1
|
Jia X, Liao N, Yao Y, Guo X, Chen K, Shi P. Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy. Cancer Biol Ther 2024; 25:2323765. [PMID: 38465622 PMCID: PMC10936623 DOI: 10.1080/15384047.2024.2323765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Adipocyte is a unique and versatile component of bone marrow microenvironment (BMM). However, the dynamic evolution of Bone Marrow (BM) adipocytes from the diagnosis of B cell Acute Lymphoblastic Leukemia (B-ALL) to the post-treatment state, and how they affect the progression of leukemia, remains inadequately explicated. Primary patient-derived xenograft models (PDXs) and stromal cell co-culture system are employed in this study. We show that the dynamic evolution of BM adipocytes from initial diagnosis of B-ALL to the post-chemotherapy phase, transitioning from cellular depletion in the initial leukemia niche to a fully restored state upon remission. Increased BM adipocytes retards engraftment of B-ALL cells in PDX models and inhibits cells growth of B-ALL in vitro. Mechanistically, the proliferation arrest of B-ALL cells in the context of adipocytes-enrichment niche, might attribute to the presence of adiponectin secreted by adipocytes themselves and the absence of cytokines secreted by mesenchymal stem cell (MSCs). In summary, our findings offer a novel perspective for further in-depth understanding of the dynamic balance between BMM and B-ALL.
Collapse
Affiliation(s)
- Xi Jia
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Naying Liao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yunqian Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xutao Guo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Kai Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Deng S, Zhang S, Shen T, Wang X, Gao Z, Zhang W, Dai K, Wang J, Liu C. Amphiphilic cytokine traps remodel marrow adipose tissue for hematopoietic microenvironment amelioration. Bioact Mater 2024; 42:226-240. [PMID: 39285915 PMCID: PMC11404087 DOI: 10.1016/j.bioactmat.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is extensively employed in the treatment of hematological malignancies but is markedly constrained by the paucity of hematopoietic stem/progenitor cells (HSPCs). Recent studies have found that marrow adipose tissue (MAT) acts on hematopoiesis through complicated mechanisms. Therefore, the osteo-organoids fabricated in vivo using biomaterials loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) have been used as models of MAT for our research. To obtain sufficient amounts of therapeutic HSPCs and healthy MAT, we have developed amphiphilic chitosan (AC)-gelatin as carriers of rhBMP-2 to the regulate type conversion of adipose tissue and trap hematopoietic growth factors. Unlike medicine interventions or cell therapies, the traps based on AC not only attenuate the occupancy of adipocytes within the hematopoietic microenvironment while preserving stem cell factor concentrations, but also improve marrow metabolism by promoting MAT browning. In conclusion, this approach increases the proportion of HSPCs in osteo-organoids, and optimizes the composition and metabolic status of MAT. These findings furnish an experimental basis for regulating hematopoiesis in vivo through materials that promote the development of autologous HSPCs. Additionally, this approach presents a theoretical model of rapid adipogenesis for the study of adipose-related pathologies and potential pharmacological targets.
Collapse
Affiliation(s)
- Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tong Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuanlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zehua Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenchao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
3
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Minari TP, Manzano CF, Yugar LBT, Sedenho-Prado LG, de Azevedo Rubio T, Tácito LHB, Pires AC, Vilela-Martin JF, Cosenso-Martin LN, Ludovico ND, Fattori A, Yugar-Toledo JC, Moreno H, Pisani LP. Demystifying Obesity: Understanding, Prevention, Treatment, and Stigmas. Nutr Rev 2024:nuae144. [PMID: 39420547 DOI: 10.1093/nutrit/nuae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Obesity is a complex chronic disease that affects millions of people worldwide. There is still significant stigma associated with it, which can lead to discrimination and create additional barriers for people who are already in treatment. On the other hand, it is noted that it can have serious implications for health and predisposition to noncommunicable chronic diseases. In this sense, the objective of this study was to carry out a narrative review involving all current elements for understanding, prevention, treatment, and debate of stigmas related to obesity. A search was conducted in 2024 for original articles, randomized or nonrandomized clinical trials, systematic reviews, meta-analyses, and guidelines in the following databases: Pubmed, Scielo, Web of Science, CrossRef, and Google Scholar. The publication period was from 2014 to 2024. Obesity is influenced by a complex combination of genetic, environmental, and psychological factors. It is encouraging to see that various emerging points have been identified across different fields such as histology, physiology, genetics, weight loss, and public policy. These obesity areas certainly warrant attention and future studies. Researchers can delve into these topics to deepen their understanding and potentially uncover novel insights. The management should be multifactorial and individualized for each patient. Public policies also play a crucial role in combating obesity, including health promotion, prevention of excessive weight gain, early diagnosis, and proper care of patients. It is crucial that society begins to see the disease as an extremely complex element and not as a moral failure or lack of willpower. This requires a change in the way people talk about obesity, as well as practices that support people instead of stigmatizing them. Obesity does not have a specific address, color, or race. It belongs to everyone and should be regarded as a global public health problem.
Collapse
Affiliation(s)
- Tatiana Palotta Minari
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Carolina Freitas Manzano
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | | | | | - Tatiane de Azevedo Rubio
- Cardiovascular Pharmacology & Hypertension Laboratory, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Lúcia Helena Bonalumi Tácito
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Antônio Carlos Pires
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - José Fernando Vilela-Martin
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Luciana Neves Cosenso-Martin
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Nelson Dinamarco Ludovico
- Department of Health-Medical College, State University of Santa Cruz (UESC), Salobrinho, Ilhéus 45662-900, Bahia, Brazil
| | - André Fattori
- Cardiovascular Pharmacology & Hypertension Laboratory, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Juan Carlos Yugar-Toledo
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Heitor Moreno
- Cardiovascular Pharmacology & Hypertension Laboratory, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | | |
Collapse
|
5
|
Trivanović D, Vujačić M, Labella R, Djordjević IO, Ćazić M, Chernak B, Jauković A. Molecular Deconvolution of Bone Marrow Adipose Tissue Interactions with Malignant Hematopoiesis: Potential for New Therapy Development. Curr Osteoporos Rep 2024; 22:367-377. [PMID: 38922359 DOI: 10.1007/s11914-024-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE OF REVIEW Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via β-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY, USA
| | - Ivana Okić Djordjević
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Marija Ćazić
- Department of Hematology and Oncology, University Children's Hospital Tiršova, 11000, Belgrade, Serbia
| | - Brian Chernak
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
7
|
Bacharach T, Kaushansky N, Shlush LI. Age-related micro-environmental changes as drivers of clonal hematopoiesis. Curr Opin Hematol 2024; 31:53-57. [PMID: 38133628 DOI: 10.1097/moh.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW Both aging and reduced diversity at the hematopoietic stem cells (HSCs) level are ubiquitous. What remains unclear is why some individuals develop clonal hematopoiesis (CH), and why does CH due to specific mutations occur in specific individuals. Much like aging, reduced diversity of HSCs is a complex phenotype shaped by numerous factors (germline & environment). The purpose of the current review is to discuss the role of two other age-related ubiquitous processes that might contribute to the dynamics and characteristics of losing HSC diversity and the evolution of CH. These processes have not been reviewed in depth so far and include the accumulation of fatty bone marrow (FBM), and the decline in sex hormones. RECENT FINDINGS Interestingly, sex hormone decline can directly shape HSC function, but also reshape the delicate balance of BM supporting cells, with a shift towards FBM. FBM accumulation can shape the clonal expansion of preleukemic mutations, particularly DNMT3A mutations, through IL-6 mediation. DNMT3A mutations are one of the only preleukemic mutations which is more prevalent in women, and especially in women with early menopause, demonstrating an association between age-related hormone decline and CH evolution, the mechanisms of which are yet to be discovered. SUMMARY Aging is a multifactorial phenotype and the same is true for the aging of the blood system. While many factors which can shape CH have been discussed, we shed more light on FBM and sex hormone decline. Much more is missing: how and should we even try to prevent these phenomena? Why do they occur? and how they are connected to other age-related blood factors?
Collapse
Affiliation(s)
- Tal Bacharach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
| | - Nathali Kaushansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
| | - Liran I Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
- Maccabi Healthcare Services, Tel Aviv, Israel
| |
Collapse
|
8
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
9
|
Álvarez-Zúñiga CD, Garza-Veloz I, Martínez-Rendón J, Ureño-Segura M, Delgado-Enciso I, Martinez-Fierro ML. Circulating Biomarkers Associated with the Diagnosis and Prognosis of B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4186. [PMID: 37627214 PMCID: PMC10453581 DOI: 10.3390/cancers15164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological disease characterized by the dysfunction of the hematopoietic system that leads to arrest at a specific stage of stem cells development, suppressing the average production of cellular hematologic components. BCP-ALL is a neoplasm of the B-cell lineage progenitor. BCP-ALL is caused and perpetuated by several mechanisms that provide the disease with its tumor potential and genetic and cytological characteristics. These pathological features are used for diagnosis and the prognostication of BCP-ALL. However, most of these paraclinical tools can only be obtained by bone marrow aspiration, which, as it is an invasive study, can delay the diagnosis and follow-up of the disease, in addition to the anesthetic risk it entails for pediatric patients. For this reason, it is crucial to find noninvasive and accessible ways to supply information concerning diagnosis, prognosis, and the monitoring of the disease, such as circulating biomarkers. In oncology, a biomarker is any measurable indicator that demonstrates the presence of malignancy, tumoral behavior, prognosis, or responses to treatments. This review summarizes circulating molecules associated with BCP-ALL with potential diagnostic value, classificatory capacity during monitoring specific clinic features of the disease, and/or capacity to identify each BCP-ALL stage regarding its evolution and outcome of the patients with BCP-ALL. In the same way, we provide and classify biomarkers that may be used in further studies focused on clinical approaches or therapeutic target identification for BCP-ALL.
Collapse
Affiliation(s)
- Claudia Daniela Álvarez-Zúñiga
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Jacqueline Martínez-Rendón
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Misael Ureño-Segura
- Hematology Service, Hospital General Zacatecas “Luz González Cosío”, Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico;
| | - Iván Delgado-Enciso
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico;
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| |
Collapse
|
10
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
11
|
Tuckermann J, Fischer-Posovszky P. Energy saver: Monocytes hibernate in bone marrow upon fasting. Cell Metab 2023; 35:734-736. [PMID: 37137288 DOI: 10.1016/j.cmet.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Immune functions are influenced by the nutritional state. In a recent publication in Immunity, Janssen et al. unveil that a fasting-induced glucocorticoid release makes monocytes move from blood into the bone marrow. Upon refeeding, these chronologically older monocytes are again released and exert detrimental effects during bacterial infection.
Collapse
Affiliation(s)
- Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
| | | |
Collapse
|
12
|
Zioni N, Bercovich AA, Chapal-Ilani N, Bacharach T, Rappoport N, Solomon A, Avraham R, Kopitman E, Porat Z, Sacma M, Hartmut G, Scheller M, Muller-Tidow C, Lipka D, Shlush E, Minden M, Kaushansky N, Shlush LI. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat Commun 2023; 14:2070. [PMID: 37045808 PMCID: PMC10097668 DOI: 10.1038/s41467-023-36906-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/20/2023] [Indexed: 04/14/2023] Open
Abstract
Both fatty bone marrow (FBM) and somatic mutations in hematopoietic stem cells (HSCs), also termed clonal hematopoiesis (CH) accumulate with human aging. However it remains unclear whether FBM can modify the evolution of CH. To address this question, we herein present the interaction between CH and FBM in two preclinical male mouse models: after sub-lethal irradiation or after castration. An adipogenesis inhibitor (PPARγ inhibitor) is used in both models as a control. A significant increase in self-renewal can be detected in both human and rodent DNMT3AMut-HSCs when exposed to FBM. DNMT3AMut-HSCs derived from older mice interacting with FBM have even higher self-renewal in comparison to DNMT3AMut-HSCs derived from younger mice. Single cell RNA-sequencing on rodent HSCs after exposing them to FBM reveal a 6-10 fold increase in DNMT3AMut-HSCs and an activated inflammatory signaling. Cytokine analysis of BM fluid and BM derived adipocytes grown in vitro demonstrates an increased IL-6 levels under FBM conditions. Anti-IL-6 neutralizing antibodies significantly reduce the selective advantage of DNMT3AMut-HSCs exposed to FBM. Overall, paracrine FBM inflammatory signals promote DNMT3A-driven clonal hematopoiesis, which can be inhibited by blocking the IL-6 pathway.
Collapse
Affiliation(s)
- N Zioni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - A Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - N Chapal-Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Bacharach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Rappoport
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - A Solomon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - R Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - E Kopitman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Z Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - M Sacma
- Institute of Molecular Medicine Ulm University, Ulm, Germany
| | - G Hartmut
- Institute of Molecular Medicine Ulm University, Ulm, Germany
| | - M Scheller
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - C Muller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Heidelberg, Heidelberg, Germany
| | - D Lipka
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Heidelberg, Heidelberg, Germany
| | - E Shlush
- IVF Unit, Galilee Medical Center, Nahariya, Israel
| | - M Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
- Division of Hematology, University Health Network, Toronto, ON, Canada
| | - N Kaushansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Hematology and Bone Marrow Transplantation Institute Rambam Healthcare campus Haifa, Haifa, Israel.
| |
Collapse
|
13
|
He N, Liu M, Wu Y. Adipose tissue and hematopoiesis: Friend or foe? J Clin Lab Anal 2023; 37:e24872. [PMID: 36972475 PMCID: PMC10156104 DOI: 10.1002/jcla.24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
AIM Hematopoietic stem cells are the origin of all hematopoietic cells. They have the self-renewal ability and can differentiate into various blood cells. In physiological state, most of the hematopoietic stem cells are dormant, and only a few cells proliferate to maintain hematopoietic homeostasis. METHODS This precise steady-state maintenance is regulated by complex mechanisms. Bone marrow adipocytes make up half of all cells in the bone marrow cavity, a feature that has attracted the attention of researchers from multiple fields. The adipocyte density within marrow increases during aging and obesity. RESULTS Recent studies have shown that bone marrow adipocytes play important roles in regulating hematopoiesis, but the effects of bone marrow adipocytes on hematopoiesis are often conflicting. Bone marrow adipocytes, participating in the formation of bone marrow hematopoietic microenvironment, influence hematopoiesis positively or negatively. In addition, other adipose tissue, especially white adipose tissue, also regulates hematopoiesis. CONCLUSION In this review, we describe the role of adipose tissue in hematological malignancies, which may be useful for understanding hematopoiesis and the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Na He
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Kristensen DT, Nielsen LB, Jakobsen LHK, Kristensen TC, Jepsen LØ, Schöllkopf C, Theilgaard‐Mönch K, El‐Galaly TC, Roug AS, Severinsen MT. Effects of chemotherapy dose reductions in overweight patients with acute myeloid leukaemia: A Danish nationwide cohort study. Br J Haematol 2022; 199:539-548. [PMID: 36083781 PMCID: PMC9825846 DOI: 10.1111/bjh.18448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
Overweight patients with cancer are frequently reduced in chemotherapy dose due to toxicity concerns, although previous studies have indicated that dose reduction (DR) of overweight patients results in comparable toxicity but may compromise overall survival (OS). Current evidence regarding DR in patients with acute myeloid leukaemia (AML) is limited. To investigate the association between DR and outcome among overweight patients with AML we analysed a Danish nationwide cohort of overweight adult AML patients treated with remission induction chemotherapy. Among 536 patients identified, 10.1% were categorized as DR defined as 95% or less of full body surface area (BSA)-based dose. Risk factors for DR were high body mass index (BMI) and BSA, therapy-related AML and favourable cytogenetics. No significant differences were observed for rates of complete remission (CR), 30- and 90-day mortality between DR and non-DR patients. Furthermore, DR did not affect median relapse-free survival (RFS) [DR, 14.5 (95% confidence interval, 9.0-41.7) months; non-DR, 15.0 (12.3-19.3)] with an adjusted difference in five-year restricted mean survival time (Δ5y-RMST) of 0.2 (-8.4 to 8.8) months nor median OS (DR, 17.0 [11.9 to 45.5] months; non-DR, 17.5 [14.8 to 20.5]) with an adjusted Δ5y-RMST of 0.8 (-5.7 to 7.3) months. In conclusion, we found no statistically significant association between DR and outcomes among overweight patients with AML. However, we acknowledge the limited sample size and encourage further studies in this important subject.
Collapse
Affiliation(s)
- Daniel Tuyet Kristensen
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Lars Børty Nielsen
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Lasse Hjort Kyneb Jakobsen
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Mathematical SciencesAalborg UniversityAalborgDenmark
| | | | | | - Claudia Schöllkopf
- Department of HaematologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Kim Theilgaard‐Mönch
- Department of HaematologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Tarec Christoffer El‐Galaly
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Anne Stidsholt Roug
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark,Department of HaematologyAarhus University HospitalAarhusDenmark
| | - Marianne Tang Severinsen
- Department of Haematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| |
Collapse
|
15
|
Li H, Konja D, Wang L, Wang Y. Sex Differences in Adiposity and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169338. [PMID: 36012601 PMCID: PMC9409326 DOI: 10.3390/ijms23169338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Body fat distribution is a well-established predictor of adverse medical outcomes, independent of overall adiposity. Studying body fat distribution sheds insights into the causes of obesity and provides valuable information about the development of various comorbidities. Compared to total adiposity, body fat distribution is more closely associated with risks of cardiovascular diseases. The present review specifically focuses on the sexual dimorphism in body fat distribution, the biological clues, as well as the genetic traits that are distinct from overall obesity. Understanding the sex determinations on body fat distribution and adiposity will aid in the improvement of the prevention and treatment of cardiovascular diseases (CVD).
Collapse
|
16
|
Soldo AM, Soldo I, Karačić A, Konjevod M, Perkovic MN, Glavan TM, Luksic M, Žarković N, Jaganjac M. Lipid Peroxidation in Obesity: Can Bariatric Surgery Help? Antioxidants (Basel) 2022; 11:antiox11081537. [PMID: 36009256 PMCID: PMC9405425 DOI: 10.3390/antiox11081537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and chronic oxidative stress, often being associated with each other in a vicious circle, are important factors of chronic diseases. Although it was usually considered to accompany aging and wealth, global trends show the increase in obesity among children even in Third World countries. Being manifested by an imbalance between energy consumption and food intake, obesity is characterized by an excessive or abnormal fat accumulation, impaired redox homeostasis and metabolic changes often associated with the self-catalyzed lipid peroxidation generating 4-hydroxynonenal, pluripotent bioactive peroxidation product of polyunsaturated fatty acids. Conservative methods targeting obesity produced only modest and transient results in the treatment of morbid obesity. Therefore, in recent years, surgery, primarily bariatric, became an attractive treatment for morbid obesity. Since adipose tissue is well known as a stress organ with pronounced endocrine functions, surgery results in redox balance and metabolic improvement of the entire organism. The source of bioactive lipids and lipid-soluble antioxidants, and the complex pathophysiology of lipid peroxidation should thus be considered from the aspects of personalized and integrative biomedicine to treat obesity in an appropriate way.
Collapse
Affiliation(s)
- Ana Maria Soldo
- Department of Gastroenterology, General Hospital “Dr. Ivo Pedisic”, 44000 Sisak, Croatia
| | - Ivo Soldo
- Surgery Clinic, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Andrija Karačić
- Surgery Clinic, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | | | | | - Martina Luksic
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Neven Žarković
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- Correspondence: (N.Ž.); (M.J.)
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- Correspondence: (N.Ž.); (M.J.)
| |
Collapse
|
17
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
18
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
19
|
Wrba L, Halbgebauer R, Roos J, Huber-Lang M, Fischer-Posovszky P. Adipose tissue: a neglected organ in the response to severe trauma? Cell Mol Life Sci 2022; 79:207. [PMID: 35338424 PMCID: PMC8956559 DOI: 10.1007/s00018-022-04234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.
Collapse
Affiliation(s)
- Lisa Wrba
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
- Department of Trauma, Orthopedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
20
|
Wang L, Zhang H, Wang S, Chen X, Su J. Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:770705. [PMID: 34912805 PMCID: PMC8667222 DOI: 10.3389/fcell.2021.770705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Recognized for nearly 100 years, bone marrow adipocytes (BMAs) form bone marrow niches that contain hematopoietic and bone cells, the roles of which have long been underestimated. Distinct from canonical white, brown, and beige adipocytes, BMAs derived from bone marrow mesenchymal stromal cells possess unique characteristics and functions. Recent single-cell sequencing studies have revealed the differentiation pathway, and seminal works support the tenet that BMAs are critical regulators in hematopoiesis, osteogenesis, and osteoclastogenesis. In this review, we discuss the origin and differentiation of BMAs, as well as the roles of BMAs in hematopoiesis, osteogenesis, osteoclastogenesis, and immune regulation. Overall, BMAs represent a novel target for bone marrow-related diseases, including osteoporosis and leukemia.
Collapse
Affiliation(s)
- Lipeng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Cunningham I, Sánchez Sosa S, Hamele-Bena D. Single organ microenvironment and the common features of tumors of leukemia, lymphoma, and myeloma cells growing there: A literature review. Eur J Haematol 2021; 108:169-177. [PMID: 34779527 DOI: 10.1111/ejh.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore whether the growth and treatment resistance of lymphoma and myeloma tumors is similar to that previously observed in leukemic and solid tumors growing in the same organ microenvironment. METHODS All published cases of 3 primary hematologic malignancies in breast, without systemic involvement, were identified, with follow-ups solicited from authors. Treatment approaches were analyzed to highlight the most effective. RESULTS Similar histologic features and biology among primary tumors of leukemia, lymphoma, plasmacytoma, and solid breast cancer was revealed. Review of treatments: tumor-directed, chemotherapy, or combination showed the benefit of tumor removal, and use of systemic agents in adjunct, not primary, treatment. Optimal assessment is limited by few cases of PET/CT verifying limited tumor extent. The common biology observed and cases of long survival after tumor/stroma eradication point to the complicity of organ microenvironment in the chemoresistance and treatment failure commonly observed in patients. CONCLUSIONS The interaction of an organ microenvironment, particularly its adipocytes, with malignant cells, results in similar histologic changes, metastatic potential, and chemoresistance in 3 hematologic malignancies and solid cancers. Improved survival in hematologic malignancies could result from adopting PET/CT to find tumor and its extent, eradicating tumor, and elucidating common therapeutic targets.
Collapse
Affiliation(s)
- Isabel Cunningham
- Division of Hematology Oncology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Diane Hamele-Bena
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
22
|
Heydt Q, Xintaropoulou C, Clear A, Austin M, Pislariu I, Miraki-Moud F, Cutillas P, Korfi K, Calaminici M, Cawthorn W, Suchacki K, Nagano A, Gribben JG, Smith M, Cavenagh JD, Oakervee H, Castleton A, Taussig D, Peck B, Wilczynska A, McNaughton L, Bonnet D, Mardakheh F, Patel B. Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nat Commun 2021; 12:5507. [PMID: 34535653 PMCID: PMC8448863 DOI: 10.1038/s41467-021-25540-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
The specific niche adaptations that facilitate primary disease and Acute Lymphoblastic Leukaemia (ALL) survival after induction chemotherapy remain unclear. Here, we show that Bone Marrow (BM) adipocytes dynamically evolve during ALL pathogenesis and therapy, transitioning from cellular depletion in the primary leukaemia niche to a fully reconstituted state upon remission induction. Functionally, adipocyte niches elicit a fate switch in ALL cells towards slow-proliferation and cellular quiescence, highlighting the critical contribution of the adipocyte dynamic to disease establishment and chemotherapy resistance. Mechanistically, adipocyte niche interaction targets posttranscriptional networks and suppresses protein biosynthesis in ALL cells. Treatment with general control nonderepressible 2 inhibitor (GCN2ib) alleviates adipocyte-mediated translational repression and rescues ALL cell quiescence thereby significantly reducing the cytoprotective effect of adipocytes against chemotherapy and other extrinsic stressors. These data establish how adipocyte driven restrictions of the ALL proteome benefit ALL tumours, preventing their elimination, and suggest ways to manipulate adipocyte-mediated ALL resistance.
Collapse
Affiliation(s)
- Q Heydt
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - C Xintaropoulou
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - A Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - M Austin
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - I Pislariu
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - F Miraki-Moud
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - P Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - K Korfi
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - M Calaminici
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - W Cawthorn
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, Scotland, UK
| | - K Suchacki
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, Scotland, UK
| | - A Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - M Smith
- Department of Haemato-Oncology, St Bartholomew's Hospital, West Smithfield, London, UK
| | - J D Cavenagh
- Department of Haemato-Oncology, St Bartholomew's Hospital, West Smithfield, London, UK
| | - H Oakervee
- Department of Haemato-Oncology, St Bartholomew's Hospital, West Smithfield, London, UK
| | - A Castleton
- Christie NHS Foundation Trust, Manchester, UK
| | - D Taussig
- Haemato-oncology Unit, The Royal Marsden Hospital, Sutton, UK
| | - B Peck
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - A Wilczynska
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - L McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - D Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - F Mardakheh
- Centre for Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - B Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Galati PC, Ribeiro CM, Pereira LTG, Amato AA. The association between excess body weight at diagnosis and pediatric leukemia prognosis: A systematic review and meta-analysis. Blood Rev 2021; 51:100870. [PMID: 34384603 DOI: 10.1016/j.blre.2021.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Obesity affects the prognosis of several types of cancer. However, whether excess body weight is independently associated with adverse outcomes following initial pediatric acute leukemia (AL) treatment is still unclear. We conducted a systematic review and meta-analysis to investigate the impact of overweight/obesity at diagnosis on pediatric AL prognosis following initial treatment by performing an extensive database search up to January 22, 2021. Twenty-three studies were included, providing data for 15689 children with acute lymphoblastic leukemia (ALL) and 2506 children with acute myeloid leukemia (AML). Data from 12 studies were pooled in the meta-analysis. Children with overweight/obesity at diagnosis of ALL had poorer event free-survival (random-effects hazard ratio of 1.44, 95%CI 1.16-1.79, p = 0.0008), but no difference in overall survival (random-effects hazard ratio 1.33, 95%CI 0.77-2.29, p = 0.31) when compared with healthy-weight children. Children with overweight/obesity at diagnosis of AML had no difference in event-free survival (random-effects hazard ratio of 0.88, 95%CI 0.48-1.59, p = 0.66) or overall survival (random-effects hazard ratio 1.40, 95%CI 0.78-2.49, p = 0.26), when compared with healthy-weight children. This systematic review and meta-analysis indicates that overweight/obesity negatively affects the prognosis of children with ALL. Future studies should address the best approach to consider nutritional status in their management.
Collapse
Affiliation(s)
- Paula Cristina Galati
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brazil; Children's Hospital of Brasilia José Alencar, Brasilia, Brazil
| | | | | | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brazil.
| |
Collapse
|
24
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
25
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
26
|
Abnormal bone marrow microenvironment: the “harbor” of acute lymphoblastic leukemia cells. BLOOD SCIENCE 2021; 3:29-34. [PMID: 35402834 PMCID: PMC8975096 DOI: 10.1097/bs9.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Bone marrow (BM) microenvironment regulates and supports the production of blood cells which are necessary to maintain homeostasis. In analogy to normal hematopoiesis, leukemogenesis is originated from leukemic stem cells (LSCs) which gives rise to more differentiated malignant cells. Leukemia cells occupy BM niches and reconstruct them to support leukemogenesis. The abnormal BM niches are the main sanctuary of LSCs where they can evade chemotherapy-induced death and acquire drug resistance. In this review, we focus on the protective effects of BM niche cells on acute lymphoblastic leukemia cells.
Collapse
|
27
|
Weickert MT, Hecker JS, Buck MC, Schreck C, Rivière J, Schiemann M, Schallmoser K, Bassermann F, Strunk D, Oostendorp RAJ, Götze KS. Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Sci Rep 2021; 11:5944. [PMID: 33723276 PMCID: PMC7961144 DOI: 10.1038/s41598-021-85122-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.
Collapse
Affiliation(s)
- Marie-Theresa Weickert
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Judith S Hecker
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Michèle C Buck
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christina Schreck
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jennifer Rivière
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Schiemann
- Flow Cytometry Unit (CyTUM-MIH), Institute of Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Katharina Schallmoser
- Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Florian Bassermann
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Partner Site, Munich, Germany
| | - Dirk Strunk
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Robert A J Oostendorp
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Katharina S Götze
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Partner Site, Munich, Germany.
| |
Collapse
|
28
|
Yu J, Choi S, Park A, Do J, Nam D, Kim Y, Noh J, Lee KY, Maeng CH, Park KS. Bone Marrow Homeostasis Is Impaired via JAK/STAT and Glucocorticoid Signaling in Cancer Cachexia Model. Cancers (Basel) 2021; 13:cancers13051059. [PMID: 33801569 PMCID: PMC7958949 DOI: 10.3390/cancers13051059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Cancer cachexia is a systemic inflammatory disease characterized by the loss of muscle and fat and occurs in 50–80% of cancer patients. In cancer cachexia, the tumor tissues interact with other tissues and organs using secretory factors. Differentiated immune cells from hematopoietic stem cells (HSCs) of the bone marrow contribute to the systemic inflammation and may be affected by these intertissue interactions. However, the significant changes that occur in the bone marrow and the underlying mechanisms are still unclear. Here, we investigated the effects of cancer cachexia on bone and stem cells that reside in the bone marrow using a lung cancer cachexia animal model. Cancer cachexia induces bone loss and impairs the properties of the bone marrow mesenchymal stem cells via JAK/STAT and glucocorticoid signaling. Our findings provide new insights for developing a novel therapeutic strategy for cancer cachexia. Abstract Cancer cachexia is a multifactorial systemic inflammation disease caused by complex interactions between the tumor and host tissues via soluble factors. However, whether cancer cachexia affects the bone marrow, in particular the hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), remains unclear. Here, we investigated the bone marrow and bone in a cancer cachexia animal model generated by transplanting Lewis lung carcinoma cells. The number of bone marrow mononuclear cells (BM-MNCs) started to significantly decrease in the cancer cachectic animal model prior to the discernable loss of muscle and fat. This decrease in BM-MNCs was associated with myeloid skewing in the circulation and the expansion of hematopoietic progenitors in the bone marrow. Bone loss occurred in the cancer cachexia animal model and accompanied the decrease in the bone marrow MSCs that play important roles in both supporting HSCs and maintaining bone homeostasis. Glucocorticoid signaling mediated the decrease in bone marrow MSCs in the cancer cachectic environment. The cancer cachexia environment also skewed the differentiation of the bone marrow MSCs toward adipogenic fate via JAK/STAT as well as glucocorticoid signaling. Our results suggest that the bone loss induced in cancer cachexia is associated with the depletion and the impaired differentiation capacity of the bone marrow MSCs.
Collapse
Affiliation(s)
- Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (J.Y.); (S.C.); (A.P.)
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (J.Y.); (S.C.); (A.P.)
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (J.Y.); (S.C.); (A.P.)
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.D.); (D.N.); (Y.K.); (J.N.)
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.D.); (D.N.); (Y.K.); (J.N.)
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.D.); (D.N.); (Y.K.); (J.N.)
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.D.); (D.N.); (Y.K.); (J.N.)
| | - Kil Yeon Lee
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Chi Hoon Maeng
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.D.); (D.N.); (Y.K.); (J.N.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-958-9368
| |
Collapse
|
29
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|