1
|
Huang Q, Li H, Zhang Y. A bibliometric and knowledge-map study on the treatment of hematological malignancies with CAR-T cells from 2012 to 2023. Hum Vaccin Immunother 2024; 20:2371664. [PMID: 38961667 PMCID: PMC11225924 DOI: 10.1080/21645515.2024.2371664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Recently, CAR-T cell therapy in hematological malignancies has received extensive attention. The objective of this study is to gain a comprehensive understanding of the current research status, development trends, research hotspots, and emerging topics pertaining to CAR-T cells in the treatment of hematological malignancies. Articles pertaining to CAR-T cell therapy for hematological malignancies from the years 2012 to 2023 were obtained and assessed from the Web of Science Core Collection (WoSCC). A bibliometric approach was employed to conduct a scientific, comprehensive, and objective quantitative analysis, as well as a visual analysis, of this particular research domain. A comprehensive analysis was conducted on a corpus of 3643 articles, which were collaboratively authored by 72 countries and various research institutions. CAR-T cell research in treating hematological malignancies shows an increasing trend each year. Notably, the study identified the countries and institutions displaying the highest level of activity, the journals with the most citations and output, as well as the authors who garnered the highest frequency of citations and co-citations. Furthermore, the analysis successfully identified the research hotspots and highlighted six emerging topics within this domain. This study conducted a comprehensive exploration and analysis of the research status, development trends, research hotspots, and emerging topics about CAR-T cells in the treatment of hematological malignancies from 2012 to 2023. The findings of this study will serve as a valuable reference and guide for researchers seeking to delve deeper into this field and determine the future direction of their research.
Collapse
Affiliation(s)
- Qing Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huimin Li
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Zhang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2024:gutjnl-2024-333127. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R, Magrelli A. Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility. Int J Mol Sci 2024; 25:10365. [PMID: 39408696 PMCID: PMC11476879 DOI: 10.3390/ijms251910365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Ambrosone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Anna Laura Salvati
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
| | - Robert Nisticò
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
- Agenzia Italiana del Farmaco, Via del Tritone 181, 00187 Rome, Italy
| | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| |
Collapse
|
6
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
7
|
Fan Y, Qin Y, Dong X, Wang Z, Zhou H. Identification and expression patterns of voltage-gated sodium channel genes with intron retentions in different strains of Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106084. [PMID: 39277397 DOI: 10.1016/j.pestbp.2024.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to β-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with β-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to β-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to β-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to β-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.
Collapse
Affiliation(s)
- Yinjun Fan
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Yu Qin
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Xinyi Dong
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Zixuan Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China.
| |
Collapse
|
8
|
Chen PH, Raghunandan R, Morrow JS, Katz SG. Finding Your CAR: The Road Ahead for Engineered T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1409-1423. [PMID: 38697513 PMCID: PMC11284763 DOI: 10.1016/j.ajpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Adoptive cellular therapy using chimeric antigen receptors (CARs) has transformed immunotherapy by engineering T cells to target specific antigens on tumor cells. As the field continues to advance, pathology laboratories will play increasingly essential roles in the complicated multi-step process of CAR T-cell therapy. These include detection of targetable tumor antigens by flow cytometry or immunohistochemistry at the time of disease diagnosis and the isolation and infusion of CAR T cells. Additional roles include: i) detecting antigen loss or heterogeneity that renders resistance to CAR T cells as well as identifying alternative targetable antigens on tumor cells, ii) monitoring the phenotype, persistence, and tumor infiltration properties of CAR T cells and the tumor microenvironment for factors that predict CAR T-cell therapy success, and iii) evaluating side effects and biomarkers of CAR T-cell cytotoxicity such as cytokine release syndrome. This review highlights existing technologies that are applicable to monitoring CAR T-cell persistence, target antigen identification, and loss. Also discussed are emerging technologies that address new challenges such as how to put a brake on CAR T cells. Although pathology laboratories have already provided companion diagnostic tests important in immunotherapy (eg, programmed death-ligand 1, microsatellite instability, and human epidermal growth factor receptor 2 testing), it draws attention to the exciting new translational research opportunities in adoptive cellular therapy.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Rianna Raghunandan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon S Morrow
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
9
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Tang D, Zhao L, Yan F, Ren C, Xu K, Zhao K. Expression of VISTA regulated via IFN-γ governs endogenous T-cell function and exhibits correlation with the efficacy of CD19 CAR-T cell treated B-malignant mice. J Immunother Cancer 2024; 12:e008364. [PMID: 38925679 PMCID: PMC11202651 DOI: 10.1136/jitc-2023-008364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Despite continuous improvements in the new target and construction of chimeric antigen receptor (CAR)-T, relapse remains a significant challenge following CAR-T therapy. Tumor microenvironment (TME) strongly correlates with the efficacy of CAR-T therapy. V-domain Ig suppressor of T-cell activation (VISTA), which exerts a multifaceted and controversial role in regulating the TME, acts not only as a ligand on antigen-presenting cells but also functions as a receptor on T cells. However, the characteristics and underlying mechanisms governing endogenous T-cell activation by VISTA, which are pivotal for reshaping the TME, remain incompletely elucidated. METHODS The immunocompetent B acute lymphoblastic leukemia (B-ALL), lymphoma, and melanoma murine models were employed to investigate the characteristics of endogenous T cells within the TME following CD19 and hCAIX CAR-T cell therapy, respectively. Furthermore, we examined the role of VISTA controlled by interferon (IFN)-γ signaling in regulating endogenous T-cell activation and functionality in B-ALL mice. RESULTS We demonstrated that the administration of CD19 CAR-T or hCAIX CAR-T cell therapy elicited augmented immune responses of endogenous T cells within the TME of B-ALL, lymphoma, and melanoma mice, thereby substantiating the efficacy of CAR-T cell efficacy. However, in the TME lacking IFN-γ signaling, VISTA levels remained elevated, resulting in attenuated cytotoxicity of endogenous T cells and reduced B-ALL recipient survival. Mice treated with CD19 CAR-T cells exhibited increased proportions of endogenous memory T cells during prolonged remission, which possessed the tumor-responsive capabilities to protect against B-ALL re-challenge. Compared with wild-type (WT) CAR-T treated mice, the administration of IFN-γ-/- CAR-T to both WT and IFN-γ-/- recipients resulted in a reduction in the numbers of endogenous CD4+ and CD8+ effectors, while exhibiting increased populations of naïve-like CD4+ T and memory CD8+ T cells. VISTA expression consistently remained elevated in resting or memory CD4+ T cells, with distinct localization from programmed cell death protein-1 (PD-1) expressing T subsets. Blocking the VISTA signal enhanced dendritic cell-induced proliferation and cytokine production by syngeneic T cells. CONCLUSION Our findings confirm that endogenous T-cell activation and functionality are regulated by VISTA, which is associated with the therapeutic efficiency of CAR-T and provides a promising therapeutic strategy for relapse cases in CAR-T therapy.
Collapse
Affiliation(s)
- Donghai Tang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Zhao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fen Yan
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunxiao Ren
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
12
|
Shang Q, Xue L, Lu A, Jia Y, Zuo Y, Zeng H, Zhang L. Efficacy and Safety of Children With Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia After Anti-CD19 CAR T-Cell Therapy Without Bridging Transplantation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:392-399.e5. [PMID: 38429221 DOI: 10.1016/j.clml.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Anti-CD19 chimeric antigen receptor (CAR) T-cell therapies have demonstrated significant efficacy in achieving complete remission (CR) in pediatric patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). However, a considerable number of patients experience relapse within 1 year after CAR T-cell therapy, leading to an extremely poor prognosis, particularly in patients without bridging transplantation. MATERIALS AND METHODS In our study, we investigated 42 children with R/R B-ALL who underwent anti-CD19 CAR T-cell therapy without bridging transplantation at our center. All patients were included in the response analysis and evaluated for survival and toxicity. RESULTS The cohort that received the CAR T-cell infusion exhibited a 100% CR rate by day 28 (d28). The overall survival (OS) at 4 years was 61.3% ± 8.5%, and the event-free survival (EFS) was 55.9% ± 7.9%, with a median follow-up duration of 50.1 months. Minimal residual disease (MRD) ≥1% was associated with inferior outcomes, resulting in lower 4-year OS (P = .033) and EFS (P = .014) compared to MRD<1%. The incidences of grade ≥3 cytokine release syndrome (CRS) and neurotoxicity were 26.8% and 23.8%, respectively. Furthermore, MRD≥1% was identified as an independent factor associated with increased severity of CRS and occurrence of neurotoxicity. CONCLUSION These findings suggest that reducing the pre-infusion MRD could serve as an effective treatment strategy to enhance the outcomes of CAR T-cell therapy.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Lian Xue
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - YingXi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
13
|
Li H, Wang Y, Liu R, Li X, Zhang P, Chen P, Zhao N, Li B, Wang J, Tang Y. Unraveling resistance mechanisms in anti-CD19 chimeric antigen receptor-T therapy for B-ALL: a novel in vitro model and insights into target antigen dynamics. J Transl Med 2024; 22:482. [PMID: 38773607 PMCID: PMC11110321 DOI: 10.1186/s12967-024-05254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.
Collapse
Affiliation(s)
- Hongzhe Li
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yuwen Wang
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xiaoxiao Li
- Department of Pediatrics, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ping Chen
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ning Zhao
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Bing Li
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Wang
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Brillembourg H, Martínez-Cibrián N, Bachiller M, Alserawan L, Ortiz-Maldonado V, Guedan S, Delgado J. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; 204:1649-1659. [PMID: 38362778 DOI: 10.1111/bjh.19348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.
Collapse
Affiliation(s)
| | - Núria Martínez-Cibrián
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Mireia Bachiller
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clínic, Barcelona, Spain
| | | | - Valentín Ortiz-Maldonado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
15
|
Schultz LM, Jeyakumar N, Kramer AM, Sahaf B, Srinagesh H, Shiraz P, Agarwal N, Hamilton M, Erickson C, Jacobs A, Moon J, Baggott C, Arai S, Bharadwaj S, Johnston LJ, Liedtke M, Lowsky R, Meyer E, Negrin R, Rezvani A, Shizuru J, Sidana S, Egeler E, Mavroukakis S, Tunuguntla R, Gkitsas-Long N, Retherford A, Brown AK, Gramstrap-Petersen AL, Ibañez RM, Feldman SA, Miklos DB, Mackall CL, Davis KL, Frank M, Ramakrishna S, Muffly L. CD22 CAR T cells demonstrate high response rates and safety in pediatric and adult B-ALL: Phase 1b results. Leukemia 2024; 38:963-968. [PMID: 38491306 DOI: 10.1038/s41375-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD22 (CD22-CAR) provide a therapeutic option for patients with CD22+ malignancies with progression after CD19-directed therapies. Using on-site, automated, closed-loop manufacturing, we conducted parallel Phase 1b clinical trials investigating a humanized CD22-CAR with 41BB costimulatory domain in children and adults with heavily treated, relapsed/refractory (r/r) B-ALL. Of 19 patients enrolled, 18 had successful CD22-CAR manufacturing, and 16 patients were infused. High grade (3-4) cytokine release syndrome (CRS) and immune effector-cell-associated neurotoxicity syndrome (ICANS) each occurred in only one patient; however, three patients experienced immune-effector-cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS). Twelve of 16 patients (75%) achieved CR with an overall 56% MRD-negative CR rate. Duration of response was overall limited (median 77 days), and CD22 expression was downregulated in 4/12 (33%) available samples at relapse. In summary, we demonstrate that closed-loop manufacturing of CD22-CAR T cells is feasible and is associated with a favorable safety profile and high CR rates in pediatric and adult r/r B-ALL, a cohort with limited CD22-CAR reporting.
Collapse
Affiliation(s)
- Liora M Schultz
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | | | | | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | | | - Parveen Shiraz
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Neha Agarwal
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Mark Hamilton
- Division of Hematology, Stanford University, Stanford, CA, USA
| | - Courtney Erickson
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Ashley Jacobs
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Jennifer Moon
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Christina Baggott
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Sally Arai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Sushma Bharadwaj
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Laura J Johnston
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | | | - Robert Lowsky
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Robert Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Andrew Rezvani
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Judy Shizuru
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Surbhi Sidana
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | | | - Ramya Tunuguntla
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA, USA
| | | | - Aidan Retherford
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA, USA
| | - David B Miklos
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Matthew Frank
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| | - Sneha Ramakrishna
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Lori Muffly
- Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA.
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, Lu J, Wang Y, Liu B, Guo H. Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2-Mediated MLH1 Intron Retention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309290. [PMID: 38477507 PMCID: PMC11109612 DOI: 10.1002/advs.202309290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Indexed: 03/14/2024]
Abstract
Temozolomide (TMZ) resistance remains the major obstacle in the treatment of glioblastoma (GBM). Lactylation is a novel post-translational modification that is involved in various tumors. However, whether lactylation plays a role in GBM TMZ resistance remains unclear. Here it is found that histone H3K9 lactylation (H3K9la) confers TMZ resistance in GBM via LUC7L2-mediated intron 7 retention of MLH1. Mechanistically, lactylation is upregulated in recurrent GBM tissues and TMZ-resistant cells, and is mainly concentrated in histone H3K9. Combined multi-omics analysis, including CUT&Tag, SLAM-seq, and RNA-seq, reveals that H3K9 lactylation is significantly enriched in the LUC7L2 promoter and activates LUC7L2 transcription to promote its expression. LUC7L2 mediates intron 7 retention of MLH1 to reduce MLH1 expression, and thereby inhibit mismatch repair (MMR), ultimately leading to GBM TMZ resistance. Of note, it is identified that a clinical anti-epileptic drug, stiripentol, which can cross the blood-brain barrier and inhibit lactate dehydrogenase A/B (LDHA/B) activity, acts as a lactylation inhibitor and renders GBM cells more sensitive to TMZ in vitro and in vivo. These findings not only shed light on the mechanism of lactylation in GBM TMZ resistance but also provide a potential combined therapeutic strategy for clinical GBM treatment.
Collapse
Affiliation(s)
- Qu Yue
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Zhao Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yixiong Shen
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yufei Lan
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xiangyang Zhong
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xin Luo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tao Yang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Manqing Zhang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boming Zuo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tianci Zeng
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Jiankun Lu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yuankai Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boyang Liu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Hongbo Guo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| |
Collapse
|
17
|
Aminov S, Giricz O, Melnekoff DT, Sica RA, Polishchuk V, Papazoglu C, Yates B, Wang HW, Sahu S, Wang Y, Gordon-Mitchell S, Leshchenko VV, Schinke C, Pradhan K, Aluri S, Sohn M, Barta SK, Agarwal B, Goldfinger M, Mantzaris I, Shastri A, Matsui W, Steidl U, Brody JD, Shah NN, Parekh S, Verma A. Immunotherapy-resistant acute lymphoblastic leukemia cells exhibit reduced CD19 and CD22 expression and BTK pathway dependency. J Clin Invest 2024; 134:e175199. [PMID: 38376944 PMCID: PMC11014656 DOI: 10.1172/jci175199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
While therapies targeting CD19 by antibodies, chimeric antigen receptor T cells (CAR-T), and T cell engagers have improved the response rates in B cell malignancies, the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19 immunotoxin. Single-cell RNA-Seq (scRNA-Seq) showed an increase in transcriptionally distinct CD19lo populations among resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19lo-resistant cells. An assay for transposase-accessible chromatin with sequencing (ATAC-Seq) showed decreased chromatin accessibility at promoters of both CD19 and CD22 in the resistant cell populations. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with B cell acute lymphoblastic leukemia (B-ALL) that relapsed after CD19 CAR-T-targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19lo resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both Bruton's tyrosine kinase (BTK) and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.
Collapse
Affiliation(s)
- Sarah Aminov
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Orsi Giricz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - David T. Melnekoff
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - R. Alejandro Sica
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Veronika Polishchuk
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Cristian Papazoglu
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research and
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Srabani Sahu
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Yanhua Wang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shanisha Gordon-Mitchell
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Violetta V. Leshchenko
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Schinke
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Kith Pradhan
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Srinivas Aluri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Moah Sohn
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan K. Barta
- Department of Medicine, Division of Hematology/Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mendel Goldfinger
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Ioannis Mantzaris
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Joshua D. Brody
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research and
| | - Samir Parekh
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| |
Collapse
|
18
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
19
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
20
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Testa U, Sica S, Pelosi E, Castelli G, Leone G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024010. [PMID: 38223477 PMCID: PMC10786140 DOI: 10.4084/mjhid.2024.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Collapse
Affiliation(s)
| | - Simona Sica
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
22
|
Ma R, You F, Tian S, Zhang T, Tian X, Xiang S, Wu H, Yang N, An G, Yang L. Enhanced efficacy of CD19/CD22 bispecific CAR-T cells with EAAAK linker on B-cell malignancies. Eur J Haematol 2024; 112:64-74. [PMID: 37671595 DOI: 10.1111/ejh.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Despite the great success of CD19 CAR-T cell therapy, its clinical efficacy has been greatly hampered by the high relapse rate. In this study, we designed and compared four structures of CD19/CD22 bispecific CAR-T cells with different linkers and different orders of the antibody sequences. METHODS We detected the cytotoxicity, cytokine secretion levels, sustainable killing ability, differentiation, exhaustion of these four CAR-T cells in vitro. The optimal Bis-C CAR-T cells were evaluated the efficacy using NSG mice. RESULTS The two structures of CD19/CD22 bispecific CAR-T cells using (EAAAK)3 as linker had more significant cytotoxicity and cytokine secretion levels. In the process of continuous killing, Bis-C CAR-T cells showed better sustained killing ability, memory phenotype differentiation, and exhaustion. In the in vivo experiment mimicking CD19-negative relapse, Bis-C CAR-T was more able to control the tumor progression of mice in the CD19 low expression or no expression groups than CD19 CAR-T. CONCLUSIONS This study has generated a novel bispecific CAR-T cell that can simultaneously target CD19 or CD22 positive tumor cells, providing a new strategy to address the limitations of single-targeted CAR-T therapy in B-cell tumors (limited response or relapse).
Collapse
Affiliation(s)
- Renyuxue Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Fengtao You
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| | - Shuaiyu Tian
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tingting Zhang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| | - Xiaopeng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shufen Xiang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| | - Hai Wu
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| | - Nan Yang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lin Yang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Johnson GA, Locke FL. Mechanisms of Resistance to Chimeric Antigen Receptor T Cell Therapy. Hematol Oncol Clin North Am 2023; 37:1189-1199. [PMID: 37580193 DOI: 10.1016/j.hoc.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
CAR T cell therapy has significantly shaped the treatment landscape for refractory hematologic malignancies including large B-cell lymphomas, multiple myeloma, and leukemias. While response rates for a previously dismal prognosis have improved, certain obstacles still remain to achieving CAR T infallibility. In this article, we review the data surrounding proposed resistance mechanisms of tumors to CAR T, including the implications of target loss, exhausted T cells as effete effectors, the necessity of maximal CAR T expansion to durable response, the negative impact of an inflammatory milieu and a suppressive tumor microenvironment, and the optimal tumor-to-effector ratio that associates with best outcomes. The future of CAR T should aim to mitigate these weaknesses in order to bolster the efficacy of this revolutionary therapy.
Collapse
Affiliation(s)
- Grace A Johnson
- University of South Florida Morsani College of Medicine, 560 Channelside Drive, Tampa, FL 336022, USA
| | - Frederick L Locke
- H. Lee Moffitt Cancer Center, Department of Blood and Marrow Transplant and Cellular Immunotherapy, 12902 USF Magnolia Drive, Suite 3057, Tampa, FL 33612, USA.
| |
Collapse
|
24
|
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 2023; 30:1844-1856. [PMID: 38036695 DOI: 10.1038/s41594-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein-carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
26
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. Blood 2023; 142:1724-1739. [PMID: 37683180 PMCID: PMC10667349 DOI: 10.1182/blood.2023020400] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.
Collapse
Affiliation(s)
- Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Manuel Torres Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Feng Xu
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Samantha Soldan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Joseph P. Loftus
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scarlett Y. Yang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Vinodh Pillai
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emeline Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marilyn M. Li
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
27
|
Lamble AJ, Moskop A, Pulsipher MA, Maude SL, Summers C, Annesley C, Baruchel A, Gore L, Amrolia P, Shah N. INSPIRED Symposium Part 2: Prevention and Management of Relapse Following Chimeric Antigen Receptor T Cell Therapy for B Cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2023; 29:674-684. [PMID: 37689393 DOI: 10.1016/j.jtct.2023.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Although CD19-directed chimeric antigen receptor (CAR) T cell therapy (CAR-T) for relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) has been transformative in inducing and sustaining remission, relapse rates remain unacceptably high, with approximately 50% of children and young adults experiencing relapse within the first year postinfusion. Emerging strategies to extend the durability of remission involve the use of prognostic biomarkers to identify those at high risk of relapse or incorporate strategies aimed to enhancing functional CAR T cell persistence. Nonetheless, with antigen loss/down-regulation or evolution to lineage switch as major mechanisms of relapse, optimizing single antigen targeting alone is insufficient. Here, with a focus on relapse prevention strategies, including postinfusion surveillance and treatment approaches being explored to optimize post-CAR-T management (eg, combinatorial antigen targeting strategies, preemptive hematopoietic cell transplantation), we review the current state of the art in the prevention and management of post CAR-T relapse. We highlight the advancements in the field and identify gaps in the literature to guide future research in optimizing the prevention and management of post-CAR-T relapse in children and young adults with B-ALL.
Collapse
Affiliation(s)
- Adam J Lamble
- Division of Hematology/Oncology, University of Washington, Seattle Children's Hospital, Seattle, Washington.
| | - Amy Moskop
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, Wisconsin
| | - Michael A Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Shannon L Maude
- Division of Oncology, Cell Therapy and Transplant Section, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Corinne Summers
- Division of Hematology/Oncology, University of Washington, Seattle Children's Hospital, Seattle, Washington; Fred Hutchinson Cancer Center, Seattle, Washington
| | - Colleen Annesley
- Division of Hematology/Oncology, University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - André Baruchel
- Pediatric Hematology Department, Robert Debré University Hospital, AP-HP and Université Paris Cité, Paris, France
| | - Lia Gore
- Pediatric Hematology/Oncology/BMT-CT, University of Colorado, Children's Hospital Colorado, Aurora, Colorado
| | - Persis Amrolia
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Nirali Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529123. [PMID: 37645778 PMCID: PMC10461923 DOI: 10.1101/2023.02.19.529123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
Collapse
|
29
|
Masih KE, Gardner RA, Chou HC, Abdelmaksoud A, Song YK, Mariani L, Gangalapudi V, Gryder BE, Wilson AL, Adebola SO, Stanton BZ, Wang C, Milewski D, Kim YY, Tian M, Cheuk ATC, Wen X, Zhang Y, Altan-Bonnet G, Kelly MC, Wei JS, Bulyk ML, Jensen MC, Orentas RJ, Khan J. A stem cell epigenome is associated with primary nonresponse to CD19 CAR T cells in pediatric acute lymphoblastic leukemia. Blood Adv 2023; 7:4218-4232. [PMID: 36607839 PMCID: PMC10440404 DOI: 10.1182/bloodadvances.2022008977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.
Collapse
Affiliation(s)
- Katherine E. Masih
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge, England
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Rebecca A. Gardner
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Abdalla Abdelmaksoud
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Young K. Song
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Vineela Gangalapudi
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Berkley E. Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Ashley L. Wilson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Serifat O. Adebola
- Immunodynamics Group, Cancer and Inflammation Program, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Benjamin Z. Stanton
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH
| | - Chaoyu Wang
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David Milewski
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yong Yean Kim
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Meijie Tian
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adam Tai-Chi Cheuk
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yue Zhang
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD
| | - Jun S. Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Michael C. Jensen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Rimas J. Orentas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
31
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
32
|
Lim WF, Rinaldi C. RNA Transcript Diversity in Neuromuscular Research. J Neuromuscul Dis 2023:JND221601. [PMID: 37182892 DOI: 10.3233/jnd-221601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Three decades since the Human Genome Project began, scientists have now identified more then 25,000 protein coding genes in the human genome. The vast majority of the protein coding genes (> 90%) are multi-exonic, with the coding DNA being interrupted by intronic sequences, which are removed from the pre-mRNA transcripts before being translated into proteins, a process called splicing maturation. Variations in this process, i.e. by exon skipping, intron retention, alternative 5' splice site (5'ss), 3' splice site (3'ss), or polyadenylation usage, lead to remarkable transcriptome and proteome diversity in human tissues. Given its critical biological importance, alternative splicing is tightly regulated in a tissue- and developmental stage-specific manner. The central nervous system and skeletal muscle are amongst the tissues with the highest number of differentially expressed alternative exons, revealing a remarkable degree of transcriptome complexity. It is therefore not surprising that splicing mis-regulation is causally associated with a myriad of neuromuscular diseases, including but not limited to amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and myotonic dystrophy type 1 and 2 (DM1, DM2). A gene's transcript diversity has since become an integral and an important consideration for drug design, development and therapy. In this review, we will discuss transcript diversity in the context of neuromuscular diseases and current approaches to address splicing mis-regulation.
Collapse
Affiliation(s)
- Wooi Fang Lim
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
34
|
Nagler A, Perriello VM, Falini L, Falini B. How I treat refractory/relapsed diffuse large B-cell lymphomas with CD19-directed chimeric antigen receptor T cells. Br J Haematol 2023; 201:396-410. [PMID: 36916189 DOI: 10.1111/bjh.18724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 represent a promising salvage immunotherapy for relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL), offering ~40% of long-term responses. In everyday clinical practice, haematologists involved in CAR T cell treatment of patients with R/R DLBCL have to deal with diagnostically complex cases and difficult therapeutic choices. The availability of novel immunotherapeutic agents for R/R DLBCL and recent advances in understanding CAR T-cell failure mechanisms demand a rational approach to identify the best choice for bridging therapy and managing post-CAR T-cell therapy relapses. Moreover, positron emission tomography/computerised tomography may result in false-positive interpretation, highlighting the importance of post-treatment biopsy. In this review, we discuss all above issues, presenting four instructive cases, with the aim to provide criteria and new perspectives for CAR T-cell treatment of DLBCL.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Lorenza Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
35
|
Ziegler N, Cortés-López M, Alt F, Sprang M, Ustjanzew A, Lehmann N, El Malki K, Wingerter A, Russo A, Beck O, Attig S, Roth L, König J, Paret C, Faber J. Analysis of RBP expression and binding sites identifies PTBP1 as a regulator of CD19 expression in B-ALL. Oncoimmunology 2023; 12:2184143. [PMID: 36875548 PMCID: PMC9980455 DOI: 10.1080/2162402x.2023.2184143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms.
Collapse
Affiliation(s)
- Nicole Ziegler
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Francesca Alt
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Biozentrum I, Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Lehmann
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexandra Russo
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Olaf Beck
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Attig
- Department of Translational Oncology and Immunology at the Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Roth
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Claudia Paret
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Faber
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Closa A, Reixachs-Solé M, Fuentes-Fayos AC, Hayer K, Melero J, Adriaanse FRS, Bos R, Torres-Diz M, Hunger S, Roberts K, Mullighan C, Stam R, Thomas-Tikhonenko A, Castaño J, Luque R, Eyras E. A convergent malignant phenotype in B-cell acute lymphoblastic leukemia involving the splicing factor SRRM1. NAR Cancer 2022; 4:zcac041. [PMID: 36518527 PMCID: PMC9732526 DOI: 10.1093/narcan/zcac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 11/07/2024] Open
Abstract
A significant proportion of infant B-cell acute lymphoblastic leukemia (B-ALL) patients remains with a dismal prognosis due to yet undetermined mechanisms. We performed a comprehensive multicohort analysis of gene expression, gene fusions, and RNA splicing alterations to uncover molecular signatures potentially linked to the observed poor outcome. We identified 87 fusions with significant allele frequency across patients and shared functional impacts, suggesting common mechanisms across fusions. We further identified a gene expression signature that predicts high risk independently of the gene fusion background and includes the upregulation of the splicing factor SRRM1. Experiments in B-ALL cell lines provided further evidence for the role of SRRM1 on cell survival, proliferation, and invasion. Supplementary analysis revealed that SRRM1 potentially modulates splicing events associated with poor outcomes through protein-protein interactions with other splicing factors. Our findings reveal a potential convergent mechanism of aberrant RNA processing that sustains a malignant phenotype independently of the underlying gene fusion and that could potentially complement current clinical strategies in infant B-ALL.
Collapse
Affiliation(s)
- Adria Closa
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Marina Reixachs-Solé
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Juan L Melero
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | | | - Romy S Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Stephen P Hunger
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, USA
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Eduardo Eyras
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
37
|
GU T, ZHU M, HUANG H, HU Y. Relapse after CAR-T cell therapy in B-cell malignancies: challenges and future approaches. J Zhejiang Univ Sci B 2022; 23:793-811. [PMID: 36226535 PMCID: PMC9561408 DOI: 10.1631/jzus.b2200256] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy, as a novel cellular immunotherapy, has dramatically reshaped the landscape of cancer treatment, especially in hematological malignancies. However, relapse is still one of the most troublesome obstacles to achieving broad clinical application. The intrinsic factors and superior adaptability of tumor cells mark a fundamental aspect of relapse. The unique biological function of CAR-T cells governed by their special CAR construction also affects treatment efficacy. Moreover, complex cross-interactions among CAR-T cells, tumor cells, and the tumor microenvironment (TME) profoundly influence clinical outcomes concerning CAR-T cell function and persistence. Therefore, in this review, based on the most recent discoveries, we focus on the challenges of relapse after CAR-T cell therapy in B-cell malignancies from the perspective of tumor cells, CAR-T cells, and the TME. We also discuss the corresponding basic and clinical approaches that may overcome the problem in the future. We aim to provide a comprehensive understanding for scientists and physicians that will help improve research and clinical practice.
Collapse
Affiliation(s)
- Tianning GU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China
| | - Meng ZHU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China
| | - He HUANG
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China,He HUANG,
| | - Yongxian HU
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Institute of Hematology, Zhejiang University, Hangzhou310058, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou310058, China,Yongxian HU,
| |
Collapse
|
38
|
Cortés-López M, Schulz L, Enculescu M, Paret C, Spiekermann B, Quesnel-Vallières M, Torres-Diz M, Unic S, Busch A, Orekhova A, Kuban M, Mesitov M, Mulorz MM, Shraim R, Kielisch F, Faber J, Barash Y, Thomas-Tikhonenko A, Zarnack K, Legewie S, König J. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat Commun 2022; 13:5570. [PMID: 36138008 PMCID: PMC9500061 DOI: 10.1038/s41467-022-31818-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy. Multiple alternative splicing events in CD19 mRNA have been associated with resistance/relapse to CD19 CAR-T therapy in patients with B cell malignancies. Here, by combining patient data and a high-throughput mutagenesis screen, the authors identify single point mutations and RNA-binding proteins that can control CD19 splicing and be associated with CD19 CAR-T therapy resistance.
Collapse
Affiliation(s)
| | - Laura Schulz
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Bea Spiekermann
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sebastian Unic
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anna Orekhova
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Monika Kuban
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany
| | - Mikhail Mesitov
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Rawan Shraim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Fridolin Kielisch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt, Germany. .,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany. .,Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany. .,Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
39
|
Nan F, Fu X, Chen X, Li L, Li X, Wu J, Feng X, Wu X, Yan J, Zhang M. Strategies to overcome CAR-T cell resistance in clinical work: A single-institute experience. Front Immunol 2022; 13:929221. [PMID: 36032118 PMCID: PMC9399606 DOI: 10.3389/fimmu.2022.929221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of chimeric antigen receptor (CAR) T cell therapy has shifted the paradigm of malignant tumor treatment, especially the advent of CD19-directed CAR-T cell therapy for the treatment of relapsed/refractory (R/R) B-cell malignancies. Although CAR-T cell therapy has promising effects, some patients are resistant to this treatment, leaving them with limited options. Therefore, strategies to overcome resistance to CAR-T cell therapy are needed. We retrospectively studied three R/R diffuse large B-cell lymphoma patients who were resistant to CAR-T cell therapy and whose disease was controlled after receiving pembrolizumab, 21D4 CAR-T cells, or ibrutinib and venetoclax. Some promising prevention and treatment strategies to overcome treatment resistance are also discussed.
Collapse
|
40
|
Huo CD, Yang J, Gu YM, Wang DJ, Zhang XX, Li YM. Overcome tumor relapse in CAR T cell therapy. Clin Transl Oncol 2022; 24:1833-1843. [PMID: 35678948 DOI: 10.1007/s12094-022-02847-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a novel therapeutic approach that uses gene editing techniques and lentiviral transduction to engineer T cells so that they can effectively kill tumors. However, CAR T cell therapy still has some drawbacks: many patients who received CAR T cell therapy and achieve remission, still had tumor relapse and treatment resistance, which may be due to tumor immune escape and CAR T cell dysfunction. To overcome tumor relapse, more researches are being done to optimize CAR T cell therapy to make it more precise and personalized, including screening for more specific tumor antigens, developing novel CAR T cells, and combinatorial treatment approaches. In this review, we will discuss the mechanisms as well as the progress of research on overcoming plans.
Collapse
Affiliation(s)
- Cheng-Dong Huo
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Yang
- Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yan-Mei Gu
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Dai-Jun Wang
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | | | - Yu-Min Li
- The Second Clinical Medical School of Lanzhou University, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
41
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
42
|
Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv 2022; 7:575-585. [PMID: 35482927 PMCID: PMC9979750 DOI: 10.1182/bloodadvances.2022007423] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Relapse following chimeric antigen receptor (CAR) T-cell therapy directed against CD19 for relapsed/refractory B-acute lymphoblastic leukemia (r/r B-ALL) remains a significant challenge. Three main patterns of relapse predominate: CD19 positive (CD19pos) relapse, CD19 negative (CD19neg) relapse, and lineage switch (LS). Development and validation of risk factors that predict relapse phenotype could help define potential pre- or post-CAR T-cell infusion interventions aimed at decreasing relapse. Our group sought to extensively characterize preinfusion risk factors associated with the development of each relapse pattern via a multicenter, retrospective review of children and young adults with r/r B-ALL treated with a murine-based CD19-CAR construct. Of 420 patients treated with CAR, 166 (39.5%) relapsed, including 83 (50%) CD19pos, 68 (41%) CD19neg, and 12 (7.2%) LS relapses. A greater cumulative number of prior complete remissions was associated with CD19pos relapses, whereas high preinfusion disease burden, prior blinatumomab nonresponse, older age, and 4-1BB CAR construct were associated with CD19neg relapses. The presence of a KMT2A rearrangement was the only preinfusion risk factor associated with LS. The median overall survival following a post-CAR relapse was 11.9 months (95% CI, 9-17) and was particularly dismal in patients experiencing an LS, with no long-term survivors following this pattern of relapse. Given the poor outcomes for those with post-CAR relapse, study of relapse prevention strategies, such as consolidative hematopoietic stem cell transplantation, is critical and warrants further investigation on prospective clinical trials.
Collapse
|
43
|
Barnkob MB, Vitting-Seerup K, Olsen LR. Target isoforms are an overlooked challenge and opportunity in chimeric antigen receptor cell therapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac009. [PMID: 35919495 PMCID: PMC9327123 DOI: 10.1093/immadv/ltac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/31/2022] [Indexed: 11/27/2022] Open
Abstract
The development of novel chimeric antigen receptor (CAR) cell therapies is rapidly growing, with 299 new agents being reported and 109 new clinical trials initiated so far this year. One critical lesson from approved CD19-specific CAR therapies is that target isoform switching has been shown to cause tumour relapse, but little is known about the isoforms of CAR targets in solid cancers. Here we assess the protein isoform landscape and identify both the challenges and opportunities protein isoform switching present as CAR therapy is applied to solid cancers.
Collapse
Affiliation(s)
- Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Kristoffer Vitting-Seerup
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
44
|
Wang L, Zhang Y, Anderson E, Lamble A, Orentas RJ. Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line. Front Immunol 2022; 13:825364. [PMID: 35222407 PMCID: PMC8864095 DOI: 10.3389/fimmu.2022.825364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The advent of CAR-T cell therapy has changed the face of clinical care for relapsed and refractory pre-B-acute lymphocytic leukemia (B-ALL) and lymphoma. Although curative responses are reported, long-term cures remain below 50%. Different CAR T-cell leukemia targets appear to have different mechanisms of CAR-T escape. For CD22, therapeutic evasion is linked to down-modulation of the number CD22 proteins expressed on the extracellular aspect of the leukemia cell plasma membrane. Recently, pharmacologic agents known to induce cellular differentiation or epigenetic modification of leukemia have been shown to impact CD22 and CD19 expression levels on B-ALL, and thereby increase sensitivity to CAR-T mediated cytolysis. We explored the impact of epigenetic modifiers and differentiation agents on leukemia cell lines of B cell origin, as well as normal B cells. We confirmed the activity of bryostatin to increase CD22 expression on model cell lines. However, bryostatin does not change CD22 levels on normal B cells. Furthermore, bryostatin inhibited CAR-T mediated cytolysis of the Raji Burkitt lymphoma cell line. Bryostatin increased the cytolysis by CD22 CAR-T for B-ALL cell lines by at least three mechanisms: 1) the previously reported increase in CD22 target cell numbers on the cell surface, 2) the induction of NK ligands, and 3) the induction of ligands that sensitize leukemia cells to activated T cell antigen-non-specific killing. The opposite effect was seen for Burkitt lymphoma, which arises from a more mature B cell lineage. These findings should caution investigators against a universal application of agents shown to increase killing of leukemia target cells by CAR-T in a specific disease class, and highlights that activation of non-CAR-mediated killing by activated T cells may play a significant role in the control of disease. We have termed the killing of leukemia targets, by a set of cell-surface receptors that does not overlap with NK-like killing “CTAK,” CAR-T Cell antigen-non-specific killing.
Collapse
Affiliation(s)
- Lingyan Wang
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Yue Zhang
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Eden Anderson
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Adam Lamble
- Department of Pediatrics, Hematology, Oncology and Bone Marrow Transplant Division, University of Washington School of Medicine, Seattle, WA, United States
| | - Rimas J Orentas
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, Hematology, Oncology and Bone Marrow Transplant Division, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
45
|
Zheng S, Gillespie E, Naqvi AS, Hayer KE, Ang Z, Torres-Diz M, Quesnel-Vallières M, Hottman DA, Bagashev A, Chukinas J, Schmidt C, Asnani M, Shraim R, Taylor DM, Rheingold SR, O'Brien MM, Singh N, Lynch KW, Ruella M, Barash Y, Tasian SK, Thomas-Tikhonenko A. Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discov 2022; 3:103-115. [PMID: 35015683 PMCID: PMC9780083 DOI: 10.1158/2643-3230.bcd-21-0087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Δex5-6 splice isoform, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Δex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies. See related commentary by Bourcier and Abdel-Wahab, p. 87. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Elisabeth Gillespie
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Ammar S. Naqvi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Katharina E. Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A. Hottman
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Asen Bagashev
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - John Chukinas
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Rawan Shraim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Susan R. Rheingold
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen M. O'Brien
- Cincinnati Children's Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| | - Nathan Singh
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marco Ruella
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Ravich JW, Huang S, Zhou Y, Brown P, Pui CH, Inaba H, Cheng C, Gottschalk S, Triplett BM, Bonifant CL, Talleur AC. Impact of High Disease Burden on Survival in Pediatric Patients with B-ALL Treated with Tisagenlecleucel. Transplant Cell Ther 2022; 28:73.e1-73.e9. [PMID: 34875402 PMCID: PMC8816862 DOI: 10.1016/j.jtct.2021.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
CD19-specific chimeric antigen receptor (CAR) T-cell therapies, including the FDA-approved tisagenlecleucel, induce high rates of remission in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, post-treatment relapse remains an issue. Optimal management of B-ALL after tisagenlecleucel treatment remains elusive, and continued tracking of outcomes is necessary to establish a standard of care for this population. We sought to evaluate outcomes on the real-world use of tisagenlecleucel in a contemporary pediatric patient population and to identify risk factors influencing event-free survival (EFS) and overall survival (OS). Additionally, we aimed to describe post-tisagenlecleucel management strategies, including use of allogeneic hematopoietic cell transplantation (AlloHCT) or repeat CAR T-cell infusions. We report on 31 pediatric and adolescent and young adult patients (AYA) with B-ALL, treated with lymphodepleting chemotherapy followed by tisagenlecleucel. Patients were treated at Johns Hopkins Hospital and St. Jude Children's Research Hospital between March 2018 and November 2020. Data on patient, disease, and treatment characteristics were collected retrospectively from medical records and described. EFS and OS were estimated by the Kaplan-Meier method and compared by the log-rank test. Single-factor and multiple-factor analysis of EFS and OS were performed by fitting Cox regression models. Of the 30 evaluable patients, 25 (83.3%) experienced a complete response, with 21 having negative minimal residual disease. Treatment was well tolerated, with expected rates of cytokine release syndrome (61.3%) and immune effector cell-associated neurotoxicity (29%). After initial complete response, 12 patients (48%) had subsequent disease recurrence, with CD19-negative relapse (n = 6) occurring sooner than CD19-positive relapse (P = .0125). With a median follow-up time of 386 days (range 11-1187 days), the EFS for the entire cohort (n = 31) at 6 and 12 months after infusion was 47% (95% confidence interval [CI], 28.4%-63.4%) and 35.2% (95% CI, 18.4%-52.5%), respectively. In multivariate analysis, high pretreatment leukemic burden (≥5% bone marrow blasts) was an independent risk factor for inferior EFS (HR 5.98 [95% CI, 1.1-32.4], P = .0380) and OS (HR 4.2 [95% CI, 1.33-13.39], P = .0148). Tisagenlecleucel induced high initial response rates in a contemporary cohort of pediatric and AYA patients with B-ALL. However, 48% of patients experienced subsequent disease relapse, including 6 with antigen-escape variants. This highlights a considerable limitation of single-agent autologous CD19-CAR T-cell therapy. Pretreatment leukemic disease burden of ≥5% blasts was significantly associated with worse outcomes in this study, including lower EFS and OS. Our findings suggest that reducing preinfusion leukemic burden is a viable treatment strategy to improve outcomes of CAR T-cell therapy.
Collapse
Affiliation(s)
- Jonas W. Ravich
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sujuan Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Patrick Brown
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN
| | - Challice L. Bonifant
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
47
|
Veiga DFT, Nesta A, Zhao Y, Mays AD, Huynh R, Rossi R, Wu TC, Palucka K, Anczukow O, Beck CR, Banchereau J. A comprehensive long-read isoform analysis platform and sequencing resource for breast cancer. SCIENCE ADVANCES 2022; 8:eabg6711. [PMID: 35044822 PMCID: PMC8769553 DOI: 10.1126/sciadv.abg6711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tumors display widespread transcriptome alterations, but the full repertoire of isoform-level alternative splicing in cancer is unknown. We developed a long-read (LR) RNA sequencing and analytical platform that identifies and annotates full-length isoforms and infers tumor-specific splicing events. Application of this platform to breast cancer samples identifies thousands of previously unannotated isoforms; ~30% affect protein coding exons and are predicted to alter protein localization and function. We performed extensive cross-validation with -omics datasets to support transcription and translation of novel isoforms. We identified 3059 breast tumor–specific splicing events, including 35 that are significantly associated with patient survival. Of these, 21 are absent from GENCODE and 10 are enriched in specific breast cancer subtypes. Together, our results demonstrate the complexity, cancer subtype specificity, and clinical relevance of previously unidentified isoforms and splicing events in breast cancer that are only annotatable by LR-seq and provide a rich resource of immuno-oncology therapeutic targets.
Collapse
Affiliation(s)
- Diogo F. T. Veiga
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yuqi Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Richie Huynh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Robert Rossi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
- Corresponding author. (O.A.); (C.R.B.); (J.B.)
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
- Corresponding author. (O.A.); (C.R.B.); (J.B.)
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Corresponding author. (O.A.); (C.R.B.); (J.B.)
| |
Collapse
|
48
|
Zeng W, Zhang Q, Zhu Y, Ou R, Peng L, Wang B, Shen H, Liu Z, Lu L, Zhang P, Liu S. Engineering Novel CD19/CD22 Dual-Target CAR-T Cells for Improved Anti-Tumor Activity. Cancer Invest 2021; 40:282-292. [PMID: 34797742 DOI: 10.1080/07357907.2021.2005798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite high remission rates following chimeric antigen receptor T cell (CAR-T) cell therapy in B-cell acute lymphoblastic leukemia (B-ALL), relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may improve the CAR-T effect. The in vitro and in vivo leukemia model was established, and the anti-tumor effects of BiCAR-T, CD19 CAR-T, CD22 CAR-T, and LoopCAR6 cells were observed. We found that the BiCAR-T cells showed significant cytotoxicity in vitro and in vivo. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce the risk of antigen loss.
Collapse
Affiliation(s)
- Wanying Zeng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Liang Peng
- Shenzhen Fapon Biotherapy Co., Shenzhen, China
| | - Baolei Wang
- Shenzhen Fapon Biotherapy Co., Shenzhen, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lisheng Lu
- Shenzhen Fapon Biotherapy Co., Shenzhen, China
| | - Pumin Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
49
|
Resistance of B-Cell Lymphomas to CAR T-Cell Therapy Is Associated With Genomic Tumor Changes Which Can Result in Transdifferentiation. Am J Surg Pathol 2021; 46:742-753. [PMID: 34799485 DOI: 10.1097/pas.0000000000001834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy (CART) in B-cell non-Hodgkin lymphomas, durable responses are uncommon. The histopathologic and molecular features associated with treatment failure are still largely unknown. Therefore, we have analyzed 19 sequential tumor samples from 9 patients, prior anti-CD19 CART (pre-CART) and at relapse (post-CART), using immunohistochemistry, fluorescence in situ hybridization, array comparative genomic hybridization, next-generation DNA and RNA sequencing, and genome-scale DNA methylation. The initial diagnosis was diffuse large B-cell lymphoma (n=6), double-hit high-grade B-cell lymphoma (n=1), and Burkitt lymphoma (n=2). Histopathologic features were mostly retained at relapse in 7/9 patients, except the frequent loss of 1 or several B-cell markers. The remaining 2 cases (1 diffuse large B-cell lymphoma and 1 Burkitt lymphoma) displayed a dramatic phenotypic shift in post-CART tumors, with the drastic downfall of B-cell markers and emergence of T-cell or histiocytic markers, despite the persistence of identical clonal immunoglobulin gene rearrangements. The post-CART tumor with aberrant T-cell phenotype showed reduced mRNA expression of most B-cell genes with increased methylation of their promoter. Fluorescence in situ hybridization and comparative genomic hybridization showed global stability of chromosomal alterations in all paired samples, including 17p/TP53 deletions. New pathogenic variants acquired in post-CART samples included mutations triggering the PI3K pathway (PIK3R1, PIK3R2, PIK3C2G) or associated with tumor aggressiveness (KRAS, INPP4B, SF3B1, SYNE1, TBL1XR1). These results indicate that CART-resistant B-cell non-Hodgkin lymphomas display genetic remodeling, which may result in profound dysregulation of B-cell differentiation. Acquired mutations in the PI3K and KRAS pathways suggest that some targeted therapies could be useful to overcome CART resistance.
Collapse
|
50
|
Duell J, Obr A, Augustin M, Endell J, Liu H, Geiger S, Silverman IM, Ambarkhane S, Rosenwald A. CD19 expression is maintained in DLBCL patients after treatment with tafasitamab plus lenalidomide in the L-MIND study. Leuk Lymphoma 2021; 63:468-472. [PMID: 34779360 DOI: 10.1080/10428194.2021.1986219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Johannes Duell
- Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany
| | - Aleš Obr
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Marinela Augustin
- Klinik für Innere Medizin 5, Universitätsklinik der Paracelsus Medizinischen Privatuniversität, Nürnberg, Germany
| | | | - Hao Liu
- Incyte Research Institute, Wilmington, DE, USA
| | | | | | | | | |
Collapse
|