10.3390/ijms25147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vladimir Kirillov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Health of Russian Federation, 117513 Moscow, Russia;
| | - Nikolay Fokichev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| |
Collapse
|
8
|
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024; 143:2689-2700. [PMID: 37467496 PMCID: PMC11251208 DOI: 10.1182/blood.2023019961] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
9
|
Liao W, Liu C, Yang K, Chen J, Wu Y, Zhang S, Yu K, Wang L, Ran L, Chen M, Chen F, Xu Y, Wang S, Wang F, Zhang Q, Zhao J, Ye L, Du C, Wang J. Aged hematopoietic stem cells entrap regulatory T cells to create a prosurvival microenvironment. Cell Mol Immunol 2023; 20:1216-1231. [PMID: 37644165 PMCID: PMC10541885 DOI: 10.1038/s41423-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Although DNA mutation drives stem cell aging, how mutation-accumulated stem cells obtain clonal advantage during aging remains poorly understood. Here, using a mouse model of irradiation-induced premature aging and middle-aged mice, we show that DNA mutation accumulation in hematopoietic stem cells (HSCs) during aging upregulates their surface expression of major histocompatibility complex class II (MHCII). MHCII upregulation increases the chance for recognition by bone marrow (BM)-resident regulatory T cells (Tregs), resulting in their clonal expansion and accumulation in the HSC niche. On the basis of the establishment of connexin 43 (Cx43)-mediated gap junctions, BM Tregs transfer cyclic adenosine monophosphate (cAMP) to aged HSCs to diminish apoptotic priming and promote their survival via activation of protein kinase A (PKA) signaling. Importantly, targeting the HSC-Treg interaction or depleting Tregs effectively prevents the premature/physiological aging of HSCs. These findings show that aged HSCs use an active self-protective mechanism by entrapping local Tregs to construct a prosurvival niche and obtain a clonal advantage.
Collapse
Affiliation(s)
- Weinian Liao
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Chaonan Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, China
| | - Jun Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yiding Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Kuan Yu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Li Ran
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, 200433, Shanghai, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| | - Changhong Du
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
10
|
Gurska L, Gritsman K. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:674-687. [PMID: 37842238 PMCID: PMC10571054 DOI: 10.20517/cdr.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.
Collapse
Affiliation(s)
- Lindsay Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Naef P, Radpour R, Jaeger-Ruckstuhl CA, Bodmer N, Baerlocher GM, Doehner H, Doehner K, Riether C, Ochsenbein AF. IL-33-ST2 signaling promotes stemness in subtypes of myeloid leukemia cells through the Wnt and Notch pathways. Sci Signal 2023; 16:eadd7705. [PMID: 37643244 DOI: 10.1126/scisignal.add7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Cell stemness is characterized by quiescence, pluripotency, and long-term self-renewal capacity. Therapy-resistant leukemic stem cells (LSCs) are the primary cause of relapse in patients with chronic and acute myeloid leukemia (CML and AML). However, the same signaling pathways frequently support stemness in both LSCs and normal hematopoietic stem cells (HSCs), making LSCs difficult to therapeutically target. In cell lines and patient samples, we found that interleukin-33 (IL-33) signaling promoted stemness only in leukemia cells in a subtype-specific manner. The IL-33 receptor ST2 was abundant on the surfaces of CD34+ BCR/ABL1 CML and CD34+ AML cells harboring AML1/ETO and DEK/NUP214 translocations or deletion of chromosome 9q [del(9q)]. The cell surface abundance of ST2, which was lower or absent on other leukemia subtypes and HSCs, correlated with stemness, activated Wnt signaling, and repressed Notch signaling. IL-33-ST2 signaling promoted the maintenance and expansion of AML1/ETO-, DEK/NUP214-, and BCR/ABL1-positive LSCs in culture and in mice by activating Wnt, MAPK, and NF-κB signaling. Wnt signaling and its inhibition of the Notch pathway up-regulated the expression of the gene encoding ST2, thus forming a cell-autonomous loop. IL-33-ST2 signaling promoted the resistance of CML cells to the tyrosine kinase inhibitor (TKI) nilotinib and of AML cells to standard chemotherapy. Thus, inhibiting IL-33-ST2 signaling may target LSCs to overcome resistance to chemotherapy or TKIs in these subtypes of leukemia.
Collapse
Affiliation(s)
- Pascal Naef
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Nils Bodmer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Gabriela M Baerlocher
- Laboratory for Hematopoiesis and Molecular Genetics, Experimental Hematology, Department of BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Hartmut Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Konstanze Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| |
Collapse
|
12
|
Manzo P, Scala P, Giudice V, Gorrese M, Bertolini A, Morini D, D'Alto F, Pepe R, Pedicini A, Izzo B, Verdesca F, Langella M, Serio B, Della Porta G, Selleri C. c-Kit M541L variant is related to ineffective hemopoiesis predisposing to clonal evolution in 3D in vitro biomimetic co-culture model of bone marrow niche. Heliyon 2022; 8:e11998. [DOI: 10.1016/j.heliyon.2022.e11998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
|
13
|
Riether C. Regulation of hematopoietic and leukemia stem cells by regulatory T cells. Front Immunol 2022; 13:1049301. [PMID: 36405718 PMCID: PMC9666425 DOI: 10.3389/fimmu.2022.1049301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Adult bone marrow (BM) hematopoietic stem cells (HSCs) are maintained in a quiescent state and sustain the continuous production of all types of blood cells. HSCs reside in a specialized microenvironment the so-called HSC niche, which equally promotes HSC self-renewal and differentiation to ensure the integrity of the HSC pool throughout life and to replenish hematopoietic cells after acute injury, infection or anemia. The processes of HSC self-renewal and differentiation are tightly controlled and are in great part regulated through cellular interactions with classical (e.g. mesenchymal stromal cells) and non-classical niche cells (e.g. immune cells). In myeloid leukemia, some of these regulatory mechanisms that evolved to maintain HSCs, to protect them from exhaustion and immune destruction and to minimize the risk of malignant transformation are hijacked/disrupted by leukemia stem cells (LSCs), the malignant counterpart of HSCs, to promote disease progression as well as resistance to therapy and immune control. CD4+ regulatory T cells (Tregs) are substantially enriched in the BM compared to other secondary lymphoid organs and are crucially involved in the establishment of an immune privileged niche to maintain HSC quiescence and to protect HSC integrity. In leukemia, Tregs frequencies in the BM even increase. Studies in mice and humans identified the accumulation of Tregs as a major immune-regulatory mechanism. As cure of leukemia implies the elimination of LSCs, the understanding of these immune-regulatory processes may be of particular importance for the development of future treatments of leukemia as targeting major immune escape mechanisms which revolutionized the treatment of solid tumors such as the blockade of the inhibitory checkpoint receptor programmed cell death protein 1 (PD-1) seems less efficacious in the treatment of leukemia. This review will summarize recent findings on the mechanisms by which Tregs regulate stem cells and adaptive immune cells in the BM during homeostasis and in leukemia.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland,*Correspondence: Carsten Riether,
| |
Collapse
|
14
|
Characteristics of circulating adaptive immune cells in patients with colorectal cancer. Sci Rep 2022; 12:18166. [PMID: 36307548 PMCID: PMC9616942 DOI: 10.1038/s41598-022-23190-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Adaptive immune cells prevent solid tumor progression by targeting and killing tumor cells. However, there are no comprehensive studies on peripheral circulating adaptive immune cell characterization in colorectal cancer (CRC) patients or the effect of tumor-node-metastasis (TNM) stages on these cells. In this study, the number, phenotype, and function of different subsets of circulating adaptive immune cells in peripheral blood of CRC patients were analyzed. We found remarkable differences in CRC patients compared with those in healthy controls, including reduced absolute counts of total T cells, helper T lymphocytes (Th), cytotoxic T lymphocytes (Tc), and double-negative T lymphocytes, a decreased proportion of INF-γ+ cells in total T cells and Th, and increased percentages of B cells, plasmablasts, and activated T cells. Compared with early-stage CRC patients, advanced-stage CRC patients showed more severe immunosenescence, which manifested as decreased proportions of CD8+ naive T cells with strong proliferative ability and CD8+ central memory T cells with immune surveillance function. Proportions and absolute counts of CD8+ and CD4+ terminally differentiated effector memory T cells were increased, indicating immunosenescence. The immune cell characteristics analyzed in this study serve as a starting point for further research to determine potential clinical implications.
Collapse
|
15
|
The Microenvironment That Regulates Vascular Wall Stem/Progenitor Cells in Vascular Injury and Repair. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9377965. [PMID: 35958825 PMCID: PMC9357805 DOI: 10.1155/2022/9377965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Vascular repair upon injury is a frequently encountered pathology in cardiovascular diseases, which is crucial for the maintenance of arterial homeostasis and function. Stem/progenitor cells located on vascular walls have multidirectional differentiation potential and regenerative ability. It has been demonstrated that stem/progenitor cells play an essential role in the basic medical research and disease treatment. The dynamic microenvironment around the vascular wall stem/progenitor cells (VW-S/PCs) possesses many stem cell niche-like characteristics to support and regulate cells' activities, maintaining the properties of stem cells. Under physiological conditions, vascular homeostasis is a cautiously balanced and efficient interaction between stem cells and the microenvironment. These interactions contribute to the vascular repair and remodeling upon vessel injury. However, the signaling mechanisms involved in the regulation of microenvironment on stem cells remain to be further elucidated. Understanding the functional characteristics and potential mechanisms of VW-S/PCs is of great significance for both basic and translational research. This review underscores the microenvironment-derived signals that regulate VW-S/PCs and aims at providing new targets for the treatment of related cardiovascular diseases.
Collapse
|
16
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
17
|
Liu H, Zhang X, Zhao Z, Zhu H, Li D, Yang Y, Zhao W, Zhang F, Wang Y, Zhu L, Ding Z, Li X. CNST is Characteristic of Leukemia Stem Cells and is Associated With Poor Prognosis in AML. Front Pharmacol 2022; 13:888243. [PMID: 35662693 PMCID: PMC9157791 DOI: 10.3389/fphar.2022.888243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Consortin (CNST) is a protein located on the trans-Golgi network that can target transmembrane proteins to the plasma membrane. Although CNST was discovered more than 10 years ago, there are still not enough studies on its function. During our search for possible new acute myeloid leukemia (AML) markers, we found that CNST was overexpressed in almost all patients with AML. By analyzing profiling data from public databases, we found that CNST expression inversely correlated with overall survival among AML patients. There was a great variation in CNST expression among different subtypes of AML, and the expression was the highest in the t(8,21) subtype, which was probably due to the direct regulation of CNST transcription by RUNX1-RUNX1T1. In addition, we analyzed the expression of CNST in different cells of the hematopoietic system. We found that CNST was associated with the low differentiation degrees of hematopoietic cells and had the highest expression level in leukemia stem cells (LSCs). Finally, we analyzed the CNST-related gene network and found that the genes negatively correlated with CNST are involved in various immune-related pathways, which indicates that CNST is likely related to immune evasion, LSC niche retention, and assembly of stress granules. In conclusion, our study suggests that CNST has the potential to be a diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Ziyan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Hongying Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Yuefeng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Zewen Ding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Epigenetic Maintenance Strategies after Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia. Exp Hematol 2022; 109:1-10.e1. [DOI: 10.1016/j.exphem.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
|
19
|
Azacitidine-induced reconstitution of the bone marrow T cell repertoire is associated with superior survival in AML patients. Blood Cancer J 2022; 12:19. [PMID: 35091554 PMCID: PMC8799690 DOI: 10.1038/s41408-022-00615-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hypomethylating agents (HMA) like azacitidine are licensed for the treatment of acute myeloid leukemia (AML) patients ineligible for allogeneic hematopoietic stem cell transplantation. Biomarker-driven identification of HMA-responsive patients may facilitate the choice of treatment, especially in the challenging subgroup above 60 years of age. Since HMA possesses immunomodulatory functions that constitute part of their anti-tumor effect, we set out to analyze the bone marrow (BM) immune environment by next-generation sequencing of T cell receptor beta (TRB) repertoires in 51 AML patients treated within the RAS-AZIC trial. Patients with elevated pretreatment T cell diversity (11 out of 41 patients) and those with a boost of TRB richness on day 15 after azacitidine treatment (12 out of 46 patients) had longer event-free and overall survival. Both pretreatment and dynamic BM T cell metrics proved to be better predictors of outcome than other established risk factors. The favorable broadening of the BM T cell space appeared to be driven by antigen since these patients showed significant skewing of TRBV gene usage. Our data suggest that one course of AZA can cause reconstitution to a more physiological T cell BM niche and that the T cell space plays an underestimated prognostic role in AML. Trial registration: DRKS identifier: DRKS00004519
Collapse
|
20
|
Hao F, Sholy C, Wang C, Cao M, Kang X. The Role of T Cell Immunotherapy in Acute Myeloid Leukemia. Cells 2021; 10:cells10123376. [PMID: 34943884 PMCID: PMC8699747 DOI: 10.3390/cells10123376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease associated with various alterations in T cell phenotype and function leading to an abnormal cell population, ultimately leading to immune exhaustion. However, restoration of T cell function allows for the execution of cytotoxic mechanisms against leukemic cells in AML patients. Therefore, long-term disease control, which requires multiple therapeutic approaches, includes those aimed at the re-establishment of cytotoxic T cell activity. AML treatments that harness the power of T lymphocytes against tumor cells have rapidly evolved over the last 3 to 5 years through various stages of preclinical and clinical development. These include tissue-infiltrated lymphocytes (TILs), bispecific antibodies, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T (CAR-T) cell therapy, and tumor-specific T cell receptor gene-transduced T (TCR-T) cells. In this review, these T cell-based immunotherapies and the potential of TILs as a novel antileukemic therapy will be discussed.
Collapse
|
21
|
FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology. Blood Adv 2021; 6:690-703. [PMID: 34587246 PMCID: PMC8791585 DOI: 10.1182/bloodadvances.2021005198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P <.001), and of progression-free (HR: 4.09; P <.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies.
Collapse
|
22
|
Abbas HA, Mohanty V, Wang R, Huang Y, Liang S, Wang F, Zhang J, Qiu Y, Hu CW, Qutub AA, Dail M, Bolen CR, Daver N, Konopleva M, Futreal A, Chen K, Wang L, Kornblau SM. Decoupling Lineage-Associated Genes in Acute Myeloid Leukemia Reveals Inflammatory and Metabolic Signatures Associated With Outcomes. Front Oncol 2021; 11:705627. [PMID: 34422660 PMCID: PMC8372368 DOI: 10.3389/fonc.2021.705627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with variable responses to therapy. Cytogenetic and genomic features are used to classify AML patients into prognostic and treatment groups. However, these molecular characteristics harbor significant patient-to-patient variability and do not fully account for AML heterogeneity. RNA-based classifications have also been applied in AML as an alternative approach, but transcriptomic grouping is strongly associated with AML morphologic lineages. We used a training cohort of newly diagnosed AML patients and conducted unsupervised RNA-based classification after excluding lineage-associated genes. We identified three AML patient groups that have distinct biological pathways associated with outcomes. Enrichment of inflammatory pathways and downregulation of HOX pathways were associated with improved outcomes, and this was validated in 2 independent cohorts. We also identified a group of AML patients who harbored high metabolic and mTOR pathway activity, and this was associated with worse clinical outcomes. Using a comprehensive reverse phase protein array, we identified higher mTOR protein expression in the highly metabolic group. We also identified a positive correlation between degree of resistance to venetoclax and mTOR activation in myeloid and lymphoid cell lines. Our approach of integrating RNA, protein, and genomic data uncovered lineage-independent AML patient groups that share biologic mechanisms and can inform outcomes independent of commonly used clinical and demographic variables; these groups could be used to guide therapeutic strategies.
Collapse
Affiliation(s)
- Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Biostatistics & Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Computer Science, Rice University, Houston, TX, United States
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yihua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chenyue W Hu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Monique Dail
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, United States
| | - Christopher R Bolen
- Oncology Bioinformatics, Genentech Inc, South San Francisco, CA, United States
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
23
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
24
|
Vadakekolathu J, Minden MD, Hood T, Church SE, Reeder S, Altmann H, Sullivan AH, Viboch EJ, Patel T, Ibrahimova N, Warren SE, Arruda A, Liang Y, Smith TH, Foulds GA, Bailey MD, Gowen-MacDonald J, Muth J, Schmitz M, Cesano A, Pockley AG, Valk PJM, Löwenberg B, Bornhäuser M, Tasian SK, Rettig MP, Davidson-Moncada JK, DiPersio JF, Rutella S. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med 2021; 12:12/546/eaaz0463. [PMID: 32493790 DOI: 10.1126/scitranslmed.aaz0463] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
Abstract
Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)-γ-related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ-dominant AML subtypes.
Collapse
Affiliation(s)
| | - Mark D Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Tressa Hood
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | | | - Stephen Reeder
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Heidi Altmann
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, 01307 Dresden, Germany
| | | | | | - Tasleema Patel
- Department of Pediatrics, Division of Oncology and Centre for Childhood Cancer Research, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, PA 19104, USA
| | - Narmin Ibrahimova
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Yan Liang
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | | | - Gemma A Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | | | - John Muth
- MacroGenics Inc., Rockville, MD 20850, USA
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.,Centre for Health, Ageing and Understanding Disease (CHAUD), Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Centre, 3000CA Rotterdam, Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Centre, 3000CA Rotterdam, Netherlands
| | - Martin Bornhäuser
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah K Tasian
- Department of Pediatrics, Division of Oncology and Centre for Childhood Cancer Research, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, PA 19104, USA
| | - Michael P Rettig
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK. .,Centre for Health, Ageing and Understanding Disease (CHAUD), Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
25
|
Simonetti G, Angeli D, Petracci E, Fonzi E, Vedovato S, Sperotto A, Padella A, Ghetti M, Ferrari A, Robustelli V, Di Liddo R, Conconi MT, Papayannidis C, Cerchione C, Rondoni M, Astolfi A, Ottaviani E, Martinelli G, Gottardi M. Adrenomedullin Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory Signature in Acute Myeloid Leukemia. Front Oncol 2021; 11:684396. [PMID: 34150648 PMCID: PMC8208888 DOI: 10.3389/fonc.2021.684396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM participates in the regulation of hematopoietic compartment, solid tumors and leukemias, such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML pathogenesis, we investigated its expression during human hematopoiesis and in leukemic subsets, based on a morphological, cytogenetic and molecular characterization and in T cells from AML patients. In hematopoietic stem/progenitor cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It was expressed at low levels by megakaryocytes and erythroblasts, while higher levels were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating the hematopoietic niche, including mesenchymal stem cells, showed to express ADM. ADM was overexpressed in AML cells versus normal CD34+ cells and in the subset of leukemia compared with hematopoietic stem cells. In parallel, we detected a significant variation of ADM expression among cytogenetic subgroups, measuring the highest levels in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones. Moreover, ADM expression had a negative impact on overall survival within the favorable risk class, while showing a potential positive impact within the subgroup receiving a not-intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation of cell proliferation, ferroptosis, protection from apoptosis, HIF-1α signaling, JAK-STAT pathway, immune and inflammatory responses was correlated with ADM levels in the bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4+ T and CD8+ T cells from AML patients compared with healthy controls and some ADM co-expressed genes participate in a signature of immune tolerance that characterizes CD4+ T cells from leukemic patients. Overall, our study shows that ADM expression in AML associates with a stem cell phenotype, inflammatory signatures and genes related to immunosuppression, all factors that contribute to therapy resistance and disease relapse.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Susanna Vedovato
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, Udine, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Robustelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, Ravenna, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Emanuela Ottaviani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| |
Collapse
|
26
|
Radpour R, Stucki M, Riether C, Ochsenbein AF. Epigenetic Silencing of Immune-Checkpoint Receptors in Bone Marrow- Infiltrating T Cells in Acute Myeloid Leukemia. Front Oncol 2021; 11:663406. [PMID: 34017684 PMCID: PMC8130556 DOI: 10.3389/fonc.2021.663406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Immune-checkpoint (IC) inhibitors have revolutionized the treatment of multiple solid tumors and defined lymphomas, but they are largely ineffective in acute myeloid leukemia (AML). The reason why especially PD1/PD-L1 blocking agents are not efficacious is not well-understood but it may be due to the contribution of different IC ligand/receptor interactions that determine the function of T cells in AML. Methods To analyze the interactions of IC ligands and receptors in AML, we performed a comprehensive transcriptomic analysis of FACS-purified leukemia stem/progenitor cells and paired bone marrow (BM)-infiltrating CD4+ and CD8+ T cells from 30 patients with AML. The gene expression profiles of activating and inhibiting IC ligands and receptors were correlated with the clinical data. Epigenetic mechanisms were studied by inhibiting the histone deacetylase with valproic acid or by gene silencing of PAC1. Results We observed that IC ligands and receptors were mainly upregulated in leukemia stem cells. The gene expression of activating IC ligands and receptors correlated with improved prognosis and vice versa. In contrast, the majority of IC receptor genes were downregulated in BM-infiltrating CD8+ T cells and partially in CD4+ T cells, due to pathological chromatin remodeling via histone deacetylation. Therefore, treatment with histone deacetylase inhibitor (HDACi) or silencing of PAC1, as a T cell-specific epigenetic modulator, significantly increased the expression of IC receptors and defined effector molecules in CD8+ T cells. Conclusions Our results suggest that CD8+ T cells in AML are dysfunctional mainly due to pathological epigenetic silencing of activating IC receptors rather than due to signaling by immune inhibitory IC receptors, which may explain the limited efficacy of antibodies that block immune-inhibitory ICs in AML.
Collapse
Affiliation(s)
- Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miriam Stucki
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
28
|
Monaco G, Percio S, Ting SB. Budgeting at the Ca 2+ store: a PIP (2)eline to starve LSCs? Cell Calcium 2020; 93:102309. [PMID: 33181424 DOI: 10.1016/j.ceca.2020.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 11/24/2022]
Abstract
The oxysterol-binding protein-related proteins (ORPs) have emerged as orchestrators of phosphatidylinositol-4,5-bisphosphate (PIP2) and cholesterol trafficking to the plasma membrane (PM). In this scenario, recent studies raised the prospect of ORPs cooperative behavior in sustaining leukemia stem cells (LSCs) survival by remotely enhancing ER-mitochondria Ca2+ communication. At the apex of the signaling cascade, the aberrantly upregulated LSC-ORP4L fosters PM-PIP2 extraction & cleavage, endoplasmic reticulum (ER)-Ca2+ release and mitochondrial energetics. The theoretical ember of draining fuel from the chemoresistant LSCs by restraining endoplasmic reticulum (ER)-mitochondria Ca2+ fluxes in a lipid-contingent fashion ensues. In light of relevant literature, this review briefly and critically discusses some key molecular ins & outs underlying such therapeutic opportunity in acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia.
| | - Stefano Percio
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia; Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stephen B Ting
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University & Department of Haematology, Eastern Health, Box Hill Hospital, Melbourne, Australia
| |
Collapse
|
29
|
Dong X, Zhang D, Zhang J, Chen X, Zhang Y, Zhang Y, Zhou X, Chen T, Zhou H. Immune prognostic risk score model in acute myeloid leukemia with normal karyotype. Oncol Lett 2020; 20:380. [PMID: 33154778 DOI: 10.3892/ol.2020.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023] Open
Abstract
Acute myeloid leukemia with normal karyotype (NK-AML) is a group of diseases with high heterogeneity and immunological processes are significantly associated with its initiation and development. The implication of the immunogenomic landscape in the prognosis of patients with NK-AML has remained largely elusive. In the present study, the expression profiles of immune-related genes (IRGs) were examined and their association with overall survival (OS) was determined in 60 patients with NK-AML from The Cancer Genome Atlas dataset and 104 patients from the Gene Expression Omnibus (GEO) dataset no. GSE71014. Univariate Cox regression analysis was used to identify 42 and 203 IRGs in the two respective cohorts, which were significantly associated with OS in NK-AML. A risk model was constructed based on the regression coefficient and expression values of nine survival-associated IRGs shared between the two datasets [zinc finger CCCH-type containing, antiviral 1 like; transferrin receptor; suppressor of cytokine signaling 1; ELAV like RNA binding protein 1; roundabout guidance receptor 3; unc-93 homolog B1, Toll-like receptor signaling regulator; protein tyrosine phosphatase non-receptor type 6; interleukin 2 receptor subunit alpha (IL2RA) and IL3RA]. Using this risk model, patients with NK-AML may be divided into high- and low-risk groups in prognostic predictions. The area under the receiver operating characteristic curve for predicting OS was 0.793. The prognostic role of this risk model was successfully verified in another independent cohort (GEO dataset no. GSE71014). The prognostic risk score was positively associated with age and fms related receptor tyrosine kinase 3 mutation and correlated with infiltration by T regulatory cells. In conclusion, the results of the present study provided an IRG score model for prognostic stratification of adult patients with NK-AML, as well as further insight into the implication of IRGs in NK-AML that may lead to the development of novel immunotherapy approaches for this disease.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Danyang Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Juan Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaolei Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yue Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yong Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Tingting Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Hebing Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
30
|
Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis 2020; 9:90. [PMID: 33040091 PMCID: PMC7548009 DOI: 10.1038/s41389-020-00274-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The lack of approved targeted therapies highlights the need for new treatments for triple-negative breast cancer (TNBC) patients. Interleukin-3 (IL-3) acts as an autocrine factor for tumor-endothelial cells (TEC), and exerts pro-angiogenic paracrine action via extracellular vesicles (EVs). IL-3Rα blockade on TEC changes TEC-EV (anti-IL-3R-EV) microRNA (miR) content and promotes the regression of established vessels. As TEC is the doorway for "drug" entry into tumors, we aimed to assess whether IL-3R blockade on TEC impacts tumor progression via its unique EV cargo. First, the expression of IL-3Rα was evaluated in 27 human TNBC samples. It was noticed that, besides TEC and inflammatory cells, tumor cells from 55.5% of the human TNBC samples expressed IL-3Rα. Using human TNBC cell lines for in vitro studies, we found that, unlike native TEC-EVs (nEVs), anti-IL-3R-EVs increase apoptosis and reduced cell viability and migration. In vivo, anti-IL-3R-EV treatment induced vessel regression in established tumors formed of MDA-MB-231 cells, decreased Vimentin, β-catenin, and TWIST1 expression, almost abolished liver and lung metastases from primary tumors, and reduced lung metastasis generated via the intravenous injection of MDA-MB-231 cells. nEVs depleted of miR-24-3p (antago-miR-24-3p-EVs) were effective as anti-IL-3R-EVs in downregulating TWIST1 and reducing metastatic lesions in vivo. Consistent with network analyses of miR-24-3p gene targeting, anti-IL-3R-EVs and antago-miR-24-3p-EVs upregulate SPRY2 in MDA-MB-231 cells. Finally, SPRY2 silencing prevented anti-IL-3R-EV and antago-miR-24-3p-EV-mediated apoptotic cues.Overall, these data provide the first evidence that IL-3Rα is highly expressed in TNBC cells, TEC, and inflammatory cells, and that IL-3Rα blockade on TEC impacts tumor progression.
Collapse
|
31
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
32
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
33
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Li Z, Philip M, Ferrell PB. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020; 39:3611-3619. [PMID: 32127646 PMCID: PMC7234277 DOI: 10.1038/s41388-020-1239-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|