1
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Yu X, Zhou W, Chen X, He S, Qin M, Yuan M, Wang Y, Odhiambo WO, Miao Y, Ji Y. RAG1 and RAG2 non-core regions are implicated in leukemogenesis and off-target V(D)J recombination in BCR-ABL1-driven B-cell lineage lymphoblastic leukemia. eLife 2024; 12:RP91030. [PMID: 39056282 PMCID: PMC11281782 DOI: 10.7554/elife.91030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2' C-terminus absence in Tp53-/- mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.
Collapse
Affiliation(s)
- Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Wen Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Shunyu He
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Woodvine Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Yinsha Miao
- Department of Clinical Laboratory, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest UniversityXianChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
- Department of Clinical Laboratory, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest UniversityXianChina
| |
Collapse
|
3
|
Singh M, Agarwal V, Pancham P, Jindal D, Agarwal S, Rai SN, Singh SK, Gupta V. A Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer's Disease Risk in Older Men with Prostate Cancer. Degener Neurol Neuromuscul Dis 2024; 14:33-46. [PMID: 38774717 PMCID: PMC11108066 DOI: 10.2147/dnnd.s445130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignancies affecting males worldwide. Despite reductions in mortality rates due to advances in early identification and treatment methods, PCa remains a major health concern. Recent research has shed light on a possible link between PCa and Alzheimer's disease (AD), which is a significant neurological ailment that affects older males all over the world. Androgen deprivation therapy (ADT), a cornerstone therapeutic method used in conjunction with radiation and palliative care in advanced metastatic PCa cases, is critical for disease management. Evidence reveals a relationship between ADT and cognitive impairment. Hormonal manipulation may cause long-term cognitive problems through processes such as amyloid beta (Aβ) aggregation and neurofibrillary tangles (NFTs). Fluctuations in basal androgen levels can upset the delicate balance of genes that are sensitive to androgen levels, contributing to cognitive impairment. This detailed review dives into the various aspects of PCa aetiology and its relationship with cognitive decline. It investigates the discovery of particular biomarkers, as well as microRNAs (miRNAs), which play important roles in pathogenic progression. The review attempts to identify potential biomarkers associated with ADT-induced cerebral changes, including Aβ oligomer buildup, NFT formation, and tauopathy, which can contribute to early-onset dementia and cognitive impairment. Besides it further aims to provide insights into innovative diagnostic and therapeutic avenues for alleviating PCa and ADT-related cognitive sequelae by unravelling these complicated pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Indian Institute of Technology Bombay Monash Research Academy, Mumbai, India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Department of Molecular Science, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Cross NCP, Ernst T, Branford S, Cayuela JM, Deininger M, Fabarius A, Kim DDH, Machova Polakova K, Radich JP, Hehlmann R, Hochhaus A, Apperley JF, Soverini S. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia 2023; 37:2150-2167. [PMID: 37794101 PMCID: PMC10624636 DOI: 10.1038/s41375-023-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests.
Collapse
Affiliation(s)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Susan Branford
- Centre for Cancer Biology and SA Pathology, Adelaide, SA, Australia
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, Université Paris Cité, Paris, France
| | | | - Alice Fabarius
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | - Rüdiger Hehlmann
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
- ELN Foundation, Weinheim, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jane F Apperley
- Centre for Haematology, Imperial College London, London, UK
- Department of Clinical Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "Lorenzo e Ariosto Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Benada J, Alsowaida D, Megeney LA, Sørensen CS. Self-inflicted DNA breaks in cell differentiation and cancer. Trends Cell Biol 2023; 33:850-859. [PMID: 36997393 DOI: 10.1016/j.tcb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark
| | - Dalal Alsowaida
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark.
| |
Collapse
|
6
|
Yoshimaru R, Minami Y. Genetic Landscape of Chronic Myeloid Leukemia and a Novel Targeted Drug for Overcoming Resistance. Int J Mol Sci 2023; 24:13806. [PMID: 37762109 PMCID: PMC10530602 DOI: 10.3390/ijms241813806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) exemplify the success of molecular targeted therapy for chronic myeloid leukemia (CML). However, some patients do not respond to TKI therapy. Mutations in the kinase domain of BCR::ABL1 are the most extensively studied mechanism of TKI resistance in CML, but BCR::ABL1-independent mechanisms are involved in some cases. There are two known types of mechanisms that contribute to resistance: mutations in known cancer-related genes; and Philadelphia-associated rearrangements, a novel mechanism of genomic heterogeneity that occurs at the time of the Philadelphia chromosome formation. Most chronic-phase and accelerated-phase CML patients who were treated with the third-generation TKI for drug resistance harbored one or more cancer gene mutations. Cancer gene mutations and additional chromosomal abnormalities were found to be independently associated with progression-free survival. The novel agent asciminib specifically inhibits the ABL myristoyl pocket (STAMP) and shows better efficacy and less toxicity than other TKIs due to its high target specificity. In the future, pooled analyses of various studies should address whether additional genetic analyses could guide risk-adapted therapy and lead to a final cure for CML.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan;
| |
Collapse
|
7
|
Lopes BA, Meyer C, Bouzada H, Külp M, Maciel ALT, Larghero P, Barbosa TC, Poubel CP, Barbieri C, Venn NC, Pozza LD, Barbaric D, Palmi C, Fazio G, Saitta C, Aguiar TF, Lins MM, Ikoma-Colturato MRV, Schramm M, Chapchap E, Cazzaniga G, Sutton R, Marschalek R, Emerenciano M. The recombinome of IKZF1 deletions in B-cell precursor ALL. Leukemia 2023; 37:1727-1731. [PMID: 37386080 DOI: 10.1038/s41375-023-01935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Bruno A Lopes
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil.
- DCAL, Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany.
| | - Claus Meyer
- DCAL, Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Heloysa Bouzada
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Marius Külp
- DCAL, Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Ana Luiza Tardem Maciel
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Patrizia Larghero
- DCAL, Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Thayana C Barbosa
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Caroline P Poubel
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Caroline Barbieri
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Nicola C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Luciano Dalla Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | - Chiara Palmi
- Tettamanti Cente, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Cente, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Claudia Saitta
- Tettamanti Cente, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Thais F Aguiar
- Arthur Siqueira Cavalcanti Hematology Institute (HEMORIO), Rio de Janeiro, Brazil
| | - Mecneide M Lins
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | | | - Marcia Schramm
- Prontobaby Hospital da Criança, Rio de Janeiro, Brazil
- Serviço de Hematologia, Hospital do Câncer I, INCA, Rio de Janeiro, Brazil
| | | | - Gianni Cazzaniga
- Tettamanti Cente, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Rolf Marschalek
- DCAL, Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Mariana Emerenciano
- Program of Molecular Carcinogenesis and Division of Clinical Research, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
9
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
10
|
Shahrin NH, Wadham C, Branford S. Defining Higher-Risk Chronic Myeloid Leukemia: Risk Scores, Genomic Landscape, and Prognostication. Curr Hematol Malig Rep 2022; 17:171-180. [PMID: 35932396 PMCID: PMC9712352 DOI: 10.1007/s11899-022-00668-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The chronic myeloid leukemia (CML) treatment success story is incomplete as some patients still fail therapy, leading to end-stage disease and death. Here we discuss recent research into CML incidence, the role of comorbidities on survival and detecting patients at risk of failing therapy. RECENT FINDINGS The incidence of CML has fallen markedly in high social-demographic index (SDI) regions of the world but there is disturbing evidence that this is not the case in low and low-middle SDI countries. Now that CML patients more frequently die from their co-morbid conditions than from CML the Adult Comorbidity Evaluation-27 score can assist in risk assessment at diagnosis. Non-adherence to therapy contributes greatly to treatment failure. A good doctor-patient relationship and social support promote good adherence, but patient age, gender, and financial burden have negative effects, suggesting avenues for intervention. Mutations in cancer-associated genes adversely affect outcome and their detection at diagnosis may guide therapeutic choice and offer non-BCR::ABL1 targeted therapies. A differential gene expression signature to assist risk detection is a highly sought-after diagnostic tool being actively researched on several fronts. Detecting patients at risk of failing therapy is being assisted by recent technological advances enabling highly sensitive genomic and expression analysis of insensitive cells. However, patient lifestyle, adherence to therapy, and comorbidities are critical risk factors that need to be addressed by interventions such as social and financial support.
Collapse
MESH Headings
- Adult
- Humans
- Fusion Proteins, bcr-abl/genetics
- Physician-Patient Relations
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Genomics
- Risk Factors
Collapse
Affiliation(s)
- Nur Hezrin Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000 Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
11
|
Huang X, Liang X, Zhu S, Xie Q, Yao Y, Shi Z, Liu Z. Expression and clinical significance of RAG1 in myelodysplastic syndromes. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1122-1129. [PMID: 36166051 DOI: 10.1080/16078454.2022.2127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine the expression level of RAG1 and its clinical significance in myelodysplastic syndromes (MDS). METHODS To explore the candidate genes, the microarray datasets GSE19429, GSE58831, and GSE2779 were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in MDS were screened using RStudio, and overlapped DEGs were obtained with Venn Diagrams. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, and protein-protein interaction network were performed. Quantitative real-time PCR (qRT-PCR) was employed to confirm the microarray results. RESULTS This study identified 26 DEGs. Functional enrichment analyses indicated that these DEGs were significantly enriched in the immune response, and hematopoietic cell lineage. Eight core genes, for example, RAG1 and PAX5, were identified with a high degree of connectivity. The result of qRT-PCR showed that RAG1 was significantly down-regulated in MDS patients, which helped in distinguishing MDS patients from normal controls. The area under the curve of the receiver operator characteristic was 0.913 (P < 0.0001). MDS patients with low RAG1 expression level had a poor long-term survival (P = 0.031). What's more, the expression of RAG1 was significantly increased in the patients who received treatment. CONCLUSION The results showed that the expression of RAG1 was down-regulated in MDS patients. Lower RAG1 expression was associated with adverse clinical outcomes. RAG1 may be a potential prognostic biomarker for MDS.
Collapse
Affiliation(s)
- Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shanhu Zhu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yibin Yao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zeyan Shi
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
12
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
13
|
Hain C, Stadler R, Kalinowski J. Unraveling the Structural Variations of Early-Stage Mycosis Fungoides-CD3 Based Purification and Third Generation Sequencing as Novel Tools for the Genomic Landscape in CTCL. Cancers (Basel) 2022; 14:4466. [PMID: 36139626 PMCID: PMC9497107 DOI: 10.3390/cancers14184466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). At present, knowledge of genetic changes in early-stage MF is insufficient. Additionally, low tumor cell fraction renders calling of copy-number variations as the predominant mutations in MF challenging, thereby impeding further investigations. We show that enrichment of T cells from a biopsy of a stage I MF patient greatly increases tumor fraction. This improvement enables accurate calling of recurrent MF copy-number variants such as ARID1A and CDKN2A deletion and STAT5 amplification, undetected in the unprocessed biopsy. Furthermore, we demonstrate that application of long-read nanopore sequencing is especially useful for the structural variant rich CTCL. We detect the structural variants underlying recurrent MF copy-number variants and show phasing of multiple breakpoints into complex structural variant haplotypes. Additionally, we record multiple occurrences of templated insertion structural variants in this sample. Taken together, this study suggests a workflow to make the early stages of MF accessible for genetic analysis, and indicates long-read sequencing as a major tool for genetic analysis for MF.
Collapse
Affiliation(s)
- Carsten Hain
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Rudolf Stadler
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, 32429 Minden, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
14
|
Shanmuganathan N, Wadham C, Thomson D, Shahrin NH, Vignaud C, Obourn V, Chaturvedi S, Yang F, Feng J, Saunders V, Kok CH, Yeung D, King RM, Kenyon RR, Lin M, Wang P, Scott H, Hughes T, Schreiber AW, Branford S. RNA-Based Targeted Gene Sequencing Improves the Diagnostic Yield of Mutant Detection in Chronic Myeloid Leukemia. J Mol Diagn 2022; 24:803-822. [PMID: 35550185 DOI: 10.1016/j.jmoldx.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mutation detection is increasingly used for the management of hematological malignancies. Prior whole transcriptome and whole exome sequencing studies using total RNA and DNA identified diverse mutation types in cancer-related genes associated with treatment failure in patients with chronic myeloid leukemia. Variants included single-nucleotide variants and small insertions/deletions, plus fusion transcripts and partial or whole gene deletions. The hypothesis that all of these mutation types could be detected by a single cost-effective hybridization capture next-generation sequencing method using total RNA was assessed. A method was developed that targeted 130 genes relevant for myeloid and lymphoid leukemia. Retrospective samples with 121 precharacterized variants were tested using total RNA and/or DNA. Concordance of detection of precharacterized variants using RNA or DNA was 96%, whereas the enhanced sensitivity identified additional variants. Comparison between 24 matched DNA and RNA samples demonstrated 95.3% of 170 variants detectable using DNA were detected using RNA, including all but one variant predicted to activate nonsense-mediated decay. RNA identified an additional 10 variants, including fusion transcripts. Furthermore, the true effect of splice variants on RNA splicing was only evident using RNA. In conclusion, capture sequencing using total RNA alone is suitable for detecting a range of variants relevant in chronic myeloid leukemia and may be more broadly applied to other hematological malignancies where diverse variant types define risk groups.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Daniel Thomson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | - Vanessa Obourn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Feng Yang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jinghua Feng
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Verity Saunders
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chung H Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Yeung
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Rob M King
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Rosalie R Kenyon
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Ming Lin
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Paul Wang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy Hughes
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas W Schreiber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Fernandes A, Shanmuganathan N, Branford S. Genomic Mechanisms Influencing Outcome in Chronic Myeloid Leukemia. Cancers (Basel) 2022; 14:620. [PMID: 35158889 PMCID: PMC8833554 DOI: 10.3390/cancers14030620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) represents the disease prototype of genetically based diagnosis and management. Tyrosine kinase inhibitors (TKIs), that target the causal BCR::ABL1 fusion protein, exemplify the success of molecularly based therapy. Most patients now have long-term survival; however, TKI resistance is a persistent clinical problem. TKIs are effective in the BCR::ABL1-driven chronic phase of CML but are relatively ineffective for clinically defined advanced phases. Genomic investigation of drug resistance using next-generation sequencing for CML has lagged behind other hematological malignancies. However, emerging data show that genomic abnormalities are likely associated with suboptimal response and drug resistance. This has already been supported by the presence of BCR::ABL1 kinase domain mutations in drug resistance, which led to the development of more potent TKIs. Next-generation sequencing studies are revealing additional mutations associated with resistance. In this review, we discuss the initiating chromosomal translocation that may not always be a straightforward reciprocal event between chromosomes 9 and 22 but can sometimes be accompanied by sequence deletion, inversion, and rearrangement. These events may biologically reflect a more genomically unstable disease prone to acquire mutations. We also discuss the future role of cancer-related gene mutation analysis for risk stratification in CML.
Collapse
Affiliation(s)
- Adelina Fernandes
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
16
|
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2021; 107:358-370. [PMID: 34615339 PMCID: PMC8804571 DOI: 10.3324/haematol.2021.279317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer treatment is constantly evolving from a one-size-fits-all towards bespoke approaches for each patient. In certain solid cancers, including breast and lung, tumor genome profiling has been incorporated into therapeutic decision-making. For chronic phase chronic myeloid leukemia (CML), while tyrosine kinase inhibitor therapy is the standard treatment, current clinical scoring systems cannot accurately predict the heterogeneous treatment outcomes observed in patients. Biomarkers capable of segregating patients according to outcome at diagnosis are needed to improve management, and facilitate enrollment in clinical trials seeking to prevent blast crisis transformation and improve the depth of molecular responses. To this end, gene expression (GE) profiling studies have evaluated whether GE signatures at diagnosis are clinically informative. Patient material from a variety of sources has been profiled using microarrays, RNA sequencing and, more recently, single-cell RNA sequencing. However, differences in the cell types profiled, the technologies used, and the inherent complexities associated with the interpretation of genomic data pose challenges in distilling GE datasets into biomarkers with clinical utility. The goal of this paper is to review previous studies evaluating GE profiling in CML, and explore their potential as risk assessment tools for individualized CML treatment. We also review the contribution that acquired mutations, including those seen in clonal hematopoiesis, make to GE profiles, and how a model integrating contributions of genetic and epigenetic factors in resistance to tyrosine kinase inhibitors and blast crisis transformation can define a route to GE-based biomarkers. Finally, we outline a four-stage approach for the development of GE-based biomarkers in CML.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation
| | - Dennis Dong Hwan Kim
- International Chronic Myeloid Leukemia Foundation; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto
| | - Timothy P Hughes
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Haematology, Royal Adelaide Hospital, Adelaide
| | - Susan Branford
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation; Department of Haematology, Singapore General Hospital, Singapore, Singapore; Department of Medical Oncology, National Cancer Centre Singapore; Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
17
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
18
|
Ghorbani A, Quinlan EM, Larijani M. Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Front Immunol 2021; 12:642343. [PMID: 34135887 PMCID: PMC8201067 DOI: 10.3389/fimmu.2021.642343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
The immune system is unique among all biological sub-systems in its usage of DNA-editing enzymes to introduce targeted gene mutations and double-strand DNA breaks to diversify antigen receptor genes and combat viral infections. These processes, initiated by specific DNA-editing enzymes, often result in mistargeted induction of genome lesions that initiate and drive cancers. Like other molecules involved in human health and disease, the DNA-editing enzymes of the immune system have been intensively studied in humans and mice, with little attention paid (< 1% of published studies) to the same enzymes in evolutionarily distant species. Here, we present a systematic review of the literature on the characterization of one such DNA-editing enzyme, activation-induced cytidine deaminase (AID), from an evolutionary comparative perspective. The central thesis of this review is that although the evolutionary comparative approach represents a minuscule fraction of published works on this and other DNA-editing enzymes, this approach has made significant impacts across the fields of structural biology, immunology, and cancer research. Using AID as an example, we highlight the value of the evolutionary comparative approach in discoveries already made, and in the context of emerging directions in immunology and protein engineering. We introduce the concept of 5-dimensional (5D) description of protein structures, a more nuanced view of a structure that is made possible by evolutionary comparative studies. In this higher dimensional view of a protein's structure, the classical 3-dimensional (3D) structure is integrated in the context of real-time conformations and evolutionary time shifts (4th dimension) and the relevance of these dynamics to its biological function (5th dimension).
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Emma M. Quinlan
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
19
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
20
|
Osman AEG, Deininger MW. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev 2021; 49:100825. [PMID: 33773846 DOI: 10.1016/j.blre.2021.100825] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a reciprocal translocation [t(9;22)(q34;q11.2)] that leads to the fusion of ABL1 gene sequences (9q34) downstream of BCR gene sequences (22q11) and is cytogenetically visible as Philadelphia chromosome (Ph). The resulting BCR/ABL1 chimeric protein is a constitutively active tyrosine kinase that activates multiple signaling pathways, which collectively lead to malignant transformation. During the early (chronic) phase of CML (CP-CML), the myeloid cell compartment is expanded, but differentiation is maintained. Without effective therapy, CP-CML invariably progresses to blast phase (BP-CML), an acute leukemia of myeloid or lymphoid phenotype. The development of BCR-AB1 tyrosine kinase inhibitors (TKIs) revolutionized the treatment of CML and ignited the start of a new era in oncology. With three generations of BCR/ABL1 TKIs approved today, the majority of CML patients enjoy long term remissions and near normal life expectancy. However, only a minority of patients maintain remission after TKI discontinuation, a status termed treatment free remission (TFR). Unfortunately, 5-10% of patients fail TKIs due to resistance and are at risk of progression to BP-CML, which is curable only with hematopoietic stem cell transplantation. Overcoming TKI resistance, improving the prognosis of BP-CML and improving the rates of TFR are areas of active research in CML.
Collapse
Affiliation(s)
- Afaf E G Osman
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Michael W Deininger
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia Chromosome-Positive Leukemia in the Lymphoid Lineage-Similarities and Differences with the Myeloid Lineage and Specific Vulnerabilities. Int J Mol Sci 2020; 21:E5776. [PMID: 32806528 PMCID: PMC7460962 DOI: 10.3390/ijms21165776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Philadelphia chromosome (Ph) results from a translocation between the breakpoint cluster region (BCR) gene on chromosome 9 and ABL proto-oncogene 1 (ABL1) gene on chromosome 22. The fusion gene, BCR-ABL1, is a constitutively active tyrosine kinase which promotes development of leukemia. Depending on the breakpoint site within the BCR gene, different isoforms of BCR-ABL1 exist, with p210 and p190 being the most prevalent. P210 isoform is the hallmark of chronic myeloid leukemia (CML), while p190 isoform is expressed in majority of Ph-positive B cell acute lymphoblastic leukemia (Ph+ B-ALL) cases. The crucial component of treatment protocols of CML and Ph+ B-ALL patients are tyrosine kinase inhibitors (TKIs), drugs which target both BCR-ABL1 isoforms. While TKIs therapy is successful in great majority of CML patients, Ph+ B-ALL often relapses as a drug-resistant disease. Recently, the high-throughput genomic and proteomic analyses revealed significant differences between CML and Ph+ B-ALL. In this review we summarize recent discoveries related to differential signaling pathways mediated by different BCR-ABL1 isoforms, lineage-specific genetic lesions, and metabolic reprogramming. In particular, we emphasize the features distinguishing Ph+ B-ALL from CML and focus on potential therapeutic approaches exploiting those characteristics, which could improve the treatment of Ph+ B-ALL.
Collapse
Affiliation(s)
- Lukasz Komorowski
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiry Gandhi 14, 02-776 Warsaw, Poland;
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
| |
Collapse
|
22
|
RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia 2020; 35:1087-1099. [PMID: 32782381 PMCID: PMC8024199 DOI: 10.1038/s41375-020-01011-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Blast-phase chronic myeloid leukemia (BP-CML) is associated with additional chromosomal aberrations, RUNX1 mutations being one of the most common. Tyrosine kinase inhibitor therapy has only limited efficacy in BP-CML, and characterization of more defined molecular subtypes is warranted in order to design better treatment modalities for this poor prognosis patient group. Using whole-exome and RNA sequencing we demonstrate that PHF6 and BCORL1 mutations, IKZF1 deletions, and AID/RAG-mediated rearrangements are enriched in RUNX1mut BP-CML leading to typical mutational signature. On transcriptional level interferon and TNF signaling were deregulated in primary RUNX1mut CML cells and stem cell and B-lymphoid factors upregulated giving a rise to distinct phenotype. This was accompanied with the sensitivity of RUNX1mut blasts to CD19-CAR T cells in ex vivo assays. High-throughput drug sensitivity and resistance testing revealed leukemia cells from RUNX1mut patients to be highly responsive for mTOR-, BCL2-, and VEGFR inhibitors and glucocorticoids. These findings were further investigated and confirmed in CRISPR/Cas9-edited homozygous RUNX1−/− and heterozygous RUNX1−/mut BCR-ABL positive cell lines. Overall, our study provides insights into the pathogenic role of RUNX1 mutations and highlights personalized targeted therapy and CAR T-cell immunotherapy as potentially promising strategies for treating RUNX1mut BP-CML patients.
Collapse
|
23
|
Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, Dimitrova L, Sommerfeld A, Berg E, von der Wall E, Müller U, Joosten M, Lenze D, Heimesaat MM, Baldus C, Zinser C, Cieslak A, Macintyre E, Stocking C, Hennig S, Hummel M. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep 2020; 10:10024. [PMID: 32572036 PMCID: PMC7308335 DOI: 10.1038/s41598-020-65744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1+/- mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
Collapse
Affiliation(s)
- V Seitz
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - K Kleo
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - N Bedjaoui
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - L Dimitrova
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Sommerfeld
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E Berg
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E von der Wall
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - U Müller
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - M Joosten
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - D Lenze
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - M M Heimesaat
- Charité University Medicine Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - C Baldus
- University Medical Center Schleswig-Holstein, Department of Internal Medicine II, Kiel, Germany
| | - C Zinser
- Precigen Bioinformatics Germany GmbH, Munich, Germany
| | - A Cieslak
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - E Macintyre
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Stocking
- University Medical Center Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany.
| |
Collapse
|